Spaces:
Build error
Build error
JiayiGuo821
commited on
Commit
•
b6e0092
1
Parent(s):
e43437a
Add files
Browse files- app.py +964 -0
- app_utils.py +102 -0
- assets/.DS_Store +0 -0
- assets/images/.DS_Store +0 -0
- assets/images/editing/banana.png +0 -0
- assets/images/editing/cake.png +0 -0
- assets/images/editing/rabbit.png +0 -0
- assets/images/interpolation/church1.png +0 -0
- assets/images/interpolation/church2.png +0 -0
- assets/images/interpolation/dog1.png +0 -0
- assets/images/interpolation/dog2.png +0 -0
- assets/images/interpolation/horse1.png +0 -0
- assets/images/interpolation/horse2.png +0 -0
- assets/images/interpolation/land1.png +0 -0
- assets/images/interpolation/land2.png +0 -0
- assets/images/interpolation/rabbit1.png +0 -0
- assets/images/interpolation/rabbit2.png +0 -0
- assets/images/interpolation/woman1.png +0 -0
- assets/images/interpolation/woman2.png +0 -0
- assets/images/inversion/000000029596.jpg +0 -0
- assets/images/inversion/000000560011.jpg +0 -0
- nulltxtinv_wrapper.py +450 -0
- requirements.txt +16 -0
app.py
ADDED
@@ -0,0 +1,964 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################################################################################
|
2 |
+
# Copyright (C) 2023 Jiayi Guo, Xingqian Xu, Manushree Vasu - All Rights Reserved #
|
3 |
+
################################################################################
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
import os.path as osp
|
8 |
+
import PIL
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
from collections import OrderedDict
|
12 |
+
from easydict import EasyDict as edict
|
13 |
+
from functools import partial
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torchvision.transforms as tvtrans
|
17 |
+
import time
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
import hashlib
|
21 |
+
import copy
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
from diffusers import StableDiffusionPipeline
|
25 |
+
from diffusers import DDIMScheduler
|
26 |
+
from app_utils import auto_dropdown
|
27 |
+
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
|
30 |
+
version = "Smooth Diffusion Demo v1.0"
|
31 |
+
refresh_symbol = "\U0001f504" # 🔄
|
32 |
+
recycle_symbol = '\U0000267b' #
|
33 |
+
|
34 |
+
##############
|
35 |
+
# model_book #
|
36 |
+
##############
|
37 |
+
|
38 |
+
choices = edict()
|
39 |
+
choices.diffuser = OrderedDict([
|
40 |
+
['SD-v1-5' , "runwayml/stable-diffusion-v1-5"],
|
41 |
+
['OJ-v4' , "prompthero/openjourney-v4"],
|
42 |
+
['RR-v2', "SG161222/Realistic_Vision_V2.0"],
|
43 |
+
])
|
44 |
+
|
45 |
+
choices.lora = OrderedDict([
|
46 |
+
['empty', ""],
|
47 |
+
['Smooth-LoRA-v1', hf_hub_download('shi-labs/smooth-diffusion-lora', 'pytorch_model.bin')],
|
48 |
+
])
|
49 |
+
|
50 |
+
choices.scheduler = OrderedDict([
|
51 |
+
['DDIM', DDIMScheduler],
|
52 |
+
])
|
53 |
+
|
54 |
+
choices.inversion = OrderedDict([
|
55 |
+
['NTI', 'NTI'],
|
56 |
+
['DDIM w/o text', 'DDIM w/o text'],
|
57 |
+
['DDIM', 'DDIM'],
|
58 |
+
])
|
59 |
+
|
60 |
+
default = edict()
|
61 |
+
default.diffuser = 'SD-v1-5'
|
62 |
+
default.scheduler = 'DDIM'
|
63 |
+
default.lora = 'Smooth-LoRA-v1'
|
64 |
+
default.inversion = 'NTI'
|
65 |
+
default.step = 50
|
66 |
+
default.cfg_scale = 7.5
|
67 |
+
default.framen = 24
|
68 |
+
default.fps = 16
|
69 |
+
default.nullinv_inner_step = 10
|
70 |
+
default.threshold = 0.8
|
71 |
+
default.variation = 0.8
|
72 |
+
|
73 |
+
##########
|
74 |
+
# helper #
|
75 |
+
##########
|
76 |
+
|
77 |
+
def lerp(t, v0, v1):
|
78 |
+
if isinstance(t, float):
|
79 |
+
return v0*(1-t) + v1*t
|
80 |
+
elif isinstance(t, (list, np.ndarray)):
|
81 |
+
return [v0*(1-ti) + v1*ti for ti in t]
|
82 |
+
|
83 |
+
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
84 |
+
# mostly copied from
|
85 |
+
# https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
|
86 |
+
v0_unit = v0 / np.linalg.norm(v0)
|
87 |
+
v1_unit = v1 / np.linalg.norm(v1)
|
88 |
+
dot = np.sum(v0_unit * v1_unit)
|
89 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
90 |
+
return lerp(t, v0, v1)
|
91 |
+
# Calculate initial angle between v0 and v1
|
92 |
+
theta_0 = np.arccos(dot)
|
93 |
+
sin_theta_0 = np.sin(theta_0)
|
94 |
+
# Angle at timestep t
|
95 |
+
|
96 |
+
if isinstance(t, float):
|
97 |
+
tlist = [t]
|
98 |
+
elif isinstance(t, (list, np.ndarray)):
|
99 |
+
tlist = t
|
100 |
+
|
101 |
+
v2_list = []
|
102 |
+
|
103 |
+
for ti in tlist:
|
104 |
+
theta_t = theta_0 * ti
|
105 |
+
sin_theta_t = np.sin(theta_t)
|
106 |
+
# Finish the slerp algorithm
|
107 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
108 |
+
s1 = sin_theta_t / sin_theta_0
|
109 |
+
v2 = s0 * v0 + s1 * v1
|
110 |
+
v2_list.append(v2)
|
111 |
+
|
112 |
+
if isinstance(t, float):
|
113 |
+
return v2_list[0]
|
114 |
+
else:
|
115 |
+
return v2_list
|
116 |
+
|
117 |
+
def offset_resize(image, width=512, height=512, left=0, right=0, top=0, bottom=0):
|
118 |
+
|
119 |
+
image = np.array(image)[:, :, :3]
|
120 |
+
h, w, c = image.shape
|
121 |
+
left = min(left, w-1)
|
122 |
+
right = min(right, w - left - 1)
|
123 |
+
top = min(top, h - left - 1)
|
124 |
+
bottom = min(bottom, h - top - 1)
|
125 |
+
image = image[top:h-bottom, left:w-right]
|
126 |
+
h, w, c = image.shape
|
127 |
+
if h < w:
|
128 |
+
offset = (w - h) // 2
|
129 |
+
image = image[:, offset:offset + h]
|
130 |
+
elif w < h:
|
131 |
+
offset = (h - w) // 2
|
132 |
+
image = image[offset:offset + w]
|
133 |
+
image = Image.fromarray(image).resize((width, height))
|
134 |
+
return image
|
135 |
+
|
136 |
+
def auto_dtype_device_shape(tlist, v0, v1, func,):
|
137 |
+
vshape = v0.shape
|
138 |
+
assert v0.shape == v1.shape
|
139 |
+
assert isinstance(tlist, (list, np.ndarray))
|
140 |
+
|
141 |
+
if isinstance(v0, torch.Tensor):
|
142 |
+
is_torch = True
|
143 |
+
dtype, device = v0.dtype, v0.device
|
144 |
+
v0 = v0.to('cpu').numpy().astype(float).flatten()
|
145 |
+
v1 = v1.to('cpu').numpy().astype(float).flatten()
|
146 |
+
else:
|
147 |
+
is_torch = False
|
148 |
+
dtype = v0.dtype
|
149 |
+
assert isinstance(v0, np.ndarray)
|
150 |
+
assert isinstance(v1, np.ndarray)
|
151 |
+
v0 = v0.astype(float).flatten()
|
152 |
+
v1 = v1.astype(float).flatten()
|
153 |
+
|
154 |
+
r = func(tlist, v0, v1)
|
155 |
+
|
156 |
+
if is_torch:
|
157 |
+
r = [torch.Tensor(ri).view(*vshape).to(dtype).to(device) for ri in r]
|
158 |
+
else:
|
159 |
+
r = [ri.astype(dtype) for ri in r]
|
160 |
+
return r
|
161 |
+
|
162 |
+
auto_lerp = partial(auto_dtype_device_shape, func=lerp)
|
163 |
+
auto_slerp = partial(auto_dtype_device_shape, func=slerp)
|
164 |
+
|
165 |
+
def frames2mp4(vpath, frames, fps):
|
166 |
+
import moviepy.editor as mpy
|
167 |
+
frames = [np.array(framei) for framei in frames]
|
168 |
+
clip = mpy.ImageSequenceClip(frames, fps=fps)
|
169 |
+
clip.write_videofile(vpath, fps=fps)
|
170 |
+
|
171 |
+
def negseed_to_rndseed(seed):
|
172 |
+
if seed < 0:
|
173 |
+
seed = np.random.randint(0, np.iinfo(np.uint32).max-100)
|
174 |
+
return seed
|
175 |
+
|
176 |
+
def regulate_image(pilim):
|
177 |
+
w, h = pilim.size
|
178 |
+
w = int(round(w/64)) * 64
|
179 |
+
h = int(round(h/64)) * 64
|
180 |
+
return pilim.resize([w, h], resample=PIL.Image.BILINEAR)
|
181 |
+
|
182 |
+
def txt_to_emb(model, prompt):
|
183 |
+
text_input = model.tokenizer(
|
184 |
+
prompt,
|
185 |
+
padding="max_length",
|
186 |
+
max_length=model.tokenizer.model_max_length,
|
187 |
+
truncation=True,
|
188 |
+
return_tensors="pt",)
|
189 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
190 |
+
return text_embeddings
|
191 |
+
|
192 |
+
def hash_pilim(pilim):
|
193 |
+
hasha = hashlib.md5(pilim.tobytes()).hexdigest()
|
194 |
+
return hasha
|
195 |
+
|
196 |
+
def hash_cfgdict(cfgdict):
|
197 |
+
hashb = hashlib.md5(json.dumps(cfgdict, sort_keys=True).encode('utf-8')).hexdigest()
|
198 |
+
return hashb
|
199 |
+
|
200 |
+
def remove_earliest_file(path, max_allowance=500, remove_ratio=0.1, ext=None):
|
201 |
+
if len(os.listdir(path)) <= max_allowance:
|
202 |
+
return
|
203 |
+
def get_mtime(fname):
|
204 |
+
return osp.getmtime(osp.join(path, fname))
|
205 |
+
if ext is None:
|
206 |
+
flist = sorted(os.listdir(path), key=get_mtime)
|
207 |
+
else:
|
208 |
+
flist = [fi for fi in os.listdir(path) if fi.endswith(ext)]
|
209 |
+
flist = sorted(flist, key=get_mtime)
|
210 |
+
exceedn = max(len(flist)-max_allowance, 0)
|
211 |
+
removen = int(max_allowance*remove_ratio)
|
212 |
+
removen = max(1, removen) + exceedn
|
213 |
+
for fi in flist[0:removen]:
|
214 |
+
os.remove(osp.join(path, fi))
|
215 |
+
|
216 |
+
def remove_decoupled_file(path, exta='.mp4', extb='.json'):
|
217 |
+
tag_a = [osp.splitext(fi)[0] for fi in os.listdir(path) if fi.endswith(exta)]
|
218 |
+
tag_b = [osp.splitext(fi)[0] for fi in os.listdir(path) if fi.endswith(extb)]
|
219 |
+
tag_a_extra = set(tag_a) - set(tag_b)
|
220 |
+
tag_b_extra = set(tag_b) - set(tag_a)
|
221 |
+
[os.remove(osp.join(path, tagi+exta)) for tagi in tag_a_extra]
|
222 |
+
[os.remove(osp.join(path, tagi+extb)) for tagi in tag_b_extra]
|
223 |
+
|
224 |
+
@torch.no_grad()
|
225 |
+
def t2i_core(model, xt, emb, nemb, step=30, cfg_scale=7.5, return_list=False):
|
226 |
+
from nulltxtinv_wrapper import diffusion_step, latent2image
|
227 |
+
model.scheduler.set_timesteps(step)
|
228 |
+
xi = xt
|
229 |
+
emb = txt_to_emb(model, "") if emb is None else emb
|
230 |
+
nemb = txt_to_emb(model, "") if nemb is None else nemb
|
231 |
+
if return_list:
|
232 |
+
xi_list = [xi.clone()]
|
233 |
+
for i, t in enumerate(tqdm(model.scheduler.timesteps)):
|
234 |
+
embi = emb[i] if isinstance(emb, list) else emb
|
235 |
+
nembi = nemb[i] if isinstance(nemb, list) else nemb
|
236 |
+
context = torch.cat([nembi, embi])
|
237 |
+
xi = diffusion_step(model, xi, context, t, cfg_scale, low_resource=False)
|
238 |
+
if return_list:
|
239 |
+
xi_list.append(xi.clone())
|
240 |
+
x0 = xi
|
241 |
+
im = latent2image(model.vae, x0, return_type='pil')
|
242 |
+
|
243 |
+
if return_list:
|
244 |
+
return im, xi_list
|
245 |
+
else:
|
246 |
+
return im
|
247 |
+
|
248 |
+
########
|
249 |
+
# main #
|
250 |
+
########
|
251 |
+
|
252 |
+
class wrapper(object):
|
253 |
+
def __init__(self,
|
254 |
+
fp16=False,
|
255 |
+
tag_diffuser=None,
|
256 |
+
tag_lora=None,
|
257 |
+
tag_scheduler=None,):
|
258 |
+
|
259 |
+
self.device = "cuda"
|
260 |
+
if fp16:
|
261 |
+
self.torch_dtype = torch.float16
|
262 |
+
else:
|
263 |
+
self.torch_dtype = torch.float32
|
264 |
+
self.load_all(tag_diffuser, tag_lora, tag_scheduler)
|
265 |
+
|
266 |
+
self.image_latent_dim = 4
|
267 |
+
self.batchsize = 8
|
268 |
+
self.seed = {}
|
269 |
+
|
270 |
+
self.cache_video_folder = "temp/video"
|
271 |
+
self.cache_video_maxn = 500
|
272 |
+
self.cache_image_folder = "temp/image"
|
273 |
+
self.cache_image_maxn = 500
|
274 |
+
self.cache_inverse_folder = "temp/inverse"
|
275 |
+
self.cache_inverse_maxn = 500
|
276 |
+
|
277 |
+
def load_all(self, tag_diffuser, tag_lora, tag_scheduler):
|
278 |
+
self.load_diffuser_lora(tag_diffuser, tag_lora)
|
279 |
+
self.load_scheduler(tag_scheduler)
|
280 |
+
return tag_diffuser, tag_lora, tag_scheduler
|
281 |
+
|
282 |
+
def load_diffuser_lora(self, tag_diffuser, tag_lora):
|
283 |
+
self.net = StableDiffusionPipeline.from_pretrained(
|
284 |
+
choices.diffuser[tag_diffuser], torch_dtype=self.torch_dtype).to(self.device)
|
285 |
+
self.net.safety_checker = None
|
286 |
+
if tag_lora != 'empty':
|
287 |
+
self.net.unet.load_attn_procs(
|
288 |
+
choices.lora[tag_lora], use_safetensors=False,)
|
289 |
+
self.tag_diffuser = tag_diffuser
|
290 |
+
self.tag_lora = tag_lora
|
291 |
+
return tag_diffuser, tag_lora
|
292 |
+
|
293 |
+
def load_scheduler(self, tag_scheduler):
|
294 |
+
self.net.scheduler = choices.scheduler[tag_scheduler].from_config(self.net.scheduler.config)
|
295 |
+
self.tag_scheduler = tag_scheduler
|
296 |
+
return tag_scheduler
|
297 |
+
|
298 |
+
def reset_seed(self, which='ltintp'):
|
299 |
+
return -1
|
300 |
+
|
301 |
+
def recycle_seed(self, which='ltintp'):
|
302 |
+
if which not in self.seed:
|
303 |
+
return self.reset_seed(which=which)
|
304 |
+
else:
|
305 |
+
return self.seed[which]
|
306 |
+
|
307 |
+
##########
|
308 |
+
# helper #
|
309 |
+
##########
|
310 |
+
|
311 |
+
def precheck_model(self, tag_diffuser, tag_lora, tag_scheduler):
|
312 |
+
if (tag_diffuser != self.tag_diffuser) or (tag_lora != self.tag_lora):
|
313 |
+
self.load_all(tag_diffuser, tag_lora, tag_scheduler)
|
314 |
+
if tag_scheduler != self.tag_scheduler:
|
315 |
+
self.load_scheduler(tag_scheduler)
|
316 |
+
|
317 |
+
########
|
318 |
+
# main #
|
319 |
+
########
|
320 |
+
|
321 |
+
def ddiminv(self, img, cfgdict):
|
322 |
+
txt, step, cfg_scale = cfgdict['txt'], cfgdict['step'], cfgdict['cfg_scale']
|
323 |
+
from nulltxtinv_wrapper import NullInversion
|
324 |
+
null_inversion_model = NullInversion(self.net, step, cfg_scale)
|
325 |
+
with torch.no_grad():
|
326 |
+
emb = txt_to_emb(self.net, txt)
|
327 |
+
nemb = txt_to_emb(self.net, "")
|
328 |
+
xt = null_inversion_model.ddim_invert(img, txt)
|
329 |
+
data = {
|
330 |
+
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
|
331 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
332 |
+
'xt': xt, 'emb': emb, 'nemb': nemb,}
|
333 |
+
return data
|
334 |
+
|
335 |
+
def nullinv_or_loadcache(self, img, cfgdict, force_reinvert=False):
|
336 |
+
hash = hash_pilim(img) + "--" + hash_cfgdict(cfgdict)
|
337 |
+
cdir = self.cache_inverse_folder
|
338 |
+
cfname = osp.join(cdir, hash+'.pth')
|
339 |
+
|
340 |
+
if osp.isfile(cfname) and (not force_reinvert):
|
341 |
+
cache_data = torch.load(cfname)
|
342 |
+
dtype = next(self.net.unet.parameters()).dtype
|
343 |
+
device = next(self.net.unet.parameters()).device
|
344 |
+
cache_data['xt'] = cache_data['xt'].to(device=device, dtype=dtype)
|
345 |
+
cache_data['emb'] = cache_data['emb'].to(device=device, dtype=dtype)
|
346 |
+
cache_data['nemb'] = [
|
347 |
+
nembi.to(device=device, dtype=dtype)
|
348 |
+
for nembi in cache_data['nemb']]
|
349 |
+
return cache_data
|
350 |
+
else:
|
351 |
+
txt, step, cfg_scale = cfgdict['txt'], cfgdict['step'], cfgdict['cfg_scale']
|
352 |
+
inner_step = cfgdict['inner_step']
|
353 |
+
from nulltxtinv_wrapper import NullInversion
|
354 |
+
null_inversion_model = NullInversion(self.net, step, cfg_scale)
|
355 |
+
with torch.no_grad():
|
356 |
+
emb = txt_to_emb(self.net, txt)
|
357 |
+
xt, nemb = null_inversion_model.null_invert(img, txt, num_inner_steps=inner_step)
|
358 |
+
cache_data = {
|
359 |
+
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
|
360 |
+
'inner_step' : inner_step,
|
361 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
362 |
+
'xt' : xt.to('cpu'),
|
363 |
+
'emb' : emb.to('cpu'),
|
364 |
+
'nemb' : [nembi.to('cpu') for nembi in nemb],}
|
365 |
+
os.makedirs(cdir, exist_ok=True)
|
366 |
+
remove_earliest_file(cdir, max_allowance=self.cache_inverse_maxn)
|
367 |
+
torch.save(cache_data, cfname)
|
368 |
+
data = {
|
369 |
+
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
|
370 |
+
'inner_step' : inner_step,
|
371 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
372 |
+
'xt' : xt, 'emb' : emb, 'nemb' : nemb,}
|
373 |
+
return data
|
374 |
+
|
375 |
+
def nullinvdual_or_loadcachedual(self, img0, img1, cfgdict, force_reinvert=False):
|
376 |
+
hash = hash_pilim(img0) + "--" + hash_pilim(img1) + "--" + hash_cfgdict(cfgdict)
|
377 |
+
cdir = self.cache_inverse_folder
|
378 |
+
cfname = osp.join(cdir, hash+'.pth')
|
379 |
+
|
380 |
+
if osp.isfile(cfname) and (not force_reinvert):
|
381 |
+
cache_data = torch.load(cfname)
|
382 |
+
dtype = next(self.net.unet.parameters()).dtype
|
383 |
+
device = next(self.net.unet.parameters()).device
|
384 |
+
cache_data['xt0'] = cache_data['xt0'].to(device=device, dtype=dtype)
|
385 |
+
cache_data['xt1'] = cache_data['xt1'].to(device=device, dtype=dtype)
|
386 |
+
cache_data['emb0'] = cache_data['emb0'].to(device=device, dtype=dtype)
|
387 |
+
cache_data['emb1'] = cache_data['emb1'].to(device=device, dtype=dtype)
|
388 |
+
cache_data['nemb'] = [
|
389 |
+
nembi.to(device=device, dtype=dtype)
|
390 |
+
for nembi in cache_data['nemb']]
|
391 |
+
|
392 |
+
cache_data_a = copy.deepcopy(cache_data)
|
393 |
+
cache_data_a['xt'] = cache_data_a.pop('xt0')
|
394 |
+
cache_data_a['emb'] = cache_data_a.pop('emb0')
|
395 |
+
cache_data_a.pop('xt1'); cache_data_a.pop('emb1')
|
396 |
+
|
397 |
+
cache_data_b = cache_data
|
398 |
+
cache_data_b['xt'] = cache_data_b.pop('xt1')
|
399 |
+
cache_data_b['emb'] = cache_data_b.pop('emb1')
|
400 |
+
cache_data_b.pop('xt0'); cache_data_b.pop('emb0')
|
401 |
+
|
402 |
+
return cache_data_a, cache_data_b
|
403 |
+
else:
|
404 |
+
txt0, txt1, step, cfg_scale, inner_step = \
|
405 |
+
cfgdict['txt0'], cfgdict['txt1'], cfgdict['step'], \
|
406 |
+
cfgdict['cfg_scale'], cfgdict['inner_step']
|
407 |
+
|
408 |
+
from nulltxtinv_wrapper import NullInversion
|
409 |
+
null_inversion_model = NullInversion(self.net, step, cfg_scale)
|
410 |
+
with torch.no_grad():
|
411 |
+
emb0 = txt_to_emb(self.net, txt0)
|
412 |
+
emb1 = txt_to_emb(self.net, txt1)
|
413 |
+
|
414 |
+
xt0, xt1, nemb = null_inversion_model.null_invert_dual(
|
415 |
+
img0, img1, txt0, txt1, num_inner_steps=inner_step)
|
416 |
+
cache_data = {
|
417 |
+
'step' : step, 'cfg_scale' : cfg_scale,
|
418 |
+
'txt0' : txt0, 'txt1' : txt1,
|
419 |
+
'inner_step' : inner_step,
|
420 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
421 |
+
'xt0' : xt0.to('cpu'), 'xt1' : xt1.to('cpu'),
|
422 |
+
'emb0' : emb0.to('cpu'), 'emb1' : emb1.to('cpu'),
|
423 |
+
'nemb' : [nembi.to('cpu') for nembi in nemb],}
|
424 |
+
os.makedirs(cdir, exist_ok=True)
|
425 |
+
remove_earliest_file(cdir, max_allowance=self.cache_inverse_maxn)
|
426 |
+
torch.save(cache_data, cfname)
|
427 |
+
data0 = {
|
428 |
+
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt0,
|
429 |
+
'inner_step' : inner_step,
|
430 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
431 |
+
'xt' : xt0, 'emb' : emb0, 'nemb' : nemb,}
|
432 |
+
data1 = {
|
433 |
+
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt1,
|
434 |
+
'inner_step' : inner_step,
|
435 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
|
436 |
+
'xt' : xt1, 'emb' : emb1, 'nemb' : nemb,}
|
437 |
+
return data0, data1
|
438 |
+
|
439 |
+
def image_inversion(
|
440 |
+
self, img, txt,
|
441 |
+
cfg_scale, step,
|
442 |
+
inversion, inner_step, force_reinvert):
|
443 |
+
from nulltxtinv_wrapper import text2image_ldm
|
444 |
+
if inversion == 'DDIM w/o text':
|
445 |
+
txt = ''
|
446 |
+
if not inversion == 'NTI':
|
447 |
+
data = self.ddiminv(img, {'txt':txt, 'step':step, 'cfg_scale':cfg_scale,})
|
448 |
+
else:
|
449 |
+
data = self.nullinv_or_loadcache(
|
450 |
+
img, {'txt':txt, 'step':step,
|
451 |
+
'cfg_scale':cfg_scale, 'inner_step':inner_step,
|
452 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
|
453 |
+
|
454 |
+
if inversion == 'NTI':
|
455 |
+
img_inv, _ = text2image_ldm(
|
456 |
+
self.net, [txt], step, cfg_scale,
|
457 |
+
latent=data['xt'], uncond_embeddings=data['nemb'])
|
458 |
+
else:
|
459 |
+
img_inv, _ = text2image_ldm(
|
460 |
+
self.net, [txt], step, cfg_scale,
|
461 |
+
latent=data['xt'], uncond_embeddings=None)
|
462 |
+
|
463 |
+
return img_inv
|
464 |
+
|
465 |
+
def image_editing(
|
466 |
+
self, img, txt_0, txt_1,
|
467 |
+
cfg_scale, step, thresh,
|
468 |
+
inversion, inner_step, force_reinvert):
|
469 |
+
from nulltxtinv_wrapper import text2image_ldm_imedit
|
470 |
+
if inversion == 'DDIM w/o text':
|
471 |
+
txt_0 = ''
|
472 |
+
if not inversion == 'NTI':
|
473 |
+
data = self.ddiminv(img, {'txt':txt_0, 'step':step, 'cfg_scale':cfg_scale,})
|
474 |
+
img_edited, _ = text2image_ldm_imedit(
|
475 |
+
self.net, thresh, [txt_0], [txt_1], step, cfg_scale,
|
476 |
+
latent=data['xt'], uncond_embeddings=None)
|
477 |
+
else:
|
478 |
+
data = self.nullinv_or_loadcache(
|
479 |
+
img, {'txt':txt_0, 'step':step,
|
480 |
+
'cfg_scale':cfg_scale, 'inner_step':inner_step,
|
481 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
|
482 |
+
img_edited, _ = text2image_ldm_imedit(
|
483 |
+
self.net, thresh, [txt_0], [txt_1], step, cfg_scale,
|
484 |
+
latent=data['xt'], uncond_embeddings=data['nemb'])
|
485 |
+
|
486 |
+
return img_edited
|
487 |
+
|
488 |
+
def general_interpolation(
|
489 |
+
self, xset0, xset1,
|
490 |
+
cfg_scale, step, tlist,):
|
491 |
+
|
492 |
+
xt0, emb0, nemb0 = xset0['xt'], xset0['emb'], xset0['nemb']
|
493 |
+
xt1, emb1, nemb1 = xset1['xt'], xset1['emb'], xset1['nemb']
|
494 |
+
framen = len(tlist)
|
495 |
+
|
496 |
+
xt_list = auto_slerp(tlist, xt0, xt1)
|
497 |
+
emb_list = auto_lerp(tlist, emb0, emb1)
|
498 |
+
|
499 |
+
if isinstance(nemb0, list) and isinstance(nemb1, list):
|
500 |
+
assert len(nemb0) == len(nemb1)
|
501 |
+
nemb_list = [auto_lerp(tlist, e0, e1) for e0, e1 in zip(nemb0, nemb1)]
|
502 |
+
nemb_islist = True
|
503 |
+
else:
|
504 |
+
nemb_list = auto_lerp(tlist, nemb0, nemb1)
|
505 |
+
nemb_islist = False
|
506 |
+
|
507 |
+
im_list = []
|
508 |
+
for frameidx in range(0, len(xt_list), self.batchsize):
|
509 |
+
xt_batch = [xt_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
|
510 |
+
xt_batch = torch.cat(xt_batch, dim=0)
|
511 |
+
emb_batch = [emb_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
|
512 |
+
emb_batch = torch.cat(emb_batch, dim=0)
|
513 |
+
if nemb_islist:
|
514 |
+
nemb_batch = []
|
515 |
+
for nembi in nemb_list:
|
516 |
+
nembi_batch = [nembi[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
|
517 |
+
nembi_batch = torch.cat(nembi_batch, dim=0)
|
518 |
+
nemb_batch.append(nembi_batch)
|
519 |
+
else:
|
520 |
+
nemb_batch = [nemb_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
|
521 |
+
nemb_batch = torch.cat(nemb_batch, dim=0)
|
522 |
+
|
523 |
+
im = t2i_core(
|
524 |
+
self.net, xt_batch, emb_batch, nemb_batch, step, cfg_scale)
|
525 |
+
im_list += im if isinstance(im, list) else [im]
|
526 |
+
|
527 |
+
return im_list
|
528 |
+
|
529 |
+
def run_iminvs(
|
530 |
+
self, img, text,
|
531 |
+
cfg_scale, step,
|
532 |
+
force_resize, width, height,
|
533 |
+
inversion, inner_step, force_reinvert,
|
534 |
+
tag_diffuser, tag_lora, tag_scheduler, ):
|
535 |
+
|
536 |
+
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
|
537 |
+
|
538 |
+
if force_resize:
|
539 |
+
img = offset_resize(img, width, height)
|
540 |
+
else:
|
541 |
+
img = regulate_image(img)
|
542 |
+
|
543 |
+
recon_output = self.image_inversion(
|
544 |
+
img, text, cfg_scale, step,
|
545 |
+
inversion, inner_step, force_reinvert)
|
546 |
+
|
547 |
+
idir = self.cache_image_folder
|
548 |
+
os.makedirs(idir, exist_ok=True)
|
549 |
+
remove_earliest_file(idir, max_allowance=self.cache_image_maxn)
|
550 |
+
sname = "time{}_iminvs_{}_{}".format(
|
551 |
+
int(time.time()), self.tag_diffuser, self.tag_lora,)
|
552 |
+
ipath = osp.join(idir, sname+'.png')
|
553 |
+
recon_output.save(ipath)
|
554 |
+
|
555 |
+
return [recon_output]
|
556 |
+
|
557 |
+
def run_imedit(
|
558 |
+
self, img, txt_0,txt_1,
|
559 |
+
threshold, cfg_scale, step,
|
560 |
+
force_resize, width, height,
|
561 |
+
inversion, inner_step, force_reinvert,
|
562 |
+
tag_diffuser, tag_lora, tag_scheduler, ):
|
563 |
+
|
564 |
+
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
|
565 |
+
if force_resize:
|
566 |
+
img = offset_resize(img, width, height)
|
567 |
+
else:
|
568 |
+
img = regulate_image(img)
|
569 |
+
|
570 |
+
edited_img= self.image_editing(
|
571 |
+
img, txt_0,txt_1, cfg_scale, step, threshold,
|
572 |
+
inversion, inner_step, force_reinvert)
|
573 |
+
|
574 |
+
idir = self.cache_image_folder
|
575 |
+
os.makedirs(idir, exist_ok=True)
|
576 |
+
remove_earliest_file(idir, max_allowance=self.cache_image_maxn)
|
577 |
+
sname = "time{}_imedit_{}_{}".format(
|
578 |
+
int(time.time()), self.tag_diffuser, self.tag_lora,)
|
579 |
+
ipath = osp.join(idir, sname+'.png')
|
580 |
+
edited_img.save(ipath)
|
581 |
+
|
582 |
+
return [edited_img]
|
583 |
+
|
584 |
+
|
585 |
+
def run_imintp(
|
586 |
+
self,
|
587 |
+
img0, img1, txt0, txt1,
|
588 |
+
cfg_scale, step,
|
589 |
+
framen, fps,
|
590 |
+
force_resize, width, height,
|
591 |
+
inversion, inner_step, force_reinvert,
|
592 |
+
tag_diffuser, tag_lora, tag_scheduler,):
|
593 |
+
|
594 |
+
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
|
595 |
+
if txt1 == '':
|
596 |
+
txt1 = txt0
|
597 |
+
if force_resize:
|
598 |
+
img0 = offset_resize(img0, width, height)
|
599 |
+
img1 = offset_resize(img1, width, height)
|
600 |
+
else:
|
601 |
+
img0 = regulate_image(img0)
|
602 |
+
img1 = regulate_image(img1)
|
603 |
+
|
604 |
+
if inversion == 'DDIM':
|
605 |
+
data0 = self.ddiminv(img0, {'txt':txt0, 'step':step, 'cfg_scale':cfg_scale,})
|
606 |
+
data1 = self.ddiminv(img1, {'txt':txt1, 'step':step, 'cfg_scale':cfg_scale,})
|
607 |
+
elif inversion == 'DDIM w/o text':
|
608 |
+
data0 = self.ddiminv(img0, {'txt':"", 'step':step, 'cfg_scale':cfg_scale,})
|
609 |
+
data1 = self.ddiminv(img1, {'txt':"", 'step':step, 'cfg_scale':cfg_scale,})
|
610 |
+
else:
|
611 |
+
data0, data1 = self.nullinvdual_or_loadcachedual(
|
612 |
+
img0, img1, {'txt0':txt0, 'txt1':txt1, 'step':step,
|
613 |
+
'cfg_scale':cfg_scale, 'inner_step':inner_step,
|
614 |
+
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
|
615 |
+
|
616 |
+
tlist = np.linspace(0.0, 1.0, framen)
|
617 |
+
|
618 |
+
iminv0 = t2i_core(self.net, data0['xt'], data0['emb'], data0['nemb'], step, cfg_scale)
|
619 |
+
iminv1 = t2i_core(self.net, data1['xt'], data1['emb'], data1['nemb'], step, cfg_scale)
|
620 |
+
frames = self.general_interpolation(data0, data1, cfg_scale, step, tlist)
|
621 |
+
|
622 |
+
vdir = self.cache_video_folder
|
623 |
+
os.makedirs(vdir, exist_ok=True)
|
624 |
+
remove_earliest_file(vdir, max_allowance=self.cache_video_maxn)
|
625 |
+
sname = "time{}_imintp_{}_{}_framen{}_fps{}".format(
|
626 |
+
int(time.time()), self.tag_diffuser, self.tag_lora, framen, fps)
|
627 |
+
vpath = osp.join(vdir, sname+'.mp4')
|
628 |
+
frames2mp4(vpath, frames, fps)
|
629 |
+
jpath = osp.join(vdir, sname+'.json')
|
630 |
+
cfgdict = {
|
631 |
+
"method" : "image_interpolation",
|
632 |
+
"txt0" : txt0, "txt1" : txt1,
|
633 |
+
"cfg_scale" : cfg_scale, "step" : step,
|
634 |
+
"framen" : framen, "fps" : fps,
|
635 |
+
"force_resize" : force_resize, "width" : width, "height" : height,
|
636 |
+
"inversion" : inversion, "inner_step" : inner_step,
|
637 |
+
"force_reinvert" : force_reinvert,
|
638 |
+
"tag_diffuser" : tag_diffuser, "tag_lora" : tag_lora, "tag_scheduler" : tag_scheduler,}
|
639 |
+
with open(jpath, 'w') as f:
|
640 |
+
json.dump(cfgdict, f, indent=4)
|
641 |
+
|
642 |
+
return frames, vpath, [iminv0, iminv1]
|
643 |
+
|
644 |
+
#################
|
645 |
+
# get examples #
|
646 |
+
#################
|
647 |
+
cache_examples = False
|
648 |
+
def get_imintp_example():
|
649 |
+
case = [
|
650 |
+
[
|
651 |
+
'assets/images/interpolation/cityview1.png',
|
652 |
+
'assets/images/interpolation/cityview2.png',
|
653 |
+
'A city view',],
|
654 |
+
[
|
655 |
+
'assets/images/interpolation/woman1.png',
|
656 |
+
'assets/images/interpolation/woman2.png',
|
657 |
+
'A woman face',],
|
658 |
+
[
|
659 |
+
'assets/images/interpolation/land1.png',
|
660 |
+
'assets/images/interpolation/land2.png',
|
661 |
+
'A beautiful landscape',],
|
662 |
+
[
|
663 |
+
'assets/images/interpolation/dog1.png',
|
664 |
+
'assets/images/interpolation/dog2.png',
|
665 |
+
'A realistic dog',],
|
666 |
+
[
|
667 |
+
'assets/images/interpolation/church1.png',
|
668 |
+
'assets/images/interpolation/church2.png',
|
669 |
+
'A church',],
|
670 |
+
[
|
671 |
+
'assets/images/interpolation/rabbit1.png',
|
672 |
+
'assets/images/interpolation/rabbit2.png',
|
673 |
+
'A cute rabbit',],
|
674 |
+
[
|
675 |
+
'assets/images/interpolation/horse1.png',
|
676 |
+
'assets/images/interpolation/horse2.png',
|
677 |
+
'A robot horse',],
|
678 |
+
]
|
679 |
+
return case
|
680 |
+
|
681 |
+
def get_iminvs_example():
|
682 |
+
case = [
|
683 |
+
[
|
684 |
+
'assets/images/inversion/000000560011.jpg',
|
685 |
+
'A mouse is next to a keyboard on a desk',],
|
686 |
+
[
|
687 |
+
'assets/images/inversion/000000029596.jpg',
|
688 |
+
'A room with a couch, table set with dinnerware and a television.',],
|
689 |
+
]
|
690 |
+
return case
|
691 |
+
|
692 |
+
|
693 |
+
def get_imedit_example():
|
694 |
+
case = [
|
695 |
+
[
|
696 |
+
'assets/images/editing/rabbit.png',
|
697 |
+
'A rabbit is eating a watermelon on the table',
|
698 |
+
'A cat is eating a watermelon on the table',
|
699 |
+
0.7,],
|
700 |
+
[
|
701 |
+
'assets/images/editing/cake.png',
|
702 |
+
'A chocolate cake with cream on it',
|
703 |
+
'A chocolate cake with strawberries on it',
|
704 |
+
0.9,],
|
705 |
+
[
|
706 |
+
'assets/images/editing/banana.png',
|
707 |
+
'A banana on the table',
|
708 |
+
'A banana and an apple on the table',
|
709 |
+
0.8,],
|
710 |
+
|
711 |
+
]
|
712 |
+
return case
|
713 |
+
|
714 |
+
|
715 |
+
#################
|
716 |
+
# sub interface #
|
717 |
+
#################
|
718 |
+
|
719 |
+
|
720 |
+
def interface_imintp(wrapper_obj):
|
721 |
+
with gr.Row():
|
722 |
+
with gr.Column():
|
723 |
+
img0 = gr.Image(label="Image Input 0", type='pil', elem_id='customized_imbox')
|
724 |
+
with gr.Column():
|
725 |
+
img1 = gr.Image(label="Image Input 1", type='pil', elem_id='customized_imbox')
|
726 |
+
with gr.Column():
|
727 |
+
video_output = gr.Video(label="Video Result", format='mp4', elem_id='customized_imbox')
|
728 |
+
with gr.Row():
|
729 |
+
with gr.Column():
|
730 |
+
txt0 = gr.Textbox(label='Text Input', lines=1, placeholder="Input prompt...", )
|
731 |
+
with gr.Column():
|
732 |
+
with gr.Row():
|
733 |
+
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
|
734 |
+
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
|
735 |
+
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
|
736 |
+
|
737 |
+
|
738 |
+
with gr.Row():
|
739 |
+
with gr.Column():
|
740 |
+
with gr.Row():
|
741 |
+
framen = gr.Slider(label="Frame Number", minimum=8, maximum=default.framen, value=default.framen, step=1)
|
742 |
+
fps = gr.Slider(label="Video FPS", minimum=4, maximum=default.fps, value=default.fps, step=4)
|
743 |
+
with gr.Row():
|
744 |
+
button_run = gr.Button("Run")
|
745 |
+
|
746 |
+
|
747 |
+
with gr.Column():
|
748 |
+
with gr.Accordion('Frame Results', open=False):
|
749 |
+
frame_output = gr.Gallery(label="Frames", elem_id='customized_imbox')
|
750 |
+
with gr.Accordion("Inversion Results", open=False):
|
751 |
+
inv_output = gr.Gallery(label="Inversion Results", elem_id='customized_imbox')
|
752 |
+
with gr.Accordion('Advanced Settings', open=False):
|
753 |
+
with gr.Row():
|
754 |
+
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
|
755 |
+
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
|
756 |
+
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
|
757 |
+
with gr.Row():
|
758 |
+
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
|
759 |
+
step = gr.Number(default.step, label="Step", precision=0)
|
760 |
+
with gr.Row():
|
761 |
+
force_resize = gr.Checkbox(label="Force Resize", value=True)
|
762 |
+
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
|
763 |
+
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
|
764 |
+
with gr.Row():
|
765 |
+
txt1 = gr.Textbox(label='Optional Different Text Input for Image Input 1', lines=1, placeholder="Input prompt...", )
|
766 |
+
|
767 |
+
|
768 |
+
tag_diffuser.change(
|
769 |
+
wrapper_obj.load_all,
|
770 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
771 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
772 |
+
|
773 |
+
tag_lora.change(
|
774 |
+
wrapper_obj.load_all,
|
775 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
776 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
777 |
+
|
778 |
+
tag_scheduler.change(
|
779 |
+
wrapper_obj.load_scheduler,
|
780 |
+
inputs = [tag_scheduler],
|
781 |
+
outputs = [tag_scheduler],)
|
782 |
+
|
783 |
+
button_run.click(
|
784 |
+
wrapper_obj.run_imintp,
|
785 |
+
inputs=[img0, img1, txt0, txt1,
|
786 |
+
cfg_scale, step,
|
787 |
+
framen, fps,
|
788 |
+
force_resize, inp_width, inp_height,
|
789 |
+
inversion, inner_step, force_reinvert,
|
790 |
+
tag_diffuser, tag_lora, tag_scheduler,],
|
791 |
+
outputs=[frame_output, video_output, inv_output])
|
792 |
+
|
793 |
+
gr.Examples(
|
794 |
+
label='Examples',
|
795 |
+
examples=get_imintp_example(),
|
796 |
+
fn=wrapper_obj.run_imintp,
|
797 |
+
inputs=[img0, img1, txt0,],
|
798 |
+
outputs=[frame_output, video_output, inv_output],
|
799 |
+
cache_examples=cache_examples,)
|
800 |
+
|
801 |
+
def interface_iminvs(wrapper_obj):
|
802 |
+
with gr.Row():
|
803 |
+
image_input = gr.Image(label="Image input", type='pil', elem_id='customized_imbox')
|
804 |
+
recon_output = gr.Gallery(label="Reconstruction output", elem_id='customized_imbox')
|
805 |
+
with gr.Row():
|
806 |
+
with gr.Column():
|
807 |
+
prompt = gr.Textbox(label='Text Input', lines=1, placeholder="Input prompt...", )
|
808 |
+
with gr.Row():
|
809 |
+
button_run = gr.Button("Run")
|
810 |
+
|
811 |
+
|
812 |
+
with gr.Column():
|
813 |
+
with gr.Row():
|
814 |
+
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
|
815 |
+
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
|
816 |
+
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
|
817 |
+
with gr.Accordion('Advanced Settings', open=False):
|
818 |
+
with gr.Row():
|
819 |
+
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
|
820 |
+
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
|
821 |
+
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
|
822 |
+
with gr.Row():
|
823 |
+
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
|
824 |
+
step = gr.Number(default.step, label="Step", precision=0)
|
825 |
+
with gr.Row():
|
826 |
+
force_resize = gr.Checkbox(label="Force Resize", value=True)
|
827 |
+
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
|
828 |
+
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
|
829 |
+
|
830 |
+
|
831 |
+
tag_diffuser.change(
|
832 |
+
wrapper_obj.load_all,
|
833 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
834 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
835 |
+
|
836 |
+
tag_lora.change(
|
837 |
+
wrapper_obj.load_all,
|
838 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
839 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
840 |
+
|
841 |
+
tag_scheduler.change(
|
842 |
+
wrapper_obj.load_scheduler,
|
843 |
+
inputs = [tag_scheduler],
|
844 |
+
outputs = [tag_scheduler],)
|
845 |
+
|
846 |
+
button_run.click(
|
847 |
+
wrapper_obj.run_iminvs,
|
848 |
+
inputs=[image_input, prompt,
|
849 |
+
cfg_scale, step,
|
850 |
+
force_resize, inp_width, inp_height,
|
851 |
+
inversion, inner_step, force_reinvert,
|
852 |
+
tag_diffuser, tag_lora, tag_scheduler,],
|
853 |
+
outputs=[recon_output])
|
854 |
+
|
855 |
+
gr.Examples(
|
856 |
+
label='Examples',
|
857 |
+
examples=get_iminvs_example(),
|
858 |
+
fn=wrapper_obj.run_iminvs,
|
859 |
+
inputs=[image_input, prompt,],
|
860 |
+
outputs=[recon_output],
|
861 |
+
cache_examples=cache_examples,)
|
862 |
+
|
863 |
+
|
864 |
+
def interface_imedit(wrapper_obj):
|
865 |
+
with gr.Row():
|
866 |
+
image_input = gr.Image(label="Image input", type='pil', elem_id='customized_imbox')
|
867 |
+
edited_output = gr.Gallery(label="Edited output", elem_id='customized_imbox')
|
868 |
+
with gr.Row():
|
869 |
+
with gr.Column():
|
870 |
+
prompt_0 = gr.Textbox(label='Source Text', lines=1, placeholder="Source prompt...", )
|
871 |
+
prompt_1 = gr.Textbox(label='Target Text', lines=1, placeholder="Target prompt...", )
|
872 |
+
with gr.Row():
|
873 |
+
button_run = gr.Button("Run")
|
874 |
+
|
875 |
+
with gr.Column():
|
876 |
+
with gr.Row():
|
877 |
+
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
|
878 |
+
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
|
879 |
+
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
|
880 |
+
threshold = gr.Slider(label="Threshold", minimum=0, maximum=1, value=default.threshold, step=0.1)
|
881 |
+
with gr.Accordion('Advanced Settings', open=False):
|
882 |
+
with gr.Row():
|
883 |
+
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
|
884 |
+
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
|
885 |
+
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
|
886 |
+
with gr.Row():
|
887 |
+
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
|
888 |
+
step = gr.Number(default.step, label="Step", precision=0)
|
889 |
+
with gr.Row():
|
890 |
+
force_resize = gr.Checkbox(label="Force Resize", value=True)
|
891 |
+
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
|
892 |
+
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
|
893 |
+
|
894 |
+
|
895 |
+
tag_diffuser.change(
|
896 |
+
wrapper_obj.load_all,
|
897 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
898 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
899 |
+
|
900 |
+
tag_lora.change(
|
901 |
+
wrapper_obj.load_all,
|
902 |
+
inputs = [tag_diffuser, tag_lora, tag_scheduler],
|
903 |
+
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
|
904 |
+
|
905 |
+
tag_scheduler.change(
|
906 |
+
wrapper_obj.load_scheduler,
|
907 |
+
inputs = [tag_scheduler],
|
908 |
+
outputs = [tag_scheduler],)
|
909 |
+
|
910 |
+
button_run.click(
|
911 |
+
wrapper_obj.run_imedit,
|
912 |
+
inputs=[image_input, prompt_0, prompt_1,
|
913 |
+
threshold, cfg_scale, step,
|
914 |
+
force_resize, inp_width, inp_height,
|
915 |
+
inversion, inner_step, force_reinvert,
|
916 |
+
tag_diffuser, tag_lora, tag_scheduler,],
|
917 |
+
outputs=[edited_output])
|
918 |
+
|
919 |
+
gr.Examples(
|
920 |
+
label='Examples',
|
921 |
+
examples=get_imedit_example(),
|
922 |
+
fn=wrapper_obj.run_imedit,
|
923 |
+
inputs=[image_input, prompt_0, prompt_1, threshold,],
|
924 |
+
outputs=[edited_output],
|
925 |
+
cache_examples=cache_examples,)
|
926 |
+
|
927 |
+
|
928 |
+
#############
|
929 |
+
# Interface #
|
930 |
+
#############
|
931 |
+
|
932 |
+
if __name__ == '__main__':
|
933 |
+
parser = argparse.ArgumentParser()
|
934 |
+
parser.add_argument('-p', '--port', type=int, default=None)
|
935 |
+
args = parser.parse_args()
|
936 |
+
from app_utils import css_empty, css_version_4_11_0
|
937 |
+
# css = css_empty
|
938 |
+
css = css_version_4_11_0
|
939 |
+
|
940 |
+
wrapper_obj = wrapper(
|
941 |
+
fp16=False,
|
942 |
+
tag_diffuser=default.diffuser,
|
943 |
+
tag_lora=default.lora,
|
944 |
+
tag_scheduler=default.scheduler)
|
945 |
+
|
946 |
+
if True:
|
947 |
+
with gr.Blocks(css=css) as demo:
|
948 |
+
gr.HTML(
|
949 |
+
"""
|
950 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
951 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
952 |
+
{}
|
953 |
+
</h1>
|
954 |
+
</div>
|
955 |
+
""".format(version))
|
956 |
+
|
957 |
+
with gr.Tab('Image Interpolation'):
|
958 |
+
interface_imintp(wrapper_obj)
|
959 |
+
with gr.Tab('Image Inversion'):
|
960 |
+
interface_iminvs(wrapper_obj)
|
961 |
+
with gr.Tab('Image Editing'):
|
962 |
+
interface_imedit(wrapper_obj)
|
963 |
+
|
964 |
+
demo.launch()
|
app_utils.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import numpy.random as npr
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision.transforms as tvtrans
|
9 |
+
import PIL.Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from PIL import Image
|
12 |
+
import copy
|
13 |
+
import json
|
14 |
+
from collections import OrderedDict
|
15 |
+
|
16 |
+
#######
|
17 |
+
# css #
|
18 |
+
#######
|
19 |
+
|
20 |
+
css_empty = ""
|
21 |
+
|
22 |
+
css_version_4_11_0 = """
|
23 |
+
#customized_imbox {
|
24 |
+
min-height: 450px;
|
25 |
+
max-height: 450px;
|
26 |
+
}
|
27 |
+
#customized_imbox>div[data-testid="image"] {
|
28 |
+
min-height: 450px;
|
29 |
+
}
|
30 |
+
#customized_imbox>div[data-testid="image"]>span[data-testid="source-select"] {
|
31 |
+
max-height: 0px;
|
32 |
+
}
|
33 |
+
#customized_imbox>div[data-testid="image"]>span[data-testid="source-select"]>button {
|
34 |
+
max-height: 0px;
|
35 |
+
}
|
36 |
+
#customized_imbox>div[data-testid="image"]>div.upload-container>div.image-frame>img {
|
37 |
+
position: absolute;
|
38 |
+
top: 50%;
|
39 |
+
left: 50%;
|
40 |
+
transform: translateX(-50%) translateY(-50%);
|
41 |
+
width: unset;
|
42 |
+
height: unset;
|
43 |
+
max-height: 450px;
|
44 |
+
}
|
45 |
+
#customized_imbox>div.unpadded_box {
|
46 |
+
min-height: 450px;
|
47 |
+
}
|
48 |
+
#myinst {
|
49 |
+
font-size: 0.8rem;
|
50 |
+
margin: 0rem;
|
51 |
+
color: #6B7280;
|
52 |
+
}
|
53 |
+
#maskinst {
|
54 |
+
text-align: justify;
|
55 |
+
min-width: 1200px;
|
56 |
+
}
|
57 |
+
#maskinst>img {
|
58 |
+
min-width:399px;
|
59 |
+
max-width:450px;
|
60 |
+
vertical-align: top;
|
61 |
+
display: inline-block;
|
62 |
+
}
|
63 |
+
#maskinst:after {
|
64 |
+
content: "";
|
65 |
+
width: 100%;
|
66 |
+
display: inline-block;
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
##########
|
71 |
+
# helper #
|
72 |
+
##########
|
73 |
+
|
74 |
+
def highlight_print(info):
|
75 |
+
print('')
|
76 |
+
print(''.join(['#']*(len(info)+4)))
|
77 |
+
print('# '+info+' #')
|
78 |
+
print(''.join(['#']*(len(info)+4)))
|
79 |
+
print('')
|
80 |
+
|
81 |
+
def auto_dropdown(name, choices_od, value):
|
82 |
+
import gradio as gr
|
83 |
+
option_list = [pi for pi in choices_od.keys()]
|
84 |
+
return gr.Dropdown(label=name, choices=option_list, value=value)
|
85 |
+
|
86 |
+
def load_sd_from_file(target):
|
87 |
+
if osp.splitext(target)[-1] == '.ckpt':
|
88 |
+
sd = torch.load(target, map_location='cpu')['state_dict']
|
89 |
+
elif osp.splitext(target)[-1] == '.pth':
|
90 |
+
sd = torch.load(target, map_location='cpu')
|
91 |
+
elif osp.splitext(target)[-1] == '.safetensors':
|
92 |
+
from safetensors.torch import load_file as stload
|
93 |
+
sd = OrderedDict(stload(target, device='cpu'))
|
94 |
+
else:
|
95 |
+
assert False, "File type must be .ckpt or .pth or .safetensors"
|
96 |
+
return sd
|
97 |
+
|
98 |
+
def torch_to_numpy(x):
|
99 |
+
return x.detach().to('cpu').numpy()
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
+
pass
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/images/editing/banana.png
ADDED
assets/images/editing/cake.png
ADDED
assets/images/editing/rabbit.png
ADDED
assets/images/interpolation/church1.png
ADDED
assets/images/interpolation/church2.png
ADDED
assets/images/interpolation/dog1.png
ADDED
assets/images/interpolation/dog2.png
ADDED
assets/images/interpolation/horse1.png
ADDED
assets/images/interpolation/horse2.png
ADDED
assets/images/interpolation/land1.png
ADDED
assets/images/interpolation/land2.png
ADDED
assets/images/interpolation/rabbit1.png
ADDED
assets/images/interpolation/rabbit2.png
ADDED
assets/images/interpolation/woman1.png
ADDED
assets/images/interpolation/woman2.png
ADDED
assets/images/inversion/000000029596.jpg
ADDED
assets/images/inversion/000000560011.jpg
ADDED
nulltxtinv_wrapper.py
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import PIL.Image
|
4 |
+
from tqdm import tqdm
|
5 |
+
from typing import Optional, Union, List
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings('ignore')
|
8 |
+
|
9 |
+
from torch.optim.adam import Adam
|
10 |
+
import torch.nn.functional as nnf
|
11 |
+
|
12 |
+
from diffusers import DDIMScheduler
|
13 |
+
|
14 |
+
##########
|
15 |
+
# helper #
|
16 |
+
##########
|
17 |
+
|
18 |
+
def diffusion_step(model, latents, context, t, guidance_scale, low_resource=False):
|
19 |
+
if low_resource:
|
20 |
+
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
|
21 |
+
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
|
22 |
+
else:
|
23 |
+
latents_input = torch.cat([latents] * 2)
|
24 |
+
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
25 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
26 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
27 |
+
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
|
28 |
+
return latents
|
29 |
+
|
30 |
+
def image2latent(vae, image):
|
31 |
+
with torch.no_grad():
|
32 |
+
if isinstance(image, PIL.Image.Image):
|
33 |
+
image = np.array(image)
|
34 |
+
if isinstance(image, np.ndarray):
|
35 |
+
dtype = next(vae.parameters()).dtype
|
36 |
+
device = next(vae.parameters()).device
|
37 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
38 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(device=device, dtype=dtype)
|
39 |
+
latents = vae.encode(image)['latent_dist'].mean
|
40 |
+
latents = latents * 0.18215
|
41 |
+
return latents
|
42 |
+
|
43 |
+
def latent2image(vae, latents, return_type='np'):
|
44 |
+
assert isinstance(latents, torch.Tensor)
|
45 |
+
latents = 1 / 0.18215 * latents.detach()
|
46 |
+
image = vae.decode(latents)['sample']
|
47 |
+
if return_type in ['np', 'pil']:
|
48 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
49 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
50 |
+
image = (image * 255).astype(np.uint8)
|
51 |
+
if return_type == 'pil':
|
52 |
+
pilim = [PIL.Image.fromarray(imi) for imi in image]
|
53 |
+
pilim = pilim[0] if len(pilim)==1 else pilim
|
54 |
+
return pilim
|
55 |
+
else:
|
56 |
+
return image
|
57 |
+
|
58 |
+
def init_latent(latent, model, height, width, generator, batch_size):
|
59 |
+
if latent is None:
|
60 |
+
latent = torch.randn(
|
61 |
+
(1, model.unet.in_channels, height // 8, width // 8),
|
62 |
+
generator=generator,
|
63 |
+
)
|
64 |
+
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
|
65 |
+
return latent, latents
|
66 |
+
|
67 |
+
def txt_to_emb(model, prompt):
|
68 |
+
text_input = model.tokenizer(
|
69 |
+
prompt,
|
70 |
+
padding="max_length",
|
71 |
+
max_length=model.tokenizer.model_max_length,
|
72 |
+
truncation=True,
|
73 |
+
return_tensors="pt",)
|
74 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
75 |
+
return text_embeddings
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def text2image_ldm(
|
79 |
+
model,
|
80 |
+
prompt: List[str],
|
81 |
+
num_inference_steps: int = 50,
|
82 |
+
guidance_scale: Optional[float] = 7.5,
|
83 |
+
generator: Optional[torch.Generator] = None,
|
84 |
+
latent: Optional[torch.FloatTensor] = None,
|
85 |
+
uncond_embeddings=None,
|
86 |
+
start_time=50,
|
87 |
+
return_type='pil', ):
|
88 |
+
|
89 |
+
batch_size = len(prompt)
|
90 |
+
height = width = 512
|
91 |
+
if latent is not None:
|
92 |
+
height = latent.shape[-2] * 8
|
93 |
+
width = latent.shape[-1] * 8
|
94 |
+
|
95 |
+
text_input = model.tokenizer(
|
96 |
+
prompt,
|
97 |
+
padding="max_length",
|
98 |
+
max_length=model.tokenizer.model_max_length,
|
99 |
+
truncation=True,
|
100 |
+
return_tensors="pt",)
|
101 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
102 |
+
max_length = text_input.input_ids.shape[-1]
|
103 |
+
if uncond_embeddings is None:
|
104 |
+
uncond_input = model.tokenizer(
|
105 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt",)
|
106 |
+
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
107 |
+
else:
|
108 |
+
uncond_embeddings_ = None
|
109 |
+
|
110 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
111 |
+
model.scheduler.set_timesteps(num_inference_steps)
|
112 |
+
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
|
113 |
+
if uncond_embeddings_ is None:
|
114 |
+
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
|
115 |
+
else:
|
116 |
+
context = torch.cat([uncond_embeddings_, text_embeddings])
|
117 |
+
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
|
118 |
+
|
119 |
+
if return_type in ['pil', 'np']:
|
120 |
+
image = latent2image(model.vae, latents, return_type=return_type)
|
121 |
+
else:
|
122 |
+
image = latents
|
123 |
+
return image, latent
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def text2image_ldm_imedit(
|
127 |
+
model,
|
128 |
+
thresh,
|
129 |
+
prompt: List[str],
|
130 |
+
target_prompt: List[str],
|
131 |
+
num_inference_steps: int = 50,
|
132 |
+
guidance_scale: Optional[float] = 7.5,
|
133 |
+
generator: Optional[torch.Generator] = None,
|
134 |
+
latent: Optional[torch.FloatTensor] = None,
|
135 |
+
uncond_embeddings=None,
|
136 |
+
start_time=50,
|
137 |
+
return_type='pil'
|
138 |
+
):
|
139 |
+
batch_size = len(prompt)
|
140 |
+
height = width = 512
|
141 |
+
|
142 |
+
text_input = model.tokenizer(
|
143 |
+
prompt,
|
144 |
+
padding="max_length",
|
145 |
+
max_length=model.tokenizer.model_max_length,
|
146 |
+
truncation=True,
|
147 |
+
return_tensors="pt",
|
148 |
+
)
|
149 |
+
target_text_input = model.tokenizer(
|
150 |
+
target_prompt,
|
151 |
+
padding="max_length",
|
152 |
+
max_length=model.tokenizer.model_max_length,
|
153 |
+
truncation=True,
|
154 |
+
return_tensors="pt",
|
155 |
+
)
|
156 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
157 |
+
target_text_embeddings = model.text_encoder(target_text_input.input_ids.to(model.device))[0]
|
158 |
+
|
159 |
+
max_length = text_input.input_ids.shape[-1]
|
160 |
+
if uncond_embeddings is None:
|
161 |
+
uncond_input = model.tokenizer(
|
162 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
163 |
+
)
|
164 |
+
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
165 |
+
else:
|
166 |
+
uncond_embeddings_ = None
|
167 |
+
|
168 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
169 |
+
model.scheduler.set_timesteps(num_inference_steps)
|
170 |
+
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
|
171 |
+
if i < (1 - thresh) * num_inference_steps:
|
172 |
+
if uncond_embeddings_ is None:
|
173 |
+
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
|
174 |
+
else:
|
175 |
+
context = torch.cat([uncond_embeddings_, text_embeddings])
|
176 |
+
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
|
177 |
+
else:
|
178 |
+
if uncond_embeddings_ is None:
|
179 |
+
context = torch.cat([uncond_embeddings[i].expand(*target_text_embeddings.shape), target_text_embeddings])
|
180 |
+
else:
|
181 |
+
context = torch.cat([uncond_embeddings_, target_text_embeddings])
|
182 |
+
latents = diffusion_step(model, latents, context, t, guidance_scale, low_resource=False)
|
183 |
+
|
184 |
+
if return_type in ['pil', 'np']:
|
185 |
+
image = latent2image(model.vae, latents, return_type=return_type)
|
186 |
+
else:
|
187 |
+
image = latents
|
188 |
+
return image, latent
|
189 |
+
|
190 |
+
|
191 |
+
###########
|
192 |
+
# wrapper #
|
193 |
+
###########
|
194 |
+
|
195 |
+
class NullInversion(object):
|
196 |
+
def __init__(self, model, num_ddim_steps, guidance_scale, device='cuda'):
|
197 |
+
self.model = model
|
198 |
+
self.device = device
|
199 |
+
self.num_ddim_steps=num_ddim_steps
|
200 |
+
self.guidance_scale = guidance_scale
|
201 |
+
self.tokenizer = self.model.tokenizer
|
202 |
+
self.prompt = None
|
203 |
+
self.context = None
|
204 |
+
|
205 |
+
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
|
206 |
+
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
207 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
208 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
209 |
+
beta_prod_t = 1 - alpha_prod_t
|
210 |
+
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
211 |
+
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
|
212 |
+
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
|
213 |
+
return prev_sample
|
214 |
+
|
215 |
+
def next_step(self, noise_pred, timestep, sample):
|
216 |
+
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
|
217 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
|
218 |
+
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
|
219 |
+
beta_prod_t = 1 - alpha_prod_t
|
220 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
|
221 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * noise_pred
|
222 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
223 |
+
return next_sample
|
224 |
+
|
225 |
+
def get_noise_pred_single(self, latents, t, context):
|
226 |
+
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
|
227 |
+
return noise_pred
|
228 |
+
|
229 |
+
def get_noise_pred(self, latents, t, is_forward=True, context=None):
|
230 |
+
latents_input = torch.cat([latents] * 2)
|
231 |
+
if context is None:
|
232 |
+
context = self.context
|
233 |
+
guidance_scale = 1 if is_forward else self.guidance_scale
|
234 |
+
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
235 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
236 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
237 |
+
if is_forward:
|
238 |
+
latents = self.next_step(noise_pred, t, latents)
|
239 |
+
else:
|
240 |
+
latents = self.prev_step(noise_pred, t, latents)
|
241 |
+
return latents
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def init_prompt(self, prompt: str):
|
245 |
+
uncond_input = self.model.tokenizer(
|
246 |
+
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
|
247 |
+
return_tensors="pt"
|
248 |
+
)
|
249 |
+
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
|
250 |
+
text_input = self.model.tokenizer(
|
251 |
+
[prompt],
|
252 |
+
padding="max_length",
|
253 |
+
max_length=self.model.tokenizer.model_max_length,
|
254 |
+
truncation=True,
|
255 |
+
return_tensors="pt",
|
256 |
+
)
|
257 |
+
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
|
258 |
+
self.context = torch.cat([uncond_embeddings, text_embeddings])
|
259 |
+
self.prompt = prompt
|
260 |
+
|
261 |
+
@torch.no_grad()
|
262 |
+
def ddim_loop(self, latent, emb):
|
263 |
+
# uncond_embeddings, cond_embeddings = self.context.chunk(2)
|
264 |
+
all_latent = [latent]
|
265 |
+
latent = latent.clone().detach()
|
266 |
+
for i in range(self.num_ddim_steps):
|
267 |
+
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
|
268 |
+
noise_pred = self.get_noise_pred_single(latent, t, emb)
|
269 |
+
latent = self.next_step(noise_pred, t, latent)
|
270 |
+
all_latent.append(latent)
|
271 |
+
return all_latent
|
272 |
+
|
273 |
+
@property
|
274 |
+
def scheduler(self):
|
275 |
+
return self.model.scheduler
|
276 |
+
|
277 |
+
@torch.no_grad()
|
278 |
+
def ddim_invert(self, image, prompt):
|
279 |
+
assert isinstance(image, PIL.Image.Image)
|
280 |
+
|
281 |
+
scheduler_save = self.model.scheduler
|
282 |
+
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
|
283 |
+
self.model.scheduler.set_timesteps(self.num_ddim_steps)
|
284 |
+
|
285 |
+
with torch.no_grad():
|
286 |
+
emb = txt_to_emb(self.model, prompt)
|
287 |
+
latent = image2latent(self.model.vae, image)
|
288 |
+
ddim_latents = self.ddim_loop(latent, emb)
|
289 |
+
|
290 |
+
self.model.scheduler = scheduler_save
|
291 |
+
return ddim_latents[-1]
|
292 |
+
|
293 |
+
def null_optimization(self, latents, emb, nemb=None, num_inner_steps=10, epsilon=1e-5):
|
294 |
+
# force fp32
|
295 |
+
dtype = latents[0].dtype
|
296 |
+
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
|
297 |
+
cond_embeddings = emb.float()
|
298 |
+
latents = [li.float() for li in latents]
|
299 |
+
self.model.unet.to(torch.float32)
|
300 |
+
|
301 |
+
uncond_embeddings_list = []
|
302 |
+
latent_cur = latents[-1]
|
303 |
+
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
|
304 |
+
for i in range(self.num_ddim_steps):
|
305 |
+
uncond_embeddings = uncond_embeddings.clone().detach()
|
306 |
+
uncond_embeddings.requires_grad = True
|
307 |
+
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
|
308 |
+
latent_prev = latents[len(latents) - i - 2]
|
309 |
+
t = self.model.scheduler.timesteps[i]
|
310 |
+
with torch.no_grad():
|
311 |
+
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
|
312 |
+
for j in range(num_inner_steps):
|
313 |
+
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
|
314 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
315 |
+
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
|
316 |
+
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
|
317 |
+
optimizer.zero_grad()
|
318 |
+
loss.backward()
|
319 |
+
optimizer.step()
|
320 |
+
loss_item = loss.item()
|
321 |
+
bar.update()
|
322 |
+
if loss_item < epsilon + i * 2e-5:
|
323 |
+
break
|
324 |
+
for j in range(j + 1, num_inner_steps):
|
325 |
+
bar.update()
|
326 |
+
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
|
327 |
+
with torch.no_grad():
|
328 |
+
context = torch.cat([uncond_embeddings, cond_embeddings])
|
329 |
+
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
|
330 |
+
bar.close()
|
331 |
+
|
332 |
+
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
|
333 |
+
self.model.unet.to(dtype)
|
334 |
+
return uncond_embeddings_list
|
335 |
+
|
336 |
+
def null_invert(self, im, txt, ntxt=None, num_inner_steps=10, early_stop_epsilon=1e-5):
|
337 |
+
assert isinstance(im, PIL.Image.Image)
|
338 |
+
|
339 |
+
scheduler_save = self.model.scheduler
|
340 |
+
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
|
341 |
+
self.model.scheduler.set_timesteps(self.num_ddim_steps)
|
342 |
+
|
343 |
+
with torch.no_grad():
|
344 |
+
nemb = txt_to_emb(self.model, ntxt) \
|
345 |
+
if ntxt is not None else txt_to_emb(self.model, "")
|
346 |
+
emb = txt_to_emb(self.model, txt)
|
347 |
+
latent = image2latent(self.model.vae, im)
|
348 |
+
|
349 |
+
# ddim inversion
|
350 |
+
ddim_latents = self.ddim_loop(latent, emb)
|
351 |
+
# nulltext inversion
|
352 |
+
uncond_embeddings = self.null_optimization(
|
353 |
+
ddim_latents, emb, nemb, num_inner_steps, early_stop_epsilon)
|
354 |
+
|
355 |
+
self.model.scheduler = scheduler_save
|
356 |
+
return ddim_latents[-1], uncond_embeddings
|
357 |
+
|
358 |
+
def null_optimization_dual(
|
359 |
+
self, latents0, latents1, emb0, emb1, nemb=None,
|
360 |
+
num_inner_steps=10, epsilon=1e-5):
|
361 |
+
|
362 |
+
# force fp32
|
363 |
+
dtype = latents0[0].dtype
|
364 |
+
uncond_embeddings = nemb.float() if nemb is not None else txt_to_emb(self.model, "").float()
|
365 |
+
cond_embeddings0, cond_embeddings1 = emb0.float(), emb1.float()
|
366 |
+
latents0 = [li.float() for li in latents0]
|
367 |
+
latents1 = [li.float() for li in latents1]
|
368 |
+
self.model.unet.to(torch.float32)
|
369 |
+
|
370 |
+
uncond_embeddings_list = []
|
371 |
+
latent_cur0 = latents0[-1]
|
372 |
+
latent_cur1 = latents1[-1]
|
373 |
+
|
374 |
+
bar = tqdm(total=num_inner_steps * self.num_ddim_steps)
|
375 |
+
for i in range(self.num_ddim_steps):
|
376 |
+
uncond_embeddings = uncond_embeddings.clone().detach()
|
377 |
+
uncond_embeddings.requires_grad = True
|
378 |
+
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
|
379 |
+
|
380 |
+
latent_prev0 = latents0[len(latents0) - i - 2]
|
381 |
+
latent_prev1 = latents1[len(latents1) - i - 2]
|
382 |
+
|
383 |
+
t = self.model.scheduler.timesteps[i]
|
384 |
+
with torch.no_grad():
|
385 |
+
noise_pred_cond0 = self.get_noise_pred_single(latent_cur0, t, cond_embeddings0)
|
386 |
+
noise_pred_cond1 = self.get_noise_pred_single(latent_cur1, t, cond_embeddings1)
|
387 |
+
for j in range(num_inner_steps):
|
388 |
+
noise_pred_uncond0 = self.get_noise_pred_single(latent_cur0, t, uncond_embeddings)
|
389 |
+
noise_pred_uncond1 = self.get_noise_pred_single(latent_cur1, t, uncond_embeddings)
|
390 |
+
|
391 |
+
noise_pred0 = noise_pred_uncond0 + self.guidance_scale*(noise_pred_cond0-noise_pred_uncond0)
|
392 |
+
noise_pred1 = noise_pred_uncond1 + self.guidance_scale*(noise_pred_cond1-noise_pred_uncond1)
|
393 |
+
|
394 |
+
latents_prev_rec0 = self.prev_step(noise_pred0, t, latent_cur0)
|
395 |
+
latents_prev_rec1 = self.prev_step(noise_pred1, t, latent_cur1)
|
396 |
+
|
397 |
+
loss = nnf.mse_loss(latents_prev_rec0, latent_prev0) + \
|
398 |
+
nnf.mse_loss(latents_prev_rec1, latent_prev1)
|
399 |
+
|
400 |
+
optimizer.zero_grad()
|
401 |
+
loss.backward()
|
402 |
+
optimizer.step()
|
403 |
+
loss_item = loss.item()
|
404 |
+
bar.update()
|
405 |
+
if loss_item < epsilon + i * 2e-5:
|
406 |
+
break
|
407 |
+
for j in range(j + 1, num_inner_steps):
|
408 |
+
bar.update()
|
409 |
+
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
|
410 |
+
|
411 |
+
with torch.no_grad():
|
412 |
+
context0 = torch.cat([uncond_embeddings, cond_embeddings0])
|
413 |
+
context1 = torch.cat([uncond_embeddings, cond_embeddings1])
|
414 |
+
latent_cur0 = self.get_noise_pred(latent_cur0, t, False, context0)
|
415 |
+
latent_cur1 = self.get_noise_pred(latent_cur1, t, False, context1)
|
416 |
+
|
417 |
+
bar.close()
|
418 |
+
|
419 |
+
uncond_embeddings_list = [ui.to(dtype) for ui in uncond_embeddings_list]
|
420 |
+
self.model.unet.to(dtype)
|
421 |
+
return uncond_embeddings_list
|
422 |
+
|
423 |
+
def null_invert_dual(
|
424 |
+
self, im0, im1, txt0, txt1, ntxt=None,
|
425 |
+
num_inner_steps=10, early_stop_epsilon=1e-5, ):
|
426 |
+
assert isinstance(im0, PIL.Image.Image)
|
427 |
+
assert isinstance(im1, PIL.Image.Image)
|
428 |
+
|
429 |
+
scheduler_save = self.model.scheduler
|
430 |
+
self.model.scheduler = DDIMScheduler.from_config(self.model.scheduler.config)
|
431 |
+
self.model.scheduler.set_timesteps(self.num_ddim_steps)
|
432 |
+
|
433 |
+
with torch.no_grad():
|
434 |
+
nemb = txt_to_emb(self.model, ntxt) \
|
435 |
+
if ntxt is not None else txt_to_emb(self.model, "")
|
436 |
+
latent0 = image2latent(self.model.vae, im0)
|
437 |
+
latent1 = image2latent(self.model.vae, im1)
|
438 |
+
emb0 = txt_to_emb(self.model, txt0)
|
439 |
+
emb1 = txt_to_emb(self.model, txt1)
|
440 |
+
|
441 |
+
# ddim inversion
|
442 |
+
ddim_latents_0 = self.ddim_loop(latent0, emb0)
|
443 |
+
ddim_latents_1 = self.ddim_loop(latent1, emb1)
|
444 |
+
|
445 |
+
# nulltext inversion
|
446 |
+
nembs = self.null_optimization_dual(
|
447 |
+
ddim_latents_0, ddim_latents_1, emb0, emb1, nemb, num_inner_steps, early_stop_epsilon)
|
448 |
+
|
449 |
+
self.model.scheduler = scheduler_save
|
450 |
+
return ddim_latents_0[-1], ddim_latents_1[-1], nembs
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.20.3
|
2 |
+
bitsandbytes==0.42.0
|
3 |
+
datasets==2.14.4
|
4 |
+
diffusers==0.20.1
|
5 |
+
easydict==1.11
|
6 |
+
gradio==4.19.2
|
7 |
+
huggingface_hub==0.19.3
|
8 |
+
moviepy==1.0.3
|
9 |
+
opencv_python==4.7.0.72
|
10 |
+
packaging==23.2
|
11 |
+
pypatchify==0.1.4
|
12 |
+
safetensors==0.3.1
|
13 |
+
tqdm==4.65.0
|
14 |
+
transformers==4.30.1
|
15 |
+
wandb==0.16.3
|
16 |
+
xformers==0.0.17
|