Spaces:
Runtime error
Runtime error
File size: 2,903 Bytes
ac71df5 68c6bf2 ac71df5 3b59c19 76d02ff ccbcf3a 6f6c90e ccbcf3a b2f8e9c 9f91232 b2f8e9c ac71df5 b2f8e9c 9f91232 ac71df5 b2f8e9c 9f91232 ac71df5 b2f8e9c ac71df5 b2f8e9c 9f91232 ac71df5 b2f8e9c ac71df5 b2f8e9c ac71df5 b2f8e9c 3a7225e ccbcf3a 3b59c19 ccbcf3a ac71df5 d2fa1da ac71df5 68c6bf2 e087c8d ac71df5 960a75a ac71df5 b0ecf6a 25c68df 68c6bf2 ac71df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from six import StringIO
from sklearn import tree
import pandas as pd
import numpy as np
import pydotplus
import gradio as gr
from PIL import Image
def Tree_Detection(noise, rotation, power_up, temp):
noise = int(noise)
rotation = int(rotation)
power_up = int(power_up)
temp = int(temp)
with open('lenses.txt', 'r') as fr: # 加载文件
lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 处理文件
lenses_target = [] # 提取每组数据的类别,保存在列表里
# print(lenses)
for each in lenses:
lenses_target.append(each[-1])
# print(lenses_target)
lensesLabels = ['noise', 'rotation', 'power-up', 'temp'] # 特征标签
lenses_list = [] # 保存lenses数据的临时列表
lenses_dict = {} # 保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: # 提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
# print(lenses_dict) # 打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) # 生成pandas.DataFrame
# print(lenses_pd) # 打印pandas.DataFrame
le = LabelEncoder() # 创建LabelEncoder()对象,用于序列化
for col in lenses_pd.columns: # 序列化
lenses_pd[col] = le.fit_transform(lenses_pd[col])
# print(lenses_pd) # 打印编码信息
clf = tree.DecisionTreeClassifier(max_depth=None) # 创建DecisionTreeClassifier()类
clf = clf.fit(lenses_pd.values.tolist(), lenses_target) # 使用数据,构建决策树
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data, # 绘制决策树
feature_names=lenses_pd.keys(),
class_names=clf.classes_,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
#img = graph.write_jpg("tree.jpg") # 保存绘制好的决策树,以JPG的形式存储。
sample = []
sample.append(noise)
sample.append(rotation)
sample.append(power_up)
sample.append(temp)
result = f'The fault type is : {clf.predict([sample])[0]}' # 预测
image = Image.open("tree.jpg")
return result, image
# print(Tree_Detection([2, 1, 1, 0]))
def test(image):
return image
demo = gr.Interface(
fn=Tree_Detection,
inputs={
'input1': gr.inputs.Textbox(label="说明1:"),
'input2': gr.inputs.Textbox(label="说明2:"),
'input3': gr.inputs.Textbox(label="说明3:"),
'input4': gr.inputs.Textbox(label="说明4:"),
},
outputs=['text', 'image']
)
demo.launch()
|