Spaces:
Build error
Build error
File size: 40,471 Bytes
b6e0092 8964f12 b6e0092 cdbeb67 b6e0092 a2590fc b6e0092 d8ecbfe b6e0092 d3b542f b6e0092 a698371 b6e0092 d3b542f b6e0092 d3b542f b6e0092 cdbeb67 b6e0092 d3b542f b6e0092 d3b542f b6e0092 a2590fc b6e0092 a2590fc b6e0092 a2590fc b6e0092 a2590fc b6e0092 a2590fc b6e0092 a2590fc b6e0092 d8ecbfe b6e0092 d8ecbfe b6e0092 d8ecbfe b6e0092 d3b542f b6e0092 5e46a02 b6e0092 92495a6 072e936 b6e0092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
################################################################################
# Copyright (C) 2023 Jiayi Guo, Xingqian Xu, Manushree Vasu - All Rights Reserved #
################################################################################
import gradio as gr
import os
import os.path as osp
import PIL
from PIL import Image
import numpy as np
from collections import OrderedDict
from easydict import EasyDict as edict
from functools import partial
import torch
import torchvision.transforms as tvtrans
import time
import argparse
import json
import hashlib
import copy
from tqdm import tqdm
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from app_utils import auto_dropdown
from huggingface_hub import hf_hub_download
import spaces
version = "Smooth Diffusion Demo v1.0"
refresh_symbol = "\U0001f504" # π
recycle_symbol = '\U0000267b' #
##############
# model_book #
##############
choices = edict()
choices.diffuser = OrderedDict([
['SD-v1-5' , "runwayml/stable-diffusion-v1-5"],
['OJ-v4' , "prompthero/openjourney-v4"],
['RR-v2', "SG161222/Realistic_Vision_V2.0"],
])
choices.lora = OrderedDict([
['empty', ""],
['Smooth-LoRA-v1', hf_hub_download('shi-labs/smooth-diffusion-lora', 'smooth_lora.safetensors')],
])
choices.scheduler = OrderedDict([
['DDIM', DDIMScheduler],
])
choices.inversion = OrderedDict([
['NTI', 'NTI'],
['DDIM w/o text', 'DDIM w/o text'],
['DDIM', 'DDIM'],
])
default = edict()
default.diffuser = 'SD-v1-5'
default.scheduler = 'DDIM'
default.lora = 'Smooth-LoRA-v1'
default.inversion = 'NTI'
default.step = 50
default.cfg_scale = 7.5
default.framen = 24
default.fps = 16
default.nullinv_inner_step = 10
default.threshold = 0.8
default.variation = 0.8
##########
# helper #
##########
def lerp(t, v0, v1):
if isinstance(t, float):
return v0*(1-t) + v1*t
elif isinstance(t, (list, np.ndarray)):
return [v0*(1-ti) + v1*ti for ti in t]
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
# mostly copied from
# https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
v0_unit = v0 / np.linalg.norm(v0)
v1_unit = v1 / np.linalg.norm(v1)
dot = np.sum(v0_unit * v1_unit)
if np.abs(dot) > DOT_THRESHOLD:
return lerp(t, v0, v1)
# Calculate initial angle between v0 and v1
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
# Angle at timestep t
if isinstance(t, float):
tlist = [t]
elif isinstance(t, (list, np.ndarray)):
tlist = t
v2_list = []
for ti in tlist:
theta_t = theta_0 * ti
sin_theta_t = np.sin(theta_t)
# Finish the slerp algorithm
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
v2_list.append(v2)
if isinstance(t, float):
return v2_list[0]
else:
return v2_list
def offset_resize(image, width=512, height=512, left=0, right=0, top=0, bottom=0):
image = np.array(image)[:, :, :3]
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = Image.fromarray(image).resize((width, height))
return image
def auto_dtype_device_shape(tlist, v0, v1, func,):
vshape = v0.shape
assert v0.shape == v1.shape
assert isinstance(tlist, (list, np.ndarray))
if isinstance(v0, torch.Tensor):
is_torch = True
dtype, device = v0.dtype, v0.device
v0 = v0.to('cpu').numpy().astype(float).flatten()
v1 = v1.to('cpu').numpy().astype(float).flatten()
else:
is_torch = False
dtype = v0.dtype
assert isinstance(v0, np.ndarray)
assert isinstance(v1, np.ndarray)
v0 = v0.astype(float).flatten()
v1 = v1.astype(float).flatten()
r = func(tlist, v0, v1)
if is_torch:
r = [torch.Tensor(ri).view(*vshape).to(dtype).to(device) for ri in r]
else:
r = [ri.astype(dtype) for ri in r]
return r
auto_lerp = partial(auto_dtype_device_shape, func=lerp)
auto_slerp = partial(auto_dtype_device_shape, func=slerp)
def frames2mp4(vpath, frames, fps):
import moviepy.editor as mpy
frames = [np.array(framei) for framei in frames]
clip = mpy.ImageSequenceClip(frames, fps=fps)
clip.write_videofile(vpath, fps=fps)
def negseed_to_rndseed(seed):
if seed < 0:
seed = np.random.randint(0, np.iinfo(np.uint32).max-100)
return seed
def regulate_image(pilim):
w, h = pilim.size
w = int(round(w/64)) * 64
h = int(round(h/64)) * 64
return pilim.resize([w, h], resample=PIL.Image.BILINEAR)
def txt_to_emb(model, prompt):
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
return text_embeddings
def hash_pilim(pilim):
hasha = hashlib.md5(pilim.tobytes()).hexdigest()
return hasha
def hash_cfgdict(cfgdict):
hashb = hashlib.md5(json.dumps(cfgdict, sort_keys=True).encode('utf-8')).hexdigest()
return hashb
def remove_earliest_file(path, max_allowance=500, remove_ratio=0.1, ext=None):
if len(os.listdir(path)) <= max_allowance:
return
def get_mtime(fname):
return osp.getmtime(osp.join(path, fname))
if ext is None:
flist = sorted(os.listdir(path), key=get_mtime)
else:
flist = [fi for fi in os.listdir(path) if fi.endswith(ext)]
flist = sorted(flist, key=get_mtime)
exceedn = max(len(flist)-max_allowance, 0)
removen = int(max_allowance*remove_ratio)
removen = max(1, removen) + exceedn
for fi in flist[0:removen]:
os.remove(osp.join(path, fi))
def remove_decoupled_file(path, exta='.mp4', extb='.json'):
tag_a = [osp.splitext(fi)[0] for fi in os.listdir(path) if fi.endswith(exta)]
tag_b = [osp.splitext(fi)[0] for fi in os.listdir(path) if fi.endswith(extb)]
tag_a_extra = set(tag_a) - set(tag_b)
tag_b_extra = set(tag_b) - set(tag_a)
[os.remove(osp.join(path, tagi+exta)) for tagi in tag_a_extra]
[os.remove(osp.join(path, tagi+extb)) for tagi in tag_b_extra]
@spaces.GPU()
@torch.no_grad()
def t2i_core(model, xt, emb, nemb, step=30, cfg_scale=7.5, return_list=False):
from nulltxtinv_wrapper import diffusion_step, latent2image
model.scheduler.set_timesteps(step)
xi = xt
emb = txt_to_emb(model, "") if emb is None else emb
nemb = txt_to_emb(model, "") if nemb is None else nemb
if return_list:
xi_list = [xi.clone()]
for i, t in enumerate(tqdm(model.scheduler.timesteps)):
embi = emb[i] if isinstance(emb, list) else emb
nembi = nemb[i] if isinstance(nemb, list) else nemb
context = torch.cat([nembi, embi])
xi = diffusion_step(model, xi, context, t, cfg_scale, low_resource=False)
if return_list:
xi_list.append(xi.clone())
x0 = xi
im = latent2image(model.vae, x0, return_type='pil')
if return_list:
return im, xi_list
else:
return im
########
# main #
########
class wrapper(object):
def __init__(self,
fp16=False,
tag_diffuser=None,
tag_lora=None,
tag_scheduler=None,):
self.device = "cuda" #if torch.cuda.is_available() else "cpu"
if fp16:
self.torch_dtype = torch.float16
else:
self.torch_dtype = torch.float32
self.load_all(tag_diffuser, tag_lora, tag_scheduler)
self.image_latent_dim = 4
self.batchsize = 8
self.seed = {}
self.cache_video_folder = "temp/video"
self.cache_video_maxn = 500
self.cache_image_folder = "temp/image"
self.cache_image_maxn = 500
self.cache_inverse_folder = "temp/inverse"
self.cache_inverse_maxn = 500
def load_all(self, tag_diffuser, tag_lora, tag_scheduler):
self.load_diffuser_lora(tag_diffuser, tag_lora)
self.load_scheduler(tag_scheduler)
return tag_diffuser, tag_lora, tag_scheduler
def load_diffuser_lora(self, tag_diffuser, tag_lora):
self.net = StableDiffusionPipeline.from_pretrained(
choices.diffuser[tag_diffuser], torch_dtype=self.torch_dtype).to(self.device)
self.net.safety_checker = None
if tag_lora != 'empty':
self.net.unet.load_attn_procs(
choices.lora[tag_lora], use_safetensors=True,)
self.tag_diffuser = tag_diffuser
self.tag_lora = tag_lora
return tag_diffuser, tag_lora
def load_scheduler(self, tag_scheduler):
self.net.scheduler = choices.scheduler[tag_scheduler].from_config(self.net.scheduler.config)
self.tag_scheduler = tag_scheduler
return tag_scheduler
def reset_seed(self, which='ltintp'):
return -1
def recycle_seed(self, which='ltintp'):
if which not in self.seed:
return self.reset_seed(which=which)
else:
return self.seed[which]
##########
# helper #
##########
def precheck_model(self, tag_diffuser, tag_lora, tag_scheduler):
if (tag_diffuser != self.tag_diffuser) or (tag_lora != self.tag_lora):
self.load_all(tag_diffuser, tag_lora, tag_scheduler)
if tag_scheduler != self.tag_scheduler:
self.load_scheduler(tag_scheduler)
########
# main #
########
@spaces.GPU()
def ddiminv(self, img, cfgdict):
txt, step, cfg_scale = cfgdict['txt'], cfgdict['step'], cfgdict['cfg_scale']
from nulltxtinv_wrapper import NullInversion
null_inversion_model = NullInversion(self.net, step, cfg_scale)
with torch.no_grad():
emb = txt_to_emb(self.net, txt)
nemb = txt_to_emb(self.net, "")
xt = null_inversion_model.ddim_invert(img, txt)
data = {
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt': xt, 'emb': emb, 'nemb': nemb,}
return data
@spaces.GPU()
def nullinv_or_loadcache(self, img, cfgdict, force_reinvert=False):
hash = hash_pilim(img) + "--" + hash_cfgdict(cfgdict)
cdir = self.cache_inverse_folder
cfname = osp.join(cdir, hash+'.pth')
if osp.isfile(cfname) and (not force_reinvert):
cache_data = torch.load(cfname)
dtype = next(self.net.unet.parameters()).dtype
device = next(self.net.unet.parameters()).device
cache_data['xt'] = cache_data['xt'].to(device=device, dtype=dtype)
cache_data['emb'] = cache_data['emb'].to(device=device, dtype=dtype)
cache_data['nemb'] = [
nembi.to(device=device, dtype=dtype)
for nembi in cache_data['nemb']]
return cache_data
else:
txt, step, cfg_scale = cfgdict['txt'], cfgdict['step'], cfgdict['cfg_scale']
inner_step = cfgdict['inner_step']
from nulltxtinv_wrapper import NullInversion
null_inversion_model = NullInversion(self.net, step, cfg_scale)
with torch.no_grad():
emb = txt_to_emb(self.net, txt)
xt, nemb = null_inversion_model.null_invert(img, txt, num_inner_steps=inner_step)
cache_data = {
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
'inner_step' : inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt' : xt.to('cpu'),
'emb' : emb.to('cpu'),
'nemb' : [nembi.to('cpu') for nembi in nemb],}
os.makedirs(cdir, exist_ok=True)
remove_earliest_file(cdir, max_allowance=self.cache_inverse_maxn)
torch.save(cache_data, cfname)
data = {
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt,
'inner_step' : inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt' : xt, 'emb' : emb, 'nemb' : nemb,}
return data
@spaces.GPU()
def nullinvdual_or_loadcachedual(self, img0, img1, cfgdict, force_reinvert=False):
hash = hash_pilim(img0) + "--" + hash_pilim(img1) + "--" + hash_cfgdict(cfgdict)
cdir = self.cache_inverse_folder
cfname = osp.join(cdir, hash+'.pth')
if osp.isfile(cfname) and (not force_reinvert):
cache_data = torch.load(cfname)
dtype = next(self.net.unet.parameters()).dtype
device = next(self.net.unet.parameters()).device
cache_data['xt0'] = cache_data['xt0'].to(device=device, dtype=dtype)
cache_data['xt1'] = cache_data['xt1'].to(device=device, dtype=dtype)
cache_data['emb0'] = cache_data['emb0'].to(device=device, dtype=dtype)
cache_data['emb1'] = cache_data['emb1'].to(device=device, dtype=dtype)
cache_data['nemb'] = [
nembi.to(device=device, dtype=dtype)
for nembi in cache_data['nemb']]
cache_data_a = copy.deepcopy(cache_data)
cache_data_a['xt'] = cache_data_a.pop('xt0')
cache_data_a['emb'] = cache_data_a.pop('emb0')
cache_data_a.pop('xt1'); cache_data_a.pop('emb1')
cache_data_b = cache_data
cache_data_b['xt'] = cache_data_b.pop('xt1')
cache_data_b['emb'] = cache_data_b.pop('emb1')
cache_data_b.pop('xt0'); cache_data_b.pop('emb0')
return cache_data_a, cache_data_b
else:
txt0, txt1, step, cfg_scale, inner_step = \
cfgdict['txt0'], cfgdict['txt1'], cfgdict['step'], \
cfgdict['cfg_scale'], cfgdict['inner_step']
from nulltxtinv_wrapper import NullInversion
null_inversion_model = NullInversion(self.net, step, cfg_scale)
with torch.no_grad():
emb0 = txt_to_emb(self.net, txt0)
emb1 = txt_to_emb(self.net, txt1)
xt0, xt1, nemb = null_inversion_model.null_invert_dual(
img0, img1, txt0, txt1, num_inner_steps=inner_step)
cache_data = {
'step' : step, 'cfg_scale' : cfg_scale,
'txt0' : txt0, 'txt1' : txt1,
'inner_step' : inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt0' : xt0.to('cpu'), 'xt1' : xt1.to('cpu'),
'emb0' : emb0.to('cpu'), 'emb1' : emb1.to('cpu'),
'nemb' : [nembi.to('cpu') for nembi in nemb],}
os.makedirs(cdir, exist_ok=True)
remove_earliest_file(cdir, max_allowance=self.cache_inverse_maxn)
torch.save(cache_data, cfname)
data0 = {
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt0,
'inner_step' : inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt' : xt0, 'emb' : emb0, 'nemb' : nemb,}
data1 = {
'step' : step, 'cfg_scale' : cfg_scale, 'txt' : txt1,
'inner_step' : inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,
'xt' : xt1, 'emb' : emb1, 'nemb' : nemb,}
return data0, data1
@spaces.GPU()
def image_inversion(
self, img, txt,
cfg_scale, step,
inversion, inner_step, force_reinvert):
from nulltxtinv_wrapper import text2image_ldm
if inversion == 'DDIM w/o text':
txt = ''
if not inversion == 'NTI':
data = self.ddiminv(img, {'txt':txt, 'step':step, 'cfg_scale':cfg_scale,})
else:
data = self.nullinv_or_loadcache(
img, {'txt':txt, 'step':step,
'cfg_scale':cfg_scale, 'inner_step':inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
if inversion == 'NTI':
img_inv, _ = text2image_ldm(
self.net, [txt], step, cfg_scale,
latent=data['xt'], uncond_embeddings=data['nemb'])
else:
img_inv, _ = text2image_ldm(
self.net, [txt], step, cfg_scale,
latent=data['xt'], uncond_embeddings=None)
return img_inv
@spaces.GPU()
def image_editing(
self, img, txt_0, txt_1,
cfg_scale, step, thresh,
inversion, inner_step, force_reinvert):
from nulltxtinv_wrapper import text2image_ldm_imedit
if inversion == 'DDIM w/o text':
txt_0 = ''
if not inversion == 'NTI':
data = self.ddiminv(img, {'txt':txt_0, 'step':step, 'cfg_scale':cfg_scale,})
img_edited, _ = text2image_ldm_imedit(
self.net, thresh, [txt_0], [txt_1], step, cfg_scale,
latent=data['xt'], uncond_embeddings=None)
else:
data = self.nullinv_or_loadcache(
img, {'txt':txt_0, 'step':step,
'cfg_scale':cfg_scale, 'inner_step':inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
img_edited, _ = text2image_ldm_imedit(
self.net, thresh, [txt_0], [txt_1], step, cfg_scale,
latent=data['xt'], uncond_embeddings=data['nemb'])
return img_edited
@spaces.GPU()
def general_interpolation(
self, xset0, xset1,
cfg_scale, step, tlist,):
xt0, emb0, nemb0 = xset0['xt'], xset0['emb'], xset0['nemb']
xt1, emb1, nemb1 = xset1['xt'], xset1['emb'], xset1['nemb']
framen = len(tlist)
xt_list = auto_slerp(tlist, xt0, xt1)
emb_list = auto_lerp(tlist, emb0, emb1)
if isinstance(nemb0, list) and isinstance(nemb1, list):
assert len(nemb0) == len(nemb1)
nemb_list = [auto_lerp(tlist, e0, e1) for e0, e1 in zip(nemb0, nemb1)]
nemb_islist = True
else:
nemb_list = auto_lerp(tlist, nemb0, nemb1)
nemb_islist = False
im_list = []
for frameidx in range(0, len(xt_list), self.batchsize):
xt_batch = [xt_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
xt_batch = torch.cat(xt_batch, dim=0)
emb_batch = [emb_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
emb_batch = torch.cat(emb_batch, dim=0)
if nemb_islist:
nemb_batch = []
for nembi in nemb_list:
nembi_batch = [nembi[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
nembi_batch = torch.cat(nembi_batch, dim=0)
nemb_batch.append(nembi_batch)
else:
nemb_batch = [nemb_list[idx] for idx in range(frameidx, min(frameidx+self.batchsize, framen))]
nemb_batch = torch.cat(nemb_batch, dim=0)
im = t2i_core(
self.net, xt_batch, emb_batch, nemb_batch, step, cfg_scale)
im_list += im if isinstance(im, list) else [im]
return im_list
@spaces.GPU()
def run_iminvs(
self, img, text,
cfg_scale, step,
force_resize, width, height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler, ):
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
if force_resize:
img = offset_resize(img, width, height)
else:
img = regulate_image(img)
recon_output = self.image_inversion(
img, text, cfg_scale, step,
inversion, inner_step, force_reinvert)
idir = self.cache_image_folder
os.makedirs(idir, exist_ok=True)
remove_earliest_file(idir, max_allowance=self.cache_image_maxn)
sname = "time{}_iminvs_{}_{}".format(
int(time.time()), self.tag_diffuser, self.tag_lora,)
ipath = osp.join(idir, sname+'.png')
recon_output.save(ipath)
return [recon_output]
@spaces.GPU()
def run_imedit(
self, img, txt_0,txt_1,
threshold, cfg_scale, step,
force_resize, width, height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler, ):
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
if force_resize:
img = offset_resize(img, width, height)
else:
img = regulate_image(img)
edited_img= self.image_editing(
img, txt_0,txt_1, cfg_scale, step, threshold,
inversion, inner_step, force_reinvert)
idir = self.cache_image_folder
os.makedirs(idir, exist_ok=True)
remove_earliest_file(idir, max_allowance=self.cache_image_maxn)
sname = "time{}_imedit_{}_{}".format(
int(time.time()), self.tag_diffuser, self.tag_lora,)
ipath = osp.join(idir, sname+'.png')
edited_img.save(ipath)
return [edited_img]
@spaces.GPU()
def run_imintp(
self,
img0, img1, txt0, txt1,
cfg_scale, step,
framen, fps,
force_resize, width, height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler,):
self.precheck_model(tag_diffuser, tag_lora, tag_scheduler)
if txt1 == '':
txt1 = txt0
if force_resize:
img0 = offset_resize(img0, width, height)
img1 = offset_resize(img1, width, height)
else:
img0 = regulate_image(img0)
img1 = regulate_image(img1)
if inversion == 'DDIM':
data0 = self.ddiminv(img0, {'txt':txt0, 'step':step, 'cfg_scale':cfg_scale,})
data1 = self.ddiminv(img1, {'txt':txt1, 'step':step, 'cfg_scale':cfg_scale,})
elif inversion == 'DDIM w/o text':
data0 = self.ddiminv(img0, {'txt':"", 'step':step, 'cfg_scale':cfg_scale,})
data1 = self.ddiminv(img1, {'txt':"", 'step':step, 'cfg_scale':cfg_scale,})
else:
data0, data1 = self.nullinvdual_or_loadcachedual(
img0, img1, {'txt0':txt0, 'txt1':txt1, 'step':step,
'cfg_scale':cfg_scale, 'inner_step':inner_step,
'diffuser' : self.tag_diffuser, 'lora' : self.tag_lora,}, force_reinvert)
tlist = np.linspace(0.0, 1.0, framen)
iminv0 = t2i_core(self.net, data0['xt'], data0['emb'], data0['nemb'], step, cfg_scale)
iminv1 = t2i_core(self.net, data1['xt'], data1['emb'], data1['nemb'], step, cfg_scale)
frames = self.general_interpolation(data0, data1, cfg_scale, step, tlist)
vdir = self.cache_video_folder
os.makedirs(vdir, exist_ok=True)
remove_earliest_file(vdir, max_allowance=self.cache_video_maxn)
sname = "time{}_imintp_{}_{}_framen{}_fps{}".format(
int(time.time()), self.tag_diffuser, self.tag_lora, framen, fps)
vpath = osp.join(vdir, sname+'.mp4')
frames2mp4(vpath, frames, fps)
jpath = osp.join(vdir, sname+'.json')
cfgdict = {
"method" : "image_interpolation",
"txt0" : txt0, "txt1" : txt1,
"cfg_scale" : cfg_scale, "step" : step,
"framen" : framen, "fps" : fps,
"force_resize" : force_resize, "width" : width, "height" : height,
"inversion" : inversion, "inner_step" : inner_step,
"force_reinvert" : force_reinvert,
"tag_diffuser" : tag_diffuser, "tag_lora" : tag_lora, "tag_scheduler" : tag_scheduler,}
with open(jpath, 'w') as f:
json.dump(cfgdict, f, indent=4)
return frames, vpath, [iminv0, iminv1]
#################
# get examples #
#################
cache_examples = False
def get_imintp_example():
case = [
[
'assets/images/interpolation/cityview1.png',
'assets/images/interpolation/cityview2.png',
'A city view',],
[
'assets/images/interpolation/woman1.png',
'assets/images/interpolation/woman2.png',
'A woman face',],
[
'assets/images/interpolation/land1.png',
'assets/images/interpolation/land2.png',
'A beautiful landscape',],
[
'assets/images/interpolation/dog1.png',
'assets/images/interpolation/dog2.png',
'A realistic dog',],
[
'assets/images/interpolation/church1.png',
'assets/images/interpolation/church2.png',
'A church',],
[
'assets/images/interpolation/rabbit1.png',
'assets/images/interpolation/rabbit2.png',
'A cute rabbit',],
[
'assets/images/interpolation/horse1.png',
'assets/images/interpolation/horse2.png',
'A robot horse',],
]
return case
def get_iminvs_example():
case = [
[
'assets/images/inversion/000000560011.jpg',
'A mouse is next to a keyboard on a desk',],
[
'assets/images/inversion/000000029596.jpg',
'A room with a couch, table set with dinnerware and a television.',],
]
return case
def get_imedit_example():
case = [
[
'assets/images/editing/rabbit.png',
'A rabbit is eating a watermelon on the table',
'A cat is eating a watermelon on the table',
0.7,],
[
'assets/images/editing/cake.png',
'A chocolate cake with cream on it',
'A chocolate cake with strawberries on it',
0.9,],
[
'assets/images/editing/banana.png',
'A banana on the table',
'A banana and an apple on the table',
0.8,],
]
return case
#################
# sub interface #
#################
def interface_imintp(wrapper_obj):
with gr.Row():
with gr.Column():
img0 = gr.Image(label="Image Input 0", type='pil', elem_id='customized_imbox')
with gr.Column():
img1 = gr.Image(label="Image Input 1", type='pil', elem_id='customized_imbox')
with gr.Column():
video_output = gr.Video(label="Video Result", format='mp4', elem_id='customized_imbox')
with gr.Row():
with gr.Column():
txt0 = gr.Textbox(label='Text Input', lines=1, placeholder="Input prompt...", )
with gr.Column():
with gr.Row():
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
with gr.Row():
with gr.Column():
with gr.Row():
framen = gr.Slider(label="Frame Number", minimum=8, maximum=default.framen, value=default.framen, step=1)
fps = gr.Slider(label="Video FPS", minimum=4, maximum=default.fps, value=default.fps, step=4)
with gr.Row():
button_run = gr.Button("Run")
with gr.Column():
with gr.Accordion('Frame Results', open=False):
frame_output = gr.Gallery(label="Frames", elem_id='customized_imbox')
with gr.Accordion("Inversion Results", open=False):
inv_output = gr.Gallery(label="Inversion Results", elem_id='customized_imbox')
with gr.Accordion('Advanced Settings', open=False):
with gr.Row():
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
with gr.Row():
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
step = gr.Number(default.step, label="Step", precision=0)
with gr.Row():
force_resize = gr.Checkbox(label="Force Resize", value=True)
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
with gr.Row():
txt1 = gr.Textbox(label='Optional Different Text Input for Image Input 1', lines=1, placeholder="Input prompt...", )
tag_diffuser.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_lora.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_scheduler.change(
wrapper_obj.load_scheduler,
inputs = [tag_scheduler],
outputs = [tag_scheduler],)
button_run.click(
wrapper_obj.run_imintp,
inputs=[img0, img1, txt0, txt1,
cfg_scale, step,
framen, fps,
force_resize, inp_width, inp_height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler,],
outputs=[frame_output, video_output, inv_output])
gr.Examples(
label='Examples',
examples=get_imintp_example(),
fn=wrapper_obj.run_imintp,
inputs=[img0, img1, txt0,],
outputs=[frame_output, video_output, inv_output],
cache_examples=cache_examples,)
def interface_iminvs(wrapper_obj):
with gr.Row():
image_input = gr.Image(label="Image input", type='pil', elem_id='customized_imbox')
recon_output = gr.Gallery(label="Reconstruction output", elem_id='customized_imbox')
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label='Text Input', lines=1, placeholder="Input prompt...", )
with gr.Row():
button_run = gr.Button("Run")
with gr.Column():
with gr.Row():
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
with gr.Accordion('Advanced Settings', open=False):
with gr.Row():
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
with gr.Row():
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
step = gr.Number(default.step, label="Step", precision=0)
with gr.Row():
force_resize = gr.Checkbox(label="Force Resize", value=True)
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
tag_diffuser.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_lora.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_scheduler.change(
wrapper_obj.load_scheduler,
inputs = [tag_scheduler],
outputs = [tag_scheduler],)
button_run.click(
wrapper_obj.run_iminvs,
inputs=[image_input, prompt,
cfg_scale, step,
force_resize, inp_width, inp_height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler,],
outputs=[recon_output])
gr.Examples(
label='Examples',
examples=get_iminvs_example(),
fn=wrapper_obj.run_iminvs,
inputs=[image_input, prompt,],
outputs=[recon_output],
cache_examples=cache_examples,)
def interface_imedit(wrapper_obj):
with gr.Row():
image_input = gr.Image(label="Image input", type='pil', elem_id='customized_imbox')
edited_output = gr.Gallery(label="Edited output", elem_id='customized_imbox')
with gr.Row():
with gr.Column():
prompt_0 = gr.Textbox(label='Source Text', lines=1, placeholder="Source prompt...", )
prompt_1 = gr.Textbox(label='Target Text', lines=1, placeholder="Target prompt...", )
with gr.Row():
button_run = gr.Button("Run")
with gr.Column():
with gr.Row():
inversion = auto_dropdown('Inversion', choices.inversion, default.inversion)
inner_step = gr.Slider(label="Inner Step (NTI)", value=default.nullinv_inner_step, minimum=1, maximum=10, step=1)
force_reinvert = gr.Checkbox(label="Force ReInvert (NTI)", value=False)
threshold = gr.Slider(label="Threshold", minimum=0, maximum=1, value=default.threshold, step=0.1)
with gr.Accordion('Advanced Settings', open=False):
with gr.Row():
tag_diffuser = auto_dropdown('Diffuser', choices.diffuser, default.diffuser)
tag_lora = auto_dropdown('Use LoRA', choices.lora, default.lora)
tag_scheduler = auto_dropdown('Scheduler', choices.scheduler, default.scheduler)
with gr.Row():
cfg_scale = gr.Number(label="Scale", minimum=1, maximum=10, value=default.cfg_scale, step=0.5)
step = gr.Number(default.step, label="Step", precision=0)
with gr.Row():
force_resize = gr.Checkbox(label="Force Resize", value=True)
inp_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
inp_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=512, step=64)
tag_diffuser.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_lora.change(
wrapper_obj.load_all,
inputs = [tag_diffuser, tag_lora, tag_scheduler],
outputs = [tag_diffuser, tag_lora, tag_scheduler],)
tag_scheduler.change(
wrapper_obj.load_scheduler,
inputs = [tag_scheduler],
outputs = [tag_scheduler],)
button_run.click(
wrapper_obj.run_imedit,
inputs=[image_input, prompt_0, prompt_1,
threshold, cfg_scale, step,
force_resize, inp_width, inp_height,
inversion, inner_step, force_reinvert,
tag_diffuser, tag_lora, tag_scheduler,],
outputs=[edited_output])
gr.Examples(
label='Examples',
examples=get_imedit_example(),
fn=wrapper_obj.run_imedit,
inputs=[image_input, prompt_0, prompt_1, threshold,],
outputs=[edited_output],
cache_examples=cache_examples,)
#############
# Interface #
#############
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--port', type=int, default=None)
args = parser.parse_args()
from app_utils import css_empty, css_version_4_11_0
# css = css_empty
css = css_version_4_11_0
wrapper_obj = wrapper(
fp16=False,
tag_diffuser=default.diffuser,
tag_lora=default.lora,
tag_scheduler=default.scheduler)
if True:
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
{}
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
<b>Smooth Diffusion</b> is a new category of diffusion models that is simultaneously high-performing and smooth. <br>
Our method formally introduces latent space smoothness to diffusion models like Stable Diffusion. This smoothness dramatically aids in: 1) improving the continuity of transitions in image interpolation, 2) reducing approximation errors in image inversion, and 3) better preserving unedited contents in image editing.
</h2>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://www.jiayiguo.net/" target="_blank">Jiayi Guo</a>, <a href="https://www.linkedin.com/in/xingqian-xu-97b46526/" target="_blank">Xingqian Xu</a>,
<a href="https://scholar.google.com/citations?user=oM9rnYQAAAAJ&hl=en" target="_blank">Yifan Pu</a>, <a href="https://scholar.google.com/citations?user=Yibz_asAAAAJ&hl=en" target="_blank">Zanlin Ni</a>,
<a href="https://scholar.google.com/citations?user=-hwGMHcAAAAJ&hl=en" target="_blank">Chaofei Wang</a>, <a href="https://in.linkedin.com/in/v-manushree" target="_blank">Manushree Vasu</a>,
<a href="https://www.au.tsinghua.edu.cn/info/1103/1553.htm" target="_blank">Shiji Song</a>, <a href="https://www.gaohuang.net/" target="_blank">Gao Huang</a>
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a>
[<a href="https://arxiv.org/abs/2312.04410" style="color:blue;">arXiv</a>]
[<a href="https://github.com/SHI-Labs/Smooth-Diffusion" style="color:blue;">GitHub</a>]
</h3>
</div>
""".format(version))
with gr.Tab('Image Interpolation'):
interface_imintp(wrapper_obj)
with gr.Tab('Image Inversion'):
interface_iminvs(wrapper_obj)
with gr.Tab('Image Editing'):
interface_imedit(wrapper_obj)
gr.Markdown(r"""
If you find our work helpful, please **star π** the <a href='https://github.com/SHI-Labs/Smooth-Diffusion' target='_blank'>Github Repo</a>. Thanks for your support!
[![GitHub Stars](https://img.shields.io/github/stars/SHI-Labs/Smooth-Diffusion?style=social)](https://github.com/SHI-Labs/Smooth-Diffusion)
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@InProceedings{guo2024smooth,
title={Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models},
author={Jiayi Guo and Xingqian Xu and Yifan Pu and Zanlin Ni and Chaofei Wang and Manushree Vasu and Shiji Song and Gao Huang and Humphrey Shi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```
""")
demo.queue()
demo.launch()
|