shane666 commited on
Commit
9f91232
·
1 Parent(s): b2f8e9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -13,27 +13,27 @@ def Tree_Detection(sample):
13
 
14
  sample=list(sample)
15
  with open('lenses.txt', 'r') as fr: # 加载文件
16
- lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 处理文件
17
  lenses_target = [] # 提取每组数据的类别,保存在列表里
18
  # print(lenses)
19
  for each in lenses:
20
- lenses_target.append(each[-1])
21
  # print(lenses_target)
22
 
23
  lensesLabels = ['noise', 'rotation', 'power-up', 'temp'] # 特征标签
24
  lenses_list = [] # 保存lenses数据的临时列表
25
  lenses_dict = {} # 保存lenses数据的字典,用于生成pandas
26
  for each_label in lensesLabels: # 提取信息,生成字典
27
- for each in lenses:
28
- lenses_list.append(each[lensesLabels.index(each_label)])
29
- lenses_dict[each_label] = lenses_list
30
- lenses_list = []
31
  # print(lenses_dict) # 打印字典信息
32
  lenses_pd = pd.DataFrame(lenses_dict) # 生成pandas.DataFrame
33
  # print(lenses_pd) # 打印pandas.DataFrame
34
  le = LabelEncoder() # 创建LabelEncoder()对象,用于序列化
35
  for col in lenses_pd.columns: # 序列化
36
- lenses_pd[col] = le.fit_transform(lenses_pd[col])
37
  # print(lenses_pd) # 打印编码信息
38
 
39
  clf = tree.DecisionTreeClassifier(max_depth=None) # 创建DecisionTreeClassifier()类
 
13
 
14
  sample=list(sample)
15
  with open('lenses.txt', 'r') as fr: # 加载文件
16
+ lenses = [inst.strip().split('\t') for inst in fr.readlines()] # 处理文件
17
  lenses_target = [] # 提取每组数据的类别,保存在列表里
18
  # print(lenses)
19
  for each in lenses:
20
+ lenses_target.append(each[-1])
21
  # print(lenses_target)
22
 
23
  lensesLabels = ['noise', 'rotation', 'power-up', 'temp'] # 特征标签
24
  lenses_list = [] # 保存lenses数据的临时列表
25
  lenses_dict = {} # 保存lenses数据的字典,用于生成pandas
26
  for each_label in lensesLabels: # 提取信息,生成字典
27
+ for each in lenses:
28
+ lenses_list.append(each[lensesLabels.index(each_label)])
29
+ lenses_dict[each_label] = lenses_list
30
+ lenses_list = []
31
  # print(lenses_dict) # 打印字典信息
32
  lenses_pd = pd.DataFrame(lenses_dict) # 生成pandas.DataFrame
33
  # print(lenses_pd) # 打印pandas.DataFrame
34
  le = LabelEncoder() # 创建LabelEncoder()对象,用于序列化
35
  for col in lenses_pd.columns: # 序列化
36
+ lenses_pd[col] = le.fit_transform(lenses_pd[col])
37
  # print(lenses_pd) # 打印编码信息
38
 
39
  clf = tree.DecisionTreeClassifier(max_depth=None) # 创建DecisionTreeClassifier()类