Spaces:
Build error
Build error
File size: 19,278 Bytes
b6e0092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import numpy as np
import torch
import PIL.Image
from tqdm import tqdm
from typing import Optional, Union, List
import warnings
warnings.filterwarnings('ignore')
from torch.optim.adam import Adam
import torch.nn.functional as nnf
from diffusers import DDIMScheduler
##########
# helper #
##########
def diffusion_step(model, latents, context, t, guidance_scale, low_resource=False):
if low_resource:
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
return latents
def image2latent(vae, image):
with torch.no_grad():
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if isinstance(image, np.ndarray):
dtype = next(vae.parameters()).dtype
device = next(vae.parameters()).device
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device=device, dtype=dtype)
latents = vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
def latent2image(vae, latents, return_type='np'):
assert isinstance(latents, torch.Tensor)
latents = 1 / 0.18215 * latents.detach()
image = vae.decode(latents)['sample']
if return_type in ['np', 'pil']:
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
if return_type == 'pil':
pilim = [PIL.Image.fromarray(imi) for imi in image]
pilim = pilim[0] if len(pilim)==1 else pilim
return pilim
else:
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
def txt_to_emb(model, prompt):
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
return text_embeddings
@torch.no_grad()
def text2image_ldm(
model,
prompt: List[str],
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
uncond_embeddings=None,
start_time=50,
return_type='pil', ):
batch_size = len(prompt)
height = width = 512
if latent is not None:
height = latent.shape[-2] * 8
width = latent.shape[-1] * 8
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
if uncond_embeddings is None:
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt",)
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
else:
uncond_embeddings_ = None
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
else:
context = torch.cat([uncond_embeddings_, text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
if return_type in ['pil', 'np']:
image = latent2image(model.vae, latents, return_type=return_type)
else:
image = latents
return image, latent
@torch.no_grad()
def text2image_ldm_imedit(
model,
thresh,
prompt: List[str],
target_prompt: List[str],
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
uncond_embeddings=None,
start_time=50,
return_type='pil'
):
batch_size = len(prompt)
height = width = 512
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
target_text_input = model.tokenizer(
target_prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
target_text_embeddings = model.text_encoder(target_text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
if uncond_embeddings is None:
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
else:
uncond_embeddings_ = None
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
if i < (1 - thresh) * num_inference_steps:
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
else:
context = torch.cat([uncond_embeddings_, text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
else:
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*target_text_embeddings.shape), target_text_embeddings])
else:
context = torch.cat([uncond_embeddings_, target_text_embeddings])
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
if return_type in ['pil', 'np']:
image = latent2image(model.vae, latents, return_type=return_type)
else:
image = latents
return image, latent
###########
# wrapper #
###########
class NullInversion(object):
def __init__(self, model, num_ddim_steps, guidance_scale, device='cuda'):
self.model = model
self.device = device
self.num_ddim_steps=num_ddim_steps
self.guidance_scale = guidance_scale
self.tokenizer = self.model.tokenizer
self.prompt = None
self.context = None
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, noise_pred, timestep, sample):
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * noise_pred
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self, latents, t, is_forward=True, context=None):
latents_input = torch.cat([latents] * 2)
if context is None:
context = self.context
guidance_scale = 1 if is_forward else self.guidance_scale
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
if is_forward:
latents = self.next_step(noise_pred, t, latents)
else:
latents = self.prev_step(noise_pred, t, latents)
return latents
@torch.no_grad()
def init_prompt(self, prompt: str):
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
[prompt],
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings, text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self, latent, emb):
# uncond_embeddings, cond_embeddings = self.context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in range(self.num_ddim_steps):
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
noise_pred = self.get_noise_pred_single(latent, t, emb)
latent = self.next_step(noise_pred, t, latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_invert(self, image, prompt):
assert isinstance(image, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
emb = txt_to_emb(self.model, prompt)
latent = image2latent(self.model.vae, image)
ddim_latents = self.ddim_loop(latent, emb)
self.model.scheduler = scheduler_save
return ddim_latents[-1]
def null_optimization(self, latents, emb, nemb=None, num_inner_steps=10, epsilon=1e-5):
# force fp32
dtype = latents[0].dtype
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
cond_embeddings = emb.float()
latents = [li.float() for li in latents]
self.model.unet.to(torch.float32)
uncond_embeddings_list = []
latent_cur = latents[-1]
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
for i in range(self.num_ddim_steps):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev = latents[len(latents) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
for j in range(num_inner_steps):
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
bar.update()
if loss_item < epsilon + i * 2e-5:
break
for j in range(j + 1, num_inner_steps):
bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context = torch.cat([uncond_embeddings, cond_embeddings])
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
bar.close()
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
self.model.unet.to(dtype)
return uncond_embeddings_list
def null_invert(self, im, txt, ntxt=None, num_inner_steps=10, early_stop_epsilon=1e-5):
assert isinstance(im, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
nemb = txt_to_emb(self.model, ntxt) \
if ntxt is not None else txt_to_emb(self.model, "")
emb = txt_to_emb(self.model, txt)
latent = image2latent(self.model.vae, im)
# ddim inversion
ddim_latents = self.ddim_loop(latent, emb)
# nulltext inversion
uncond_embeddings = self.null_optimization(
ddim_latents, emb, nemb, num_inner_steps, early_stop_epsilon)
self.model.scheduler = scheduler_save
return ddim_latents[-1], uncond_embeddings
def null_optimization_dual(
self, latents0, latents1, emb0, emb1, nemb=None,
num_inner_steps=10, epsilon=1e-5):
# force fp32
dtype = latents0[0].dtype
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
cond_embeddings0, cond_embeddings1 = emb0.float(), emb1.float()
latents0 = [li.float() for li in latents0]
latents1 = [li.float() for li in latents1]
self.model.unet.to(torch.float32)
uncond_embeddings_list = []
latent_cur0 = latents0[-1]
latent_cur1 = latents1[-1]
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
for i in range(self.num_ddim_steps):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev0 = latents0[len(latents0) - i - 2]
latent_prev1 = latents1[len(latents1) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond0 = self.get_noise_pred_single(latent_cur0, t, cond_embeddings0)
noise_pred_cond1 = self.get_noise_pred_single(latent_cur1, t, cond_embeddings1)
for j in range(num_inner_steps):
noise_pred_uncond0 = self.get_noise_pred_single(latent_cur0, t, uncond_embeddings)
noise_pred_uncond1 = self.get_noise_pred_single(latent_cur1, t, uncond_embeddings)
noise_pred0 = noise_pred_uncond0 + self.guidance_scale*(noise_pred_cond0-noise_pred_uncond0)
noise_pred1 = noise_pred_uncond1 + self.guidance_scale*(noise_pred_cond1-noise_pred_uncond1)
latents_prev_rec0 = self.prev_step(noise_pred0, t, latent_cur0)
latents_prev_rec1 = self.prev_step(noise_pred1, t, latent_cur1)
loss = nnf.mse_loss(latents_prev_rec0, latent_prev0) + \
nnf.mse_loss(latents_prev_rec1, latent_prev1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
bar.update()
if loss_item < epsilon + i * 2e-5:
break
for j in range(j + 1, num_inner_steps):
bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context0 = torch.cat([uncond_embeddings, cond_embeddings0])
context1 = torch.cat([uncond_embeddings, cond_embeddings1])
latent_cur0 = self.get_noise_pred(latent_cur0, t, False, context0)
latent_cur1 = self.get_noise_pred(latent_cur1, t, False, context1)
bar.close()
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
self.model.unet.to(dtype)
return uncond_embeddings_list
def null_invert_dual(
self, im0, im1, txt0, txt1, ntxt=None,
num_inner_steps=10, early_stop_epsilon=1e-5, ):
assert isinstance(im0, PIL.Image.Image)
assert isinstance(im1, PIL.Image.Image)
scheduler_save = self.model.scheduler
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
self.model.scheduler.set_timesteps(self.num_ddim_steps)
with torch.no_grad():
nemb = txt_to_emb(self.model, ntxt) \
if ntxt is not None else txt_to_emb(self.model, "")
latent0 = image2latent(self.model.vae, im0)
latent1 = image2latent(self.model.vae, im1)
emb0 = txt_to_emb(self.model, txt0)
emb1 = txt_to_emb(self.model, txt1)
# ddim inversion
ddim_latents_0 = self.ddim_loop(latent0, emb0)
ddim_latents_1 = self.ddim_loop(latent1, emb1)
# nulltext inversion
nembs = self.null_optimization_dual(
ddim_latents_0, ddim_latents_1, emb0, emb1, nemb, num_inner_steps, early_stop_epsilon)
self.model.scheduler = scheduler_save
return ddim_latents_0[-1], ddim_latents_1[-1], nembs
|