File size: 1,707 Bytes
32cc554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
title: CDIApp
emoji: πŸ†
colorFrom: red
colorTo: black
sdk: gradio
sdk_version: 5.4.0
app_file: app.py
pinned: false
license: apache-2.0
---

# Plant Disease Classification
## Generated by Claude v3

This is a deep learning project for classifying plant diseases from images. It uses a convolutional neural network trained on a dataset of plant disease images.

## Features

- Train a disease classification model on your own dataset
- Evaluate model performance on a test set
- Run inference on new images through a web interface

## Installation

1. Clone the repository:

```
git clone https://github.com/username/plant-disease-classifier.git
```

2. Install dependencies:

```
cd plant-disease-classifier
pip install -r requirements.txt
```

## Usage

### Data Preparation

Organize your image data into folders for each disease class, for example:

```
data/
  healthy/
    image1.jpg
    image2.jpg
    ...
  disease_a/
    image1.jpg
    image2.jpg
    ...
  disease_b/
    ...
```

### Training

To train the model, run:

```
python train_classifier.py --data_dir data/
```

This will save the trained model to the `models/` directory.

### Evaluation

Evaluate the model on a test set:

```
python evaluate.py --data_dir data/test/ --model models/classifier.pth
```

This will print the classification metrics.

### Inference

To launch the web interface for running inference on new images:

```
python app.py
```

Then open `http://localhost:5000` in your web browser. You can upload images and see the predicted disease class.

## Contributing

Contributions are welcome! Please open an issue or submit a pull request.

## License

This project is licensed under the [MIT License](LICENSE).