File size: 8,089 Bytes
028b4c8 99b4265 028b4c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import json
import random
import requests
import yaml
import pprint
from dotenv import load_dotenv
from smolagents import CodeAgent, HfApiModel
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool # Note: app.py imports this from tools.web_search and smolagents
# Load environment variables from .env file
load_dotenv()
hf_token = os.getenv('HUGGINGFACE_TOKEN')
if not hf_token:
raise ValueError("HUGGINGFACE_TOKEN not found in environment variables. Make sure a .env file exists.")
# --- Constants ---
API_URL = os.getenv("API_URL", "https://agents-course-unit4-scoring.hf.space") # Use env var or default
QUESTIONS_URL = f"{API_URL}/questions"
QUESTIONS_FILE = "questions.json"
ANSWERS_LOG_FILE = "answer_log.jsonl"
PROMPTS_FILE = "prompts.yaml"
# --- Function to Fetch Questions ---
def fetch_and_save_questions(url: str, filename: str):
"""Fetches questions from the API and saves them to a local JSON file."""
if os.path.exists(filename):
print(f"Questions file '{filename}' already exists. Skipping download.")
return True
print(f"Fetching questions from: {url}")
try:
response = requests.get(url, timeout=30) # Increased timeout
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return False
with open(filename, 'w', encoding='utf-8') as f:
json.dump(questions_data, f, indent=4, ensure_ascii=False)
print(f"Successfully fetched {len(questions_data)} questions and saved to '{filename}'.")
return True
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return False
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
if 'response' in locals():
print(f"Response text: {response.text[:500]}")
return False
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return False
# --- Function to Load Questions ---
def load_questions(filename: str) -> list:
"""Loads questions from a local JSON file."""
try:
with open(filename, 'r', encoding='utf-8') as f:
questions_data = json.load(f)
print(f"Successfully loaded {len(questions_data)} questions from '{filename}'.")
return questions_data
except FileNotFoundError:
print(f"Error: Questions file '{filename}' not found.")
return []
except json.JSONDecodeError:
print(f"Error: Could not decode JSON from '{filename}'.")
return []
except Exception as e:
print(f"An unexpected error occurred loading questions: {e}")
return []
# --- Function to Instantiate Agent ---
def create_agent():
"""Instantiates the CodeAgent with configuration similar to app.py."""
try:
# Load prompts
with open(PROMPTS_FILE, 'r') as stream:
prompt_templates = yaml.safe_load(stream)
except FileNotFoundError:
print(f"Error: Prompts file '{PROMPTS_FILE}' not found. Using default prompts.")
prompt_templates = None # Or handle differently
except yaml.YAMLError as e:
print(f"Error parsing prompts file '{PROMPTS_FILE}': {e}. Using default prompts.")
prompt_templates = None
# Configure model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id=
# 'Qwen/Qwen2.5-Coder-32B-Instruct',
'Qwen/Qwen3-32B',
# custom_role_conversions=None, # Optional, kept default
token=hf_token,
)
# Create agent instance
try:
agent = CodeAgent(
model=model,
tools=[
FinalAnswerTool(),
DuckDuckGoSearchTool(),
VisitWebpageTool(),
],
max_steps=6,
verbosity_level=1, # Set higher (e.g., 2 or 3) to potentially see reasoning in stdout
# grammar=None, # Optional, kept default
# planning_interval=None, # Optional, kept default
name="SmolAgentTester",
description="An AI coding assistant for testing.",
prompt_templates=prompt_templates,
)
print("CodeAgent instantiated successfully.")
return agent
except Exception as e:
print(f"Error instantiating CodeAgent: {e}")
return None
# --- Main Execution Logic ---
if __name__ == "__main__":
print("Starting test script...")
# Step 1: Fetch and save questions
if not fetch_and_save_questions(QUESTIONS_URL, QUESTIONS_FILE):
print("Failed to fetch questions. Exiting.")
exit(1)
# Step 2: Load questions
all_questions = load_questions(QUESTIONS_FILE)
if not all_questions:
print("Failed to load questions. Exiting.")
exit(1)
# Step 3: Randomly pick 2 questions
if len(all_questions) < 2:
print("Warning: Fewer than 2 questions available. Testing with all available questions.")
selected_questions = all_questions
else:
selected_questions = random.sample(all_questions, 2)
print(f"\nSelected {len(selected_questions)} questions for testing:")
pprint.pprint(selected_questions)
print("-"*50)
# Step 4: Instantiate agent
agent = create_agent()
if agent is None:
print("Failed to create agent. Exiting.")
exit(1)
# Step 5: Run agent and log results
print(f"Running agent on {len(selected_questions)} questions...")
results_log = []
# Clear or create the log file
with open(ANSWERS_LOG_FILE, 'w', encoding='utf-8') as log_f:
pass # Just to clear the file initially
for item in selected_questions:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"\n--- Running Task ID: {task_id} ---")
print(f"Question: {question_text}")
try:
# Run the agent
# Note: The agent call might print its own reasoning steps depending on verbosity
model_answer = agent(question_text) # This now holds the CONCISE answer from FinalAnswerTool
print(f"\nAgent Final Answer: {model_answer}") # Renamed print for clarity
# Prepare result for logging
result = {
"task_id": task_id,
"question": question_text,
"model_answer": model_answer, # Directly use the concise answer
# "reasoning_trace": "TODO" # Add if agent provides trace separately
}
results_log.append(result)
# Append result to log file (JSON Lines format)
with open(ANSWERS_LOG_FILE, 'a', encoding='utf-8') as log_f:
json.dump(result, log_f, ensure_ascii=False)
log_f.write('\n')
except Exception as e:
print(f"\nAGENT ERROR on task {task_id}: {e}")
# Optionally log errors too
error_result = {"task_id": task_id, "model_answer": f"AGENT_ERROR: {e}"}
results_log.append(error_result)
with open(ANSWERS_LOG_FILE, 'a', encoding='utf-8') as log_f:
json.dump(error_result, log_f, ensure_ascii=False)
log_f.write('\n')
print("-"*50)
print(f"\nTest script finished. {len(results_log)} results logged to '{ANSWERS_LOG_FILE}'.")
print("Summary of results:")
pprint.pprint(results_log)
# Ensure prompts.yaml and .env exist in the same directory or adjust paths.
# Ensure necessary packages are installed: pip install requests pyyaml python-dotenv python-pprint smol-agents
# ... rest of the script to be added ... |