Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -147,19 +147,28 @@ def clear_conversation():
|
|
147 |
"""Clear the conversation history."""
|
148 |
return []
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def generate_analytics():
|
151 |
"""Generate analytics from the chat log"""
|
152 |
log_file = "analytics/chat_log.json"
|
153 |
|
154 |
if not os.path.exists(log_file):
|
155 |
-
return "No analytics data available yet.", None, None, None,
|
156 |
|
157 |
try:
|
158 |
with open(log_file, "r") as f:
|
159 |
logs = json.load(f)
|
160 |
|
161 |
if not logs:
|
162 |
-
return "No analytics data available yet.", None, None, None,
|
163 |
|
164 |
# Convert to DataFrame
|
165 |
df = pd.DataFrame(logs)
|
@@ -172,18 +181,14 @@ def generate_analytics():
|
|
172 |
}).reset_index()
|
173 |
model_usage.columns = ["model", "total_tokens", "request_count"]
|
174 |
|
175 |
-
plt.figure(figsize=(10, 6))
|
176 |
plt.bar(model_usage["model"], model_usage["total_tokens"])
|
177 |
plt.title("Token Usage by Model")
|
178 |
plt.xlabel("Model")
|
179 |
plt.ylabel("Total Tokens Used")
|
180 |
plt.xticks(rotation=45)
|
181 |
-
|
182 |
-
model_usage_img =
|
183 |
-
plt.savefig(model_usage_img, format="png", bbox_inches="tight")
|
184 |
-
model_usage_img.seek(0)
|
185 |
-
model_usage_b64 = base64.b64encode(model_usage_img.read()).decode("utf-8")
|
186 |
-
plt.close()
|
187 |
|
188 |
# Generate usage over time chart
|
189 |
df["date"] = df["timestamp"].dt.date
|
@@ -191,56 +196,55 @@ def generate_analytics():
|
|
191 |
"tokens_used": "sum"
|
192 |
}).reset_index()
|
193 |
|
194 |
-
plt.figure(figsize=(10, 6))
|
195 |
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o")
|
196 |
plt.title("Daily Token Usage")
|
197 |
plt.xlabel("Date")
|
198 |
plt.ylabel("Tokens Used")
|
199 |
plt.grid(True)
|
200 |
-
|
201 |
-
daily_usage_img =
|
202 |
-
plt.savefig(daily_usage_img, format="png", bbox_inches="tight")
|
203 |
-
daily_usage_img.seek(0)
|
204 |
-
daily_usage_b64 = base64.b64encode(daily_usage_img.read()).decode("utf-8")
|
205 |
-
plt.close()
|
206 |
|
207 |
# Generate response time chart
|
208 |
model_response_time = df.groupby("model").agg({
|
209 |
"response_time_sec": "mean"
|
210 |
}).reset_index()
|
211 |
|
212 |
-
plt.figure(figsize=(10, 6))
|
213 |
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
|
214 |
plt.title("Average Response Time by Model")
|
215 |
plt.xlabel("Model")
|
216 |
plt.ylabel("Response Time (seconds)")
|
217 |
plt.xticks(rotation=45)
|
218 |
-
|
219 |
-
response_time_img =
|
220 |
-
plt.savefig(response_time_img, format="png", bbox_inches="tight")
|
221 |
-
response_time_img.seek(0)
|
222 |
-
response_time_b64 = base64.b64encode(response_time_img.read()).decode("utf-8")
|
223 |
-
plt.close()
|
224 |
|
225 |
# Summary statistics
|
226 |
total_tokens = df["tokens_used"].sum()
|
227 |
total_requests = len(df)
|
228 |
avg_response_time = df["response_time_sec"].mean()
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
summary = f"""
|
231 |
## Analytics Summary
|
232 |
|
233 |
- **Total API Requests**: {total_requests}
|
234 |
- **Total Tokens Used**: {total_tokens:,}
|
235 |
- **Average Response Time**: {avg_response_time:.2f} seconds
|
236 |
-
- **Most Used Model**: {
|
237 |
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
|
238 |
"""
|
239 |
|
240 |
-
return summary,
|
241 |
|
242 |
except Exception as e:
|
243 |
-
|
|
|
244 |
|
245 |
# Define available models
|
246 |
models = [
|
@@ -366,11 +370,11 @@ with gr.Blocks(title="Groq AI Chat Playground") as app:
|
|
366 |
|
367 |
with gr.Row():
|
368 |
with gr.Column():
|
369 |
-
model_usage_chart = gr.
|
370 |
with gr.Column():
|
371 |
-
daily_usage_chart = gr.
|
372 |
|
373 |
-
response_time_chart = gr.
|
374 |
|
375 |
with gr.Accordion("Raw Data", open=False):
|
376 |
analytics_table = gr.DataFrame(label="Raw Analytics Data")
|
|
|
147 |
"""Clear the conversation history."""
|
148 |
return []
|
149 |
|
150 |
+
def plt_to_html(fig):
|
151 |
+
"""Convert matplotlib figure to HTML img tag"""
|
152 |
+
buf = io.BytesIO()
|
153 |
+
fig.savefig(buf, format="png", bbox_inches="tight")
|
154 |
+
buf.seek(0)
|
155 |
+
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
156 |
+
plt.close(fig)
|
157 |
+
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
|
158 |
+
|
159 |
def generate_analytics():
|
160 |
"""Generate analytics from the chat log"""
|
161 |
log_file = "analytics/chat_log.json"
|
162 |
|
163 |
if not os.path.exists(log_file):
|
164 |
+
return "No analytics data available yet.", None, None, None, []
|
165 |
|
166 |
try:
|
167 |
with open(log_file, "r") as f:
|
168 |
logs = json.load(f)
|
169 |
|
170 |
if not logs:
|
171 |
+
return "No analytics data available yet.", None, None, None, []
|
172 |
|
173 |
# Convert to DataFrame
|
174 |
df = pd.DataFrame(logs)
|
|
|
181 |
}).reset_index()
|
182 |
model_usage.columns = ["model", "total_tokens", "request_count"]
|
183 |
|
184 |
+
fig1 = plt.figure(figsize=(10, 6))
|
185 |
plt.bar(model_usage["model"], model_usage["total_tokens"])
|
186 |
plt.title("Token Usage by Model")
|
187 |
plt.xlabel("Model")
|
188 |
plt.ylabel("Total Tokens Used")
|
189 |
plt.xticks(rotation=45)
|
190 |
+
plt.tight_layout()
|
191 |
+
model_usage_img = plt_to_html(fig1)
|
|
|
|
|
|
|
|
|
192 |
|
193 |
# Generate usage over time chart
|
194 |
df["date"] = df["timestamp"].dt.date
|
|
|
196 |
"tokens_used": "sum"
|
197 |
}).reset_index()
|
198 |
|
199 |
+
fig2 = plt.figure(figsize=(10, 6))
|
200 |
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o")
|
201 |
plt.title("Daily Token Usage")
|
202 |
plt.xlabel("Date")
|
203 |
plt.ylabel("Tokens Used")
|
204 |
plt.grid(True)
|
205 |
+
plt.tight_layout()
|
206 |
+
daily_usage_img = plt_to_html(fig2)
|
|
|
|
|
|
|
|
|
207 |
|
208 |
# Generate response time chart
|
209 |
model_response_time = df.groupby("model").agg({
|
210 |
"response_time_sec": "mean"
|
211 |
}).reset_index()
|
212 |
|
213 |
+
fig3 = plt.figure(figsize=(10, 6))
|
214 |
plt.bar(model_response_time["model"], model_response_time["response_time_sec"])
|
215 |
plt.title("Average Response Time by Model")
|
216 |
plt.xlabel("Model")
|
217 |
plt.ylabel("Response Time (seconds)")
|
218 |
plt.xticks(rotation=45)
|
219 |
+
plt.tight_layout()
|
220 |
+
response_time_img = plt_to_html(fig3)
|
|
|
|
|
|
|
|
|
221 |
|
222 |
# Summary statistics
|
223 |
total_tokens = df["tokens_used"].sum()
|
224 |
total_requests = len(df)
|
225 |
avg_response_time = df["response_time_sec"].mean()
|
226 |
|
227 |
+
# Handling the case where there might not be enough data
|
228 |
+
if not model_usage.empty:
|
229 |
+
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
|
230 |
+
else:
|
231 |
+
most_used_model = "N/A"
|
232 |
+
|
233 |
summary = f"""
|
234 |
## Analytics Summary
|
235 |
|
236 |
- **Total API Requests**: {total_requests}
|
237 |
- **Total Tokens Used**: {total_tokens:,}
|
238 |
- **Average Response Time**: {avg_response_time:.2f} seconds
|
239 |
+
- **Most Used Model**: {most_used_model}
|
240 |
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
|
241 |
"""
|
242 |
|
243 |
+
return summary, model_usage_img, daily_usage_img, response_time_img, df.to_dict("records")
|
244 |
|
245 |
except Exception as e:
|
246 |
+
error_message = f"Error generating analytics: {str(e)}"
|
247 |
+
return error_message, None, None, None, []
|
248 |
|
249 |
# Define available models
|
250 |
models = [
|
|
|
370 |
|
371 |
with gr.Row():
|
372 |
with gr.Column():
|
373 |
+
model_usage_chart = gr.HTML(label="Token Usage by Model")
|
374 |
with gr.Column():
|
375 |
+
daily_usage_chart = gr.HTML(label="Daily Token Usage")
|
376 |
|
377 |
+
response_time_chart = gr.HTML(label="Response Time by Model")
|
378 |
|
379 |
with gr.Accordion("Raw Data", open=False):
|
380 |
analytics_table = gr.DataFrame(label="Raw Analytics Data")
|