Spaces:
Sleeping
Sleeping
File size: 3,969 Bytes
7239b15 c45b099 cfcd5ba c45b099 3e5eb40 c45b099 eccac7a 7239b15 c45b099 eccac7a 2d30c9d eccac7a 2d30c9d a7358e7 c45b099 eccac7a 2d30c9d eccac7a 7239b15 eccac7a 2d30c9d 67cbd57 a7358e7 c45b099 7239b15 c45b099 7239b15 cbb6586 7320ee9 aa90ca5 b68c4cb 7239b15 2d30c9d c45b099 2d30c9d cbb6586 81e59de 2d30c9d c45b099 2d30c9d 7239b15 c45b099 7239b15 c45b099 7239b15 c45b099 7239b15 2cab114 c45b099 bcde4c8 c45b099 bcde4c8 c45b099 bcde4c8 c45b099 bcde4c8 7239b15 2d30c9d c45b099 2d30c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import streamlit as st
st.set_page_config(page_title='ITR', page_icon="🧊", layout='centered')
st.title("LCM-Independent for Pascal Dataset")
import faiss
import numpy as np
from PIL import Image
import json
import zipfile
import pandas as pd
import pickle
import pickletools
from transformers import AutoTokenizer, CLIPTextModelWithProjection
from sklearn.preprocessing import normalize, OneHotEncoder
# loading the train dataset
with open('clip_train.pkl', 'rb') as f:
temp_d = pickle.load(f)
train_xv = temp_d['image'].astype(np.float64) # Array of image features : np ndarray
train_xt = temp_d['text'].astype(np.float64) # Array of text features : np ndarray
train_yv = temp_d['label'] # Array of labels
train_yt = temp_d['label'] # Array of labels
ids = list(temp_d['ids']) # image names == len(images)
# loading the test dataset
with open('clip_test.pkl', 'rb') as f:
temp_d = pickle.load(f)
test_xv = temp_d['image'].astype(np.float64)
test_xt = temp_d['text'].astype(np.float64)
test_yv = temp_d['label']
test_yt = temp_d['label']
enc = OneHotEncoder(sparse=False)
enc.fit(np.concatenate((train_yt, test_yt)).reshape((-1, 1)))
train_yv = enc.transform(train_yv.reshape((-1, 1))).astype(np.float64)
test_yv = enc.transform(test_yv.reshape((-1, 1))).astype(np.float64)
train_yt = enc.transform(train_yt.reshape((-1, 1))).astype(np.float64)
test_yt = enc.transform(test_yt.reshape((-1, 1))).astype(np.float64)
# Map the image ids to the corresponding image URLs
image_map_name = 'pascal_dataset.csv'
df = pd.read_csv(image_map_name)
image_list = list(df['image'])
class_list = list(df['class'])
zip_path = "pascal_raw.zip"
zip_file = zipfile.ZipFile(zip_path)
text_model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
text_tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
d = 32
text_index = faiss.index_factory(d, "Flat", faiss.METRIC_INNER_PRODUCT)
text_index = faiss.read_index("text_index.index")
def T2Isearch(query, k=50):
# Encode the text query
inputs = text_tokenizer([query], padding=True, return_tensors="pt")
outputs = text_model(**inputs)
query_embedding = outputs.text_embeds
query_vector = query_embedding.detach().numpy()
query_vector = query_vector.reshape(1,512)
faiss.normalize_L2(query_vector)
index.nprobe = index.ntotal
# Search for the nearest neighbors in the FAISS text index
D, I = text_index.search(query_vector, k)
# get rank of all classes wrt to query
classes_all = []
Y = train_yt
neighbor_ys = Y[I]
class_freq = np.zeros(Y.shape[1])
for neighbor_y in neighbor_ys:
classes = np.where(neighbor_y > 0.5)[0]
for _class in classes:
class_freq[_class] += 1
count = 0
for i in range(len(class_freq)):
if class_freq[i]>0:
count +=1
ranked_classes = np.argsort(-class_freq) # chosen order of pivots -- predicted sequence of all labels for the query
ranked_classes_after_knn = ranked_classes[:count] # predicted sequence of top labels after knn search
lis = ['aeroplane', 'bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
class_ = lis[ranked_classes_after_knn[0]-1]
# Map the image ids to the corresponding image URLs
count = 0
for i in range(len(image_list)):
if class_list[i] == class_ :
count+=1
image_name = image_list[i]
image_data = zip_file.open("pascal_raw/images/dataset/"+ image_name)
image = Image.open(image_data)
st.image(image, width=600)
if count == 5: break
query = st.text_input("Enter your search query here:")
if st.button("Search"):
if query:
T2Isearch(query) |