Spaces:
Sleeping
Sleeping
shivangibithel
commited on
Commit
·
bcde4c8
1
Parent(s):
90c5c7f
Update app.py
Browse files
app.py
CHANGED
@@ -70,8 +70,6 @@ def T2Isearch(query,focussed_word, k=5):
|
|
70 |
|
71 |
# Search for the nearest neighbors in the FAISS text index
|
72 |
D, I = text_index.search(query_vector, k)
|
73 |
-
print(D)
|
74 |
-
print(I)
|
75 |
|
76 |
# get rank of all classes wrt to query
|
77 |
classes_all = []
|
@@ -81,7 +79,6 @@ def T2Isearch(query,focussed_word, k=5):
|
|
81 |
|
82 |
for neighbor_y in neighbor_ys:
|
83 |
classes = np.where(neighbor_y > 0.5)[0]
|
84 |
-
print(classes)
|
85 |
for _class in classes:
|
86 |
class_freq[_class] += 1
|
87 |
|
@@ -94,15 +91,18 @@ def T2Isearch(query,focussed_word, k=5):
|
|
94 |
|
95 |
lis = ['aeroplane', 'bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
|
96 |
class_ = lis[ranked_classes_after_knn[0]-1]
|
97 |
-
|
98 |
|
99 |
# Map the image ids to the corresponding image URLs
|
|
|
100 |
for i in range(len(image_list)):
|
101 |
-
if class_list[i] == class_ :
|
|
|
102 |
image_name = image_list[i]
|
103 |
image_data = zip_file.open("pascal_raw/images/dataset/"+ image_name)
|
104 |
image = Image.open(image_data)
|
105 |
st.image(image, width=600)
|
|
|
106 |
|
107 |
query = st.text_input("Enter your search query here:")
|
108 |
focussed_word = st.text_input("Enter focussed word here")
|
|
|
70 |
|
71 |
# Search for the nearest neighbors in the FAISS text index
|
72 |
D, I = text_index.search(query_vector, k)
|
|
|
|
|
73 |
|
74 |
# get rank of all classes wrt to query
|
75 |
classes_all = []
|
|
|
79 |
|
80 |
for neighbor_y in neighbor_ys:
|
81 |
classes = np.where(neighbor_y > 0.5)[0]
|
|
|
82 |
for _class in classes:
|
83 |
class_freq[_class] += 1
|
84 |
|
|
|
91 |
|
92 |
lis = ['aeroplane', 'bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
|
93 |
class_ = lis[ranked_classes_after_knn[0]-1]
|
94 |
+
|
95 |
|
96 |
# Map the image ids to the corresponding image URLs
|
97 |
+
count = 0
|
98 |
for i in range(len(image_list)):
|
99 |
+
if class_list[i] == class_ :
|
100 |
+
count+=1
|
101 |
image_name = image_list[i]
|
102 |
image_data = zip_file.open("pascal_raw/images/dataset/"+ image_name)
|
103 |
image = Image.open(image_data)
|
104 |
st.image(image, width=600)
|
105 |
+
if count == 5: break
|
106 |
|
107 |
query = st.text_input("Enter your search query here:")
|
108 |
focussed_word = st.text_input("Enter focussed word here")
|