HF Changes
Browse files- .gitattributes +39 -0
- .gitignore +15 -0
- README.md +95 -0
- acfg/appconfig.py +112 -0
- acfg/modelconfig.py +22 -0
- app.py +29 -0
- ml/.gitignore +6 -0
- ml/README.md +1 -0
- ml/app/__init__.py +0 -0
- ml/app/anomaly.py +36 -0
- ml/app/data.py +91 -0
- ml/app/lm.py +54 -0
- ml/app/models/__init__.py +0 -0
- ml/app/models/classification.py +90 -0
- ml/app/models/ood.py +79 -0
- ml/pyproject.toml +2 -0
- requirements.txt +69 -0
- service/.gitignore +264 -0
- service/README.md +1 -0
- service/external.py +29 -0
- service/predict.py +71 -0
- service/static/PlantDiseaseClassificationModel/best.ckpt +3 -0
- service/static/PlantDiseaseOODModel/best.ckpt +3 -0
- train_classifier.py +47 -0
- train_ood.py +39 -0
.gitattributes
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
service/static/PlantDiseaseClassificationModel/best.ckpt filter=lfs diff=lfs merge=lfs -text
|
37 |
+
service/static/PlantDiseaseOODModel filter=lfs diff=lfs merge=lfs -text
|
38 |
+
service/static/PlantDiseaseOODModel/best.ckpt filter=lfs diff=lfs merge=lfs -text
|
39 |
+
service/static/PlantDiseaseClassificationModel filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
ml/input
|
3 |
+
.DS_Store
|
4 |
+
logs
|
5 |
+
|
6 |
+
.env
|
7 |
+
lightning_logs
|
8 |
+
input/*
|
9 |
+
!input/.gitkeep
|
10 |
+
logs/*
|
11 |
+
*.pyc
|
12 |
+
venv
|
13 |
+
.venv
|
14 |
+
|
15 |
+
__pycache__
|
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: CDIApp
|
3 |
+
emoji: 🏆
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: black
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.4.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# Plant Disease Classification
|
14 |
+
## Generated by Claude v3
|
15 |
+
|
16 |
+
This is a deep learning project for classifying plant diseases from images. It uses a convolutional neural network trained on a dataset of plant disease images.
|
17 |
+
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- Train a disease classification model on your own dataset
|
21 |
+
- Evaluate model performance on a test set
|
22 |
+
- Run inference on new images through a web interface
|
23 |
+
|
24 |
+
## Installation
|
25 |
+
|
26 |
+
1. Clone the repository:
|
27 |
+
|
28 |
+
```
|
29 |
+
git clone https://github.com/username/plant-disease-classifier.git
|
30 |
+
```
|
31 |
+
|
32 |
+
2. Install dependencies:
|
33 |
+
|
34 |
+
```
|
35 |
+
cd plant-disease-classifier
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
|
41 |
+
### Data Preparation
|
42 |
+
|
43 |
+
Organize your image data into folders for each disease class, for example:
|
44 |
+
|
45 |
+
```
|
46 |
+
data/
|
47 |
+
healthy/
|
48 |
+
image1.jpg
|
49 |
+
image2.jpg
|
50 |
+
...
|
51 |
+
disease_a/
|
52 |
+
image1.jpg
|
53 |
+
image2.jpg
|
54 |
+
...
|
55 |
+
disease_b/
|
56 |
+
...
|
57 |
+
```
|
58 |
+
|
59 |
+
### Training
|
60 |
+
|
61 |
+
To train the model, run:
|
62 |
+
|
63 |
+
```
|
64 |
+
python train_classifier.py --data_dir data/
|
65 |
+
```
|
66 |
+
|
67 |
+
This will save the trained model to the `models/` directory.
|
68 |
+
|
69 |
+
### Evaluation
|
70 |
+
|
71 |
+
Evaluate the model on a test set:
|
72 |
+
|
73 |
+
```
|
74 |
+
python evaluate.py --data_dir data/test/ --model models/classifier.pth
|
75 |
+
```
|
76 |
+
|
77 |
+
This will print the classification metrics.
|
78 |
+
|
79 |
+
### Inference
|
80 |
+
|
81 |
+
To launch the web interface for running inference on new images:
|
82 |
+
|
83 |
+
```
|
84 |
+
python app.py
|
85 |
+
```
|
86 |
+
|
87 |
+
Then open `http://localhost:5000` in your web browser. You can upload images and see the predicted disease class.
|
88 |
+
|
89 |
+
## Contributing
|
90 |
+
|
91 |
+
Contributions are welcome! Please open an issue or submit a pull request.
|
92 |
+
|
93 |
+
## License
|
94 |
+
|
95 |
+
This project is licensed under the [MIT License](LICENSE).
|
acfg/appconfig.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from acfg.modelconfig import ModelConfig
|
6 |
+
from ml.app.anomaly import DiseaseOODModule
|
7 |
+
from ml.app.models.classification import DiseaseClassificationModel
|
8 |
+
from ml.app.models.ood import Autoencoder
|
9 |
+
|
10 |
+
|
11 |
+
def get_device():
|
12 |
+
"""Gets the appropriate device for PyTorch operations.
|
13 |
+
|
14 |
+
Checks for CUDA GPU availability first, then Apple M1/M2 MPS, falling back to CPU.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
tuple: A tuple containing two strings:
|
18 |
+
- First string indicates the device type ('cuda', 'mps', or 'cpu')
|
19 |
+
- Second string indicates the specific device ('cuda:0', 'mps', or 'cpu')
|
20 |
+
"""
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
return "cuda", "cuda:0"
|
23 |
+
elif torch.backends.mps.is_available():
|
24 |
+
return "mps", "mps"
|
25 |
+
else:
|
26 |
+
return "cpu", "cpu"
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class ServiceConfig:
|
31 |
+
LLM_MODEL_KEY = "gemini"
|
32 |
+
OOD_THRESHOLD = 0.034
|
33 |
+
ID2LABEL = (
|
34 |
+
"Apple scab",
|
35 |
+
"Apple Black rot",
|
36 |
+
"Apple Cedar rust",
|
37 |
+
"Apple healthy",
|
38 |
+
"Blueberry healthy",
|
39 |
+
"Cherry Powdery mildew",
|
40 |
+
"Cherry healthy",
|
41 |
+
"Corn Cercospora leaf spot Gray leaf spot",
|
42 |
+
"Corn Common rust",
|
43 |
+
"Corn Northern Leaf Blight",
|
44 |
+
"Corn healthy",
|
45 |
+
"Grape Black rot",
|
46 |
+
"Grape Esca Black Measles",
|
47 |
+
"Grape Leaf blight Isariopsis Leaf Spot",
|
48 |
+
"Grape healthy",
|
49 |
+
"Orange Haunglongbing Citrus greening",
|
50 |
+
"Peach Bacterial spot",
|
51 |
+
"Peach healthy",
|
52 |
+
"Pepper bell Bacterial spot",
|
53 |
+
"Pepper bell healthy",
|
54 |
+
"Potato Early blight",
|
55 |
+
"Potato Late blight",
|
56 |
+
"Potato healthy",
|
57 |
+
"Raspberry healthy",
|
58 |
+
"Soybean healthy",
|
59 |
+
"Squash Powdery mildew",
|
60 |
+
"Strawberry Leaf scorch",
|
61 |
+
"Strawberry healthy",
|
62 |
+
"Tomato Bacterial spot",
|
63 |
+
"Tomato Early blight",
|
64 |
+
"Tomato Late blight",
|
65 |
+
"Tomato Leaf Mold",
|
66 |
+
"Tomato Septoria leaf spot",
|
67 |
+
"Tomato Spider mites Two spotted spider mite",
|
68 |
+
"Tomato Target Spot",
|
69 |
+
"Tomato Yellow Leaf Curl Virus",
|
70 |
+
"Tomato mosaic virus",
|
71 |
+
"Tomato healthy",
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def load_my_model(checkpoint_path, model):
|
76 |
+
"""Loads a PyTorch model from a checkpoint file with state dict key remapping.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
checkpoint_path (str): Path to the checkpoint file containing model weights
|
80 |
+
model (torch.nn.Module): PyTorch model instance to load the weights into
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
torch.nn.Module: Model with loaded weights
|
84 |
+
|
85 |
+
Notes:
|
86 |
+
- Loads checkpoint using appropriate device (CUDA/MPS/CPU)
|
87 |
+
- Remaps state dict keys by removing 'model.model.' prefix
|
88 |
+
- Only keeps state dict entries that start with 'model.model.'
|
89 |
+
"""
|
90 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device(get_device()[1]))
|
91 |
+
state_dict = checkpoint["state_dict"]
|
92 |
+
|
93 |
+
# Create a new state dict with the correct keys
|
94 |
+
new_state_dict = {}
|
95 |
+
for k, v in state_dict.items():
|
96 |
+
if k.startswith("model.model."):
|
97 |
+
new_key = k.replace("model.model.", "model.")
|
98 |
+
new_state_dict[new_key] = v
|
99 |
+
|
100 |
+
# Load the new state dict
|
101 |
+
model.load_state_dict(new_state_dict)
|
102 |
+
return model
|
103 |
+
|
104 |
+
|
105 |
+
CLF_MODEL = DiseaseClassificationModel(model_name=ModelConfig.PRETRAINED_MODEL_NAME)
|
106 |
+
CLF_MODEL = load_my_model(ModelConfig.CLASSIFY_MODEL_CHECKPOINT, CLF_MODEL).to(
|
107 |
+
get_device()[1]
|
108 |
+
)
|
109 |
+
|
110 |
+
OOD_MODEL = DiseaseOODModule.load_from_checkpoint(
|
111 |
+
ModelConfig.OOD_MODEL_CHECKPOINT
|
112 |
+
).model.to(get_device()[1])
|
acfg/modelconfig.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class ModelConfig:
|
7 |
+
TRAIN_DATA_PATH: str = "ml/input/PlantDiseaseClassificationDataset/train"
|
8 |
+
VAL_DATA_PATH: str = "ml/input/PlantDiseaseClassificationDataset/valid"
|
9 |
+
TEST_DATA_PATH: str = "ml/input/PlantDiseaseClassificationDataset/test"
|
10 |
+
N_INPUT_CHANNELS = 3
|
11 |
+
IMG_SIZE: int = 224
|
12 |
+
BATCH_SIZE: int = 128
|
13 |
+
NUM_OUTPUT_CLASSES: int = 38
|
14 |
+
NUM_WORKERS: int = os.cpu_count() // 2
|
15 |
+
IMG_STD: tuple = (0.485, 0.456, 0.406)
|
16 |
+
IMG_MEAN: tuple = (0.229, 0.224, 0.225)
|
17 |
+
VAL_LOSS: str = "VL"
|
18 |
+
PRETRAINED_MODEL_NAME: str = "mobilenet_v3_small"
|
19 |
+
CLASSIFY_MODEL_CHECKPOINT: str = (
|
20 |
+
"service/static/PlantDiseaseClassificationModel/best.ckpt"
|
21 |
+
)
|
22 |
+
OOD_MODEL_CHECKPOINT: str = "service/static/PlantDiseaseOODModel/best.ckpt"
|
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from service.predict import workflow
|
4 |
+
|
5 |
+
|
6 |
+
def process_image(image):
|
7 |
+
disease_name, remedy = workflow(image)
|
8 |
+
return disease_name, remedy
|
9 |
+
|
10 |
+
|
11 |
+
# Create the Gradio interface
|
12 |
+
iface = gr.Interface(
|
13 |
+
fn=process_image,
|
14 |
+
inputs=gr.Image(
|
15 |
+
image_mode="RGB",
|
16 |
+
sources="upload",
|
17 |
+
label="Upload Plant Disease Image",
|
18 |
+
show_download_button=True,
|
19 |
+
type="pil",
|
20 |
+
),
|
21 |
+
outputs=[
|
22 |
+
gr.Textbox(label="Prediction", placeholder="Disease Prediction"),
|
23 |
+
gr.Markdown(label="Remedy"),
|
24 |
+
],
|
25 |
+
title="Classify Plant Diseases and Get Remedies",
|
26 |
+
)
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
iface.launch()
|
ml/.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input/*
|
2 |
+
!input/.gitkeep
|
3 |
+
logs/*
|
4 |
+
*.pyc
|
5 |
+
venv
|
6 |
+
.venv
|
ml/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Model training
|
ml/app/__init__.py
ADDED
File without changes
|
ml/app/anomaly.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from lightning import LightningModule
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from ml.app.models.ood import Autoencoder
|
8 |
+
|
9 |
+
|
10 |
+
class DiseaseOODModule(LightningModule):
|
11 |
+
def __init__(self) -> None:
|
12 |
+
super().__init__()
|
13 |
+
self.model = Autoencoder(in_channels=3, out_channels=3)
|
14 |
+
|
15 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
16 |
+
return self.model(x)
|
17 |
+
|
18 |
+
def training_step(self, batch: Tuple[torch.Tensor, ...], batch_idx: int) -> torch.Tensor:
|
19 |
+
loss = self._loss(batch)
|
20 |
+
self.log("TL", loss, prog_bar=True)
|
21 |
+
return loss
|
22 |
+
|
23 |
+
def configure_optimizers(self):
|
24 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
25 |
+
return optimizer
|
26 |
+
|
27 |
+
def validation_step(self, batch: Tuple[torch.Tensor, ...], batch_idx: int):
|
28 |
+
loss = self._loss(batch)
|
29 |
+
self.log("VL", loss, prog_bar=True)
|
30 |
+
return loss
|
31 |
+
|
32 |
+
def _loss(self, batch):
|
33 |
+
images, _ = batch
|
34 |
+
outputs = self(images)
|
35 |
+
loss = F.mse_loss(outputs, images)
|
36 |
+
return loss
|
ml/app/data.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lightning import LightningDataModule
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from torchvision import transforms as T
|
4 |
+
from torchvision.datasets import ImageFolder
|
5 |
+
|
6 |
+
from acfg.modelconfig import ModelConfig
|
7 |
+
|
8 |
+
|
9 |
+
class ImageDataModule(LightningDataModule):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
train_path: str,
|
13 |
+
val_path: str,
|
14 |
+
test_path: str,
|
15 |
+
batch_size: int,
|
16 |
+
img_size: int,
|
17 |
+
):
|
18 |
+
super().__init__()
|
19 |
+
self.train_path = train_path
|
20 |
+
self.val_path = val_path
|
21 |
+
self.test_path = test_path
|
22 |
+
self.batch_size = batch_size
|
23 |
+
self.img_size = img_size
|
24 |
+
self.train_transforms = self._get_train_transforms()
|
25 |
+
self.val_transforms = self._get_val_transforms()
|
26 |
+
self.test_transforms = self._get_test_transforms()
|
27 |
+
|
28 |
+
def _get_train_transforms(self):
|
29 |
+
return T.Compose(
|
30 |
+
[
|
31 |
+
T.Resize(self.img_size),
|
32 |
+
T.RandomHorizontalFlip(p=0.5),
|
33 |
+
T.RandomVerticalFlip(p=0.5),
|
34 |
+
T.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
|
35 |
+
T.ToTensor(),
|
36 |
+
T.Normalize(mean=ModelConfig.IMG_MEAN, std=ModelConfig.IMG_STD),
|
37 |
+
]
|
38 |
+
)
|
39 |
+
|
40 |
+
def _get_val_transforms(self):
|
41 |
+
return T.Compose(
|
42 |
+
[
|
43 |
+
T.Resize(self.img_size),
|
44 |
+
T.ToTensor(),
|
45 |
+
T.Normalize(mean=ModelConfig.IMG_MEAN, std=ModelConfig.IMG_STD),
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
def _get_test_transforms(self):
|
50 |
+
return T.Compose(
|
51 |
+
[
|
52 |
+
T.Resize(self.img_size),
|
53 |
+
T.ToTensor(),
|
54 |
+
T.Normalize(mean=ModelConfig.IMG_MEAN, std=ModelConfig.IMG_STD),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
def setup(self, stage=None):
|
59 |
+
if stage == "fit" or stage is None:
|
60 |
+
self.train_data = ImageFolder(root=self.train_path, transform=self.train_transforms)
|
61 |
+
self.val_data = ImageFolder(root=self.val_path, transform=self.val_transforms)
|
62 |
+
if stage == "test" or stage is None:
|
63 |
+
self.test_data = ImageFolder(root=self.test_path, transform=self.test_transforms)
|
64 |
+
|
65 |
+
def train_dataloader(self):
|
66 |
+
return DataLoader(
|
67 |
+
self.train_data,
|
68 |
+
batch_size=self.batch_size,
|
69 |
+
shuffle=True,
|
70 |
+
persistent_workers=True,
|
71 |
+
pin_memory=True,
|
72 |
+
num_workers=ModelConfig.NUM_WORKERS,
|
73 |
+
)
|
74 |
+
|
75 |
+
def val_dataloader(self):
|
76 |
+
return DataLoader(
|
77 |
+
self.val_data,
|
78 |
+
batch_size=self.batch_size,
|
79 |
+
persistent_workers=True,
|
80 |
+
pin_memory=True,
|
81 |
+
num_workers=ModelConfig.NUM_WORKERS,
|
82 |
+
)
|
83 |
+
|
84 |
+
def test_dataloader(self):
|
85 |
+
return DataLoader(
|
86 |
+
self.test_data,
|
87 |
+
batch_size=self.batch_size,
|
88 |
+
persistent_workers=True,
|
89 |
+
pin_memory=True,
|
90 |
+
num_workers=ModelConfig.NUM_WORKERS,
|
91 |
+
)
|
ml/app/lm.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from lightning import LightningModule
|
5 |
+
from torch import nn, Tensor
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.optim import AdamW
|
8 |
+
|
9 |
+
|
10 |
+
class ClassificationModule(LightningModule):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
model: nn.Module,
|
14 |
+
num_classes: int,
|
15 |
+
) -> None:
|
16 |
+
super().__init__()
|
17 |
+
self.model = model
|
18 |
+
self.num_classes = num_classes
|
19 |
+
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
+
return self.model(x)
|
22 |
+
|
23 |
+
def configure_optimizers(self):
|
24 |
+
# Low lr as we would be fine tuning a backbone
|
25 |
+
optimizer = AdamW(self.parameters(), lr=1e-5)
|
26 |
+
return optimizer
|
27 |
+
|
28 |
+
def training_step(self, batch: Tuple[torch.Tensor, ...], batch_idx: int) -> torch.Tensor:
|
29 |
+
images, labels = batch
|
30 |
+
outputs = self(images)
|
31 |
+
loss = F.cross_entropy(outputs, labels)
|
32 |
+
self.log("TL", loss, prog_bar=True)
|
33 |
+
return loss
|
34 |
+
|
35 |
+
def validation_step(self, batch: Tuple[torch.Tensor, ...], batch_idx: int) -> dict[str, Tensor | float | Any]:
|
36 |
+
images, labels = batch
|
37 |
+
outputs = self(images)
|
38 |
+
loss = F.cross_entropy(outputs, labels)
|
39 |
+
acc = self._accuracy(labels, outputs)
|
40 |
+
self.log("VL", loss, prog_bar=True)
|
41 |
+
self.log("VA", acc, prog_bar=True)
|
42 |
+
return {"VL": loss, "VA": acc}
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def _accuracy(labels, outputs):
|
46 |
+
preds = torch.argmax(outputs, dim=1)
|
47 |
+
acc = torch.sum(preds == labels).float() / len(labels)
|
48 |
+
return acc
|
49 |
+
|
50 |
+
def test_step(self, batch: Tuple[torch.Tensor, ...], batch_idx: int) -> None:
|
51 |
+
images, labels = batch
|
52 |
+
outputs = self(images)
|
53 |
+
loss = F.cross_entropy(outputs, labels)
|
54 |
+
self.log("TL", loss)
|
ml/app/models/__init__.py
ADDED
File without changes
|
ml/app/models/classification.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torch import nn
|
4 |
+
from torchvision.models import EfficientNet_B0_Weights, ResNet50_Weights, MobileNet_V3_Small_Weights
|
5 |
+
|
6 |
+
from acfg.modelconfig import ModelConfig
|
7 |
+
|
8 |
+
|
9 |
+
# TODO: Uncomment if needed
|
10 |
+
# Pytorch fix for hash mismatch
|
11 |
+
# def get_state_dict(self, *args, **kwargs):
|
12 |
+
# kwargs.pop("check_hash")
|
13 |
+
# return load_state_dict_from_url(self.url, *args, **kwargs)
|
14 |
+
|
15 |
+
|
16 |
+
# WeightsEnum.get_state_dict = get_state_dict
|
17 |
+
|
18 |
+
|
19 |
+
class MLPHead(nn.Module):
|
20 |
+
def __init__(self, in_features: int, num_output_classes: int) -> None:
|
21 |
+
super().__init__()
|
22 |
+
self.classifier = nn.Sequential(
|
23 |
+
nn.Linear(in_features, 2048),
|
24 |
+
nn.GELU(),
|
25 |
+
nn.Dropout(p=0.5),
|
26 |
+
nn.Linear(2048, num_output_classes),
|
27 |
+
)
|
28 |
+
|
29 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
30 |
+
return self.classifier(x)
|
31 |
+
|
32 |
+
|
33 |
+
class PretrainedModelFactory:
|
34 |
+
@staticmethod
|
35 |
+
def _freeze_pretrained_weights(model):
|
36 |
+
for param in model.parameters():
|
37 |
+
param.requires_grad = False
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def _efficientnet_b0():
|
41 |
+
model = torchvision.models.efficientnet_b0(weights=EfficientNet_B0_Weights.DEFAULT)
|
42 |
+
model.classifier = MLPHead(
|
43 |
+
in_features=model.classifier[1].in_features,
|
44 |
+
num_output_classes=ModelConfig.NUM_OUTPUT_CLASSES,
|
45 |
+
)
|
46 |
+
return model
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def _resnet_50():
|
50 |
+
model = torchvision.models.resnet50(weights=ResNet50_Weights.DEFAULT)
|
51 |
+
model.fc = MLPHead(
|
52 |
+
in_features=model.fc.in_features,
|
53 |
+
num_output_classes=ModelConfig.NUM_OUTPUT_CLASSES,
|
54 |
+
)
|
55 |
+
return model
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def _mobilenet_v3_small():
|
59 |
+
model = torchvision.models.mobilenet_v3_small(weights=MobileNet_V3_Small_Weights.DEFAULT)
|
60 |
+
model.classifier = MLPHead(
|
61 |
+
in_features=model.classifier[0].in_features,
|
62 |
+
num_output_classes=ModelConfig.NUM_OUTPUT_CLASSES,
|
63 |
+
)
|
64 |
+
return model
|
65 |
+
@staticmethod
|
66 |
+
def _vit_b_16():
|
67 |
+
raise NotImplementedError
|
68 |
+
|
69 |
+
def __init__(self):
|
70 |
+
self.available_models = {
|
71 |
+
"efficientnet_b0": self._efficientnet_b0,
|
72 |
+
"resnet_50": self._resnet_50,
|
73 |
+
"vit_b_16": self._vit_b_16,
|
74 |
+
"mobilenet_v3_small": self._mobilenet_v3_small,
|
75 |
+
}
|
76 |
+
|
77 |
+
def get_model(self, model_name: str) -> nn.Module:
|
78 |
+
if model_name not in self.available_models:
|
79 |
+
raise ValueError(f"Model '{model_name}' not available. Choose from {self.available_models.keys()}")
|
80 |
+
return self.available_models[model_name]()
|
81 |
+
|
82 |
+
|
83 |
+
class DiseaseClassificationModel(nn.Module):
|
84 |
+
def __init__(self, model_name: str) -> None:
|
85 |
+
super().__init__()
|
86 |
+
factory = PretrainedModelFactory()
|
87 |
+
self.model = factory.get_model(model_name)
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90 |
+
return self.model(x)
|
ml/app/models/ood.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class ConvADN(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
in_channels: int,
|
9 |
+
out_channels: int,
|
10 |
+
kernel=2,
|
11 |
+
stride=2,
|
12 |
+
dilation=1,
|
13 |
+
padding=0,
|
14 |
+
p_drop=0.2,
|
15 |
+
is_transpose: bool = False,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
self.model = nn.Sequential(
|
19 |
+
(nn.Conv2d if not is_transpose else nn.ConvTranspose2d)(
|
20 |
+
in_channels=in_channels,
|
21 |
+
out_channels=out_channels,
|
22 |
+
kernel_size=kernel,
|
23 |
+
stride=stride,
|
24 |
+
dilation=dilation,
|
25 |
+
padding=padding,
|
26 |
+
),
|
27 |
+
nn.GELU(),
|
28 |
+
nn.Dropout(p_drop),
|
29 |
+
nn.InstanceNorm3d(num_features=out_channels),
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
|
36 |
+
class Encoder(nn.Module):
|
37 |
+
def __init__(self, in_channels: int = 3):
|
38 |
+
super().__init__()
|
39 |
+
self.model = nn.Sequential(
|
40 |
+
ConvADN(in_channels, 32, kernel=2, stride=2, padding=0),
|
41 |
+
ConvADN(32, 64, kernel=2, stride=2, padding=0),
|
42 |
+
ConvADN(64, 128, kernel=2, stride=2, padding=0),
|
43 |
+
ConvADN(128, 256, kernel=2, stride=2, padding=0),
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
47 |
+
return self.model(x)
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, out_channels: int = 3):
|
52 |
+
super().__init__()
|
53 |
+
self.model = nn.Sequential(
|
54 |
+
ConvADN(256, 128, kernel=2, stride=2, padding=0, is_transpose=True),
|
55 |
+
ConvADN(128, 64, kernel=2, stride=2, padding=0, is_transpose=True),
|
56 |
+
ConvADN(64, 32, kernel=2, stride=2, padding=0, is_transpose=True),
|
57 |
+
ConvADN(32, out_channels, kernel=2, stride=2, padding=0, is_transpose=True),
|
58 |
+
)
|
59 |
+
self.output = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
60 |
+
|
61 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
62 |
+
x = self.model(x)
|
63 |
+
return self.output(x)
|
64 |
+
|
65 |
+
|
66 |
+
class Autoencoder(nn.Module):
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
in_channels: int,
|
70 |
+
out_channels: int,
|
71 |
+
) -> None:
|
72 |
+
super().__init__()
|
73 |
+
self.encoder = Encoder(in_channels)
|
74 |
+
self.decoder = Decoder(out_channels)
|
75 |
+
|
76 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
77 |
+
x = self.encoder(x)
|
78 |
+
x = self.decoder(x)
|
79 |
+
return x
|
ml/pyproject.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 120
|
requirements.txt
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
aiohappyeyeballs==2.4.3
|
3 |
+
aiohttp==3.10.10
|
4 |
+
aiosignal==1.3.1
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.6.2.post1
|
7 |
+
attrs==24.2.0
|
8 |
+
certifi==2024.8.30
|
9 |
+
charset-normalizer==3.4.0
|
10 |
+
click==8.1.7
|
11 |
+
fastapi==0.115.4
|
12 |
+
ffmpy==0.4.0
|
13 |
+
filelock==3.16.1
|
14 |
+
frozenlist==1.5.0
|
15 |
+
fsspec==2024.10.0
|
16 |
+
gradio==5.4.0
|
17 |
+
gradio_client==1.4.2
|
18 |
+
h11==0.14.0
|
19 |
+
httpcore==1.0.6
|
20 |
+
httpx==0.27.2
|
21 |
+
huggingface-hub==0.26.2
|
22 |
+
idna==3.10
|
23 |
+
Jinja2==3.1.4
|
24 |
+
lightning==2.4.0
|
25 |
+
lightning-utilities==0.11.8
|
26 |
+
markdown-it-py==3.0.0
|
27 |
+
MarkupSafe==2.1.5
|
28 |
+
mdurl==0.1.2
|
29 |
+
mpmath==1.3.0
|
30 |
+
multidict==6.1.0
|
31 |
+
networkx==3.4.2
|
32 |
+
numpy==1.26.4
|
33 |
+
orjson==3.10.11
|
34 |
+
packaging==24.1
|
35 |
+
pandas==2.2.3
|
36 |
+
pillow==11.0.0
|
37 |
+
propcache==0.2.0
|
38 |
+
pydantic==2.9.2
|
39 |
+
pydantic_core==2.23.4
|
40 |
+
pydub==0.25.1
|
41 |
+
Pygments==2.18.0
|
42 |
+
python-dateutil==2.9.0.post0
|
43 |
+
python-multipart==0.0.12
|
44 |
+
pytorch-lightning==2.4.0
|
45 |
+
pytz==2024.2
|
46 |
+
PyYAML==6.0.2
|
47 |
+
requests==2.32.3
|
48 |
+
rich==13.9.4
|
49 |
+
ruff==0.7.2
|
50 |
+
safehttpx==0.1.1
|
51 |
+
semantic-version==2.10.0
|
52 |
+
setuptools==75.3.0
|
53 |
+
shellingham==1.5.4
|
54 |
+
six==1.16.0
|
55 |
+
sniffio==1.3.1
|
56 |
+
starlette==0.41.2
|
57 |
+
sympy==1.13.1
|
58 |
+
tomlkit==0.12.0
|
59 |
+
torch==2.5.1
|
60 |
+
torchmetrics==1.5.1
|
61 |
+
torchvision==0.20.1
|
62 |
+
tqdm==4.66.6
|
63 |
+
typer==0.12.5
|
64 |
+
typing_extensions==4.12.2
|
65 |
+
tzdata==2024.2
|
66 |
+
urllib3==2.2.3
|
67 |
+
uvicorn==0.32.0
|
68 |
+
websockets==12.0
|
69 |
+
yarl==1.17.1
|
service/.gitignore
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/python,jetbrains+all
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python,jetbrains+all
|
3 |
+
|
4 |
+
### JetBrains+all ###
|
5 |
+
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
|
6 |
+
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
7 |
+
|
8 |
+
# User-specific stuff
|
9 |
+
.idea/**/workspace.xml
|
10 |
+
.idea/**/tasks.xml
|
11 |
+
.idea/**/usage.statistics.xml
|
12 |
+
.idea/**/dictionaries
|
13 |
+
.idea/**/shelf
|
14 |
+
|
15 |
+
# AWS User-specific
|
16 |
+
.idea/**/aws.xml
|
17 |
+
|
18 |
+
# Generated files
|
19 |
+
.idea/**/contentModel.xml
|
20 |
+
|
21 |
+
# Sensitive or high-churn files
|
22 |
+
.idea/**/dataSources/
|
23 |
+
.idea/**/dataSources.ids
|
24 |
+
.idea/**/dataSources.local.xml
|
25 |
+
.idea/**/sqlDataSources.xml
|
26 |
+
.idea/**/dynamic.xml
|
27 |
+
.idea/**/uiDesigner.xml
|
28 |
+
.idea/**/dbnavigator.xml
|
29 |
+
|
30 |
+
# Gradle
|
31 |
+
.idea/**/gradle.xml
|
32 |
+
.idea/**/libraries
|
33 |
+
|
34 |
+
# Gradle and Maven with auto-import
|
35 |
+
# When using Gradle or Maven with auto-import, you should exclude module files,
|
36 |
+
# since they will be recreated, and may cause churn. Uncomment if using
|
37 |
+
# auto-import.
|
38 |
+
# .idea/artifacts
|
39 |
+
# .idea/compiler.xml
|
40 |
+
# .idea/jarRepositories.xml
|
41 |
+
# .idea/modules.xml
|
42 |
+
# .idea/*.iml
|
43 |
+
# .idea/modules
|
44 |
+
# *.iml
|
45 |
+
# *.ipr
|
46 |
+
|
47 |
+
# CMake
|
48 |
+
cmake-build-*/
|
49 |
+
|
50 |
+
# Mongo Explorer plugin
|
51 |
+
.idea/**/mongoSettings.xml
|
52 |
+
|
53 |
+
# File-based project format
|
54 |
+
*.iws
|
55 |
+
|
56 |
+
# IntelliJ
|
57 |
+
out/
|
58 |
+
|
59 |
+
# mpeltonen/sbt-idea plugin
|
60 |
+
.idea_modules/
|
61 |
+
|
62 |
+
# JIRA plugin
|
63 |
+
atlassian-ide-plugin.xml
|
64 |
+
|
65 |
+
# Cursive Clojure plugin
|
66 |
+
.idea/replstate.xml
|
67 |
+
|
68 |
+
# SonarLint plugin
|
69 |
+
.idea/sonarlint/
|
70 |
+
|
71 |
+
# Crashlytics plugin (for Android Studio and IntelliJ)
|
72 |
+
com_crashlytics_export_strings.xml
|
73 |
+
crashlytics.properties
|
74 |
+
crashlytics-build.properties
|
75 |
+
fabric.properties
|
76 |
+
|
77 |
+
# Editor-based Rest Client
|
78 |
+
.idea/httpRequests
|
79 |
+
|
80 |
+
# Android studio 3.1+ serialized cache file
|
81 |
+
.idea/caches/build_file_checksums.ser
|
82 |
+
|
83 |
+
### JetBrains+all Patch ###
|
84 |
+
# Ignore everything but code style settings and run configurations
|
85 |
+
# that are supposed to be shared within teams.
|
86 |
+
|
87 |
+
.idea/*
|
88 |
+
|
89 |
+
!.idea/codeStyles
|
90 |
+
!.idea/runConfigurations
|
91 |
+
|
92 |
+
### Python ###
|
93 |
+
# Byte-compiled / optimized / DLL files
|
94 |
+
__pycache__/
|
95 |
+
*.py[cod]
|
96 |
+
*$py.class
|
97 |
+
|
98 |
+
# C extensions
|
99 |
+
*.so
|
100 |
+
|
101 |
+
# Distribution / packaging
|
102 |
+
.Python
|
103 |
+
build/
|
104 |
+
develop-eggs/
|
105 |
+
dist/
|
106 |
+
downloads/
|
107 |
+
eggs/
|
108 |
+
.eggs/
|
109 |
+
lib/
|
110 |
+
lib64/
|
111 |
+
parts/
|
112 |
+
sdist/
|
113 |
+
var/
|
114 |
+
wheels/
|
115 |
+
share/python-wheels/
|
116 |
+
*.egg-info/
|
117 |
+
.installed.cfg
|
118 |
+
*.egg
|
119 |
+
MANIFEST
|
120 |
+
|
121 |
+
# PyInstaller
|
122 |
+
# Usually these files are written by a python script from a template
|
123 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
124 |
+
*.manifest
|
125 |
+
*.spec
|
126 |
+
|
127 |
+
# Installer logs
|
128 |
+
pip-log.txt
|
129 |
+
pip-delete-this-directory.txt
|
130 |
+
|
131 |
+
# Unit test / coverage reports
|
132 |
+
htmlcov/
|
133 |
+
.tox/
|
134 |
+
.nox/
|
135 |
+
.coverage
|
136 |
+
.coverage.*
|
137 |
+
.cache
|
138 |
+
nosetests.xml
|
139 |
+
coverage.xml
|
140 |
+
*.cover
|
141 |
+
*.py,cover
|
142 |
+
.hypothesis/
|
143 |
+
.pytest_cache/
|
144 |
+
cover/
|
145 |
+
|
146 |
+
# Translations
|
147 |
+
*.mo
|
148 |
+
*.pot
|
149 |
+
|
150 |
+
# Django stuff:
|
151 |
+
*.log
|
152 |
+
local_settings.py
|
153 |
+
db.sqlite3
|
154 |
+
db.sqlite3-journal
|
155 |
+
|
156 |
+
# Flask stuff:
|
157 |
+
instance/
|
158 |
+
.webassets-cache
|
159 |
+
|
160 |
+
# Scrapy stuff:
|
161 |
+
.scrapy
|
162 |
+
|
163 |
+
# Sphinx documentation
|
164 |
+
docs/_build/
|
165 |
+
|
166 |
+
# PyBuilder
|
167 |
+
.pybuilder/
|
168 |
+
target/
|
169 |
+
|
170 |
+
# Jupyter Notebook
|
171 |
+
.ipynb_checkpoints
|
172 |
+
|
173 |
+
# IPython
|
174 |
+
profile_default/
|
175 |
+
ipython_config.py
|
176 |
+
|
177 |
+
# pyenv
|
178 |
+
# For a library or package, you might want to ignore these files since the code is
|
179 |
+
# intended to run in multiple environments; otherwise, check them in:
|
180 |
+
# .python-version
|
181 |
+
|
182 |
+
# pipenv
|
183 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
184 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
185 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
186 |
+
# install all needed dependencies.
|
187 |
+
#Pipfile.lock
|
188 |
+
|
189 |
+
# poetry
|
190 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
191 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
192 |
+
# commonly ignored for libraries.
|
193 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
194 |
+
#poetry.lock
|
195 |
+
|
196 |
+
# pdm
|
197 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
198 |
+
#pdm.lock
|
199 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
200 |
+
# in version control.
|
201 |
+
# https://pdm.fming.dev/#use-with-ide
|
202 |
+
.pdm.toml
|
203 |
+
|
204 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
205 |
+
__pypackages__/
|
206 |
+
|
207 |
+
# Celery stuff
|
208 |
+
celerybeat-schedule
|
209 |
+
celerybeat.pid
|
210 |
+
|
211 |
+
# SageMath parsed files
|
212 |
+
*.sage.py
|
213 |
+
|
214 |
+
# Environments
|
215 |
+
.env
|
216 |
+
.venv
|
217 |
+
env/
|
218 |
+
venv/
|
219 |
+
ENV/
|
220 |
+
env.bak/
|
221 |
+
venv.bak/
|
222 |
+
|
223 |
+
# Spyder project settings
|
224 |
+
.spyderproject
|
225 |
+
.spyproject
|
226 |
+
|
227 |
+
# Rope project settings
|
228 |
+
.ropeproject
|
229 |
+
|
230 |
+
# mkdocs documentation
|
231 |
+
/site
|
232 |
+
|
233 |
+
# mypy
|
234 |
+
.mypy_cache/
|
235 |
+
.dmypy.json
|
236 |
+
dmypy.json
|
237 |
+
|
238 |
+
# Pyre type checker
|
239 |
+
.pyre/
|
240 |
+
|
241 |
+
# pytype static type analyzer
|
242 |
+
.pytype/
|
243 |
+
|
244 |
+
# Cython debug symbols
|
245 |
+
cython_debug/
|
246 |
+
|
247 |
+
# PyCharm
|
248 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
249 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
250 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
251 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
252 |
+
#.idea/
|
253 |
+
|
254 |
+
### Python Patch ###
|
255 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
256 |
+
poetry.toml
|
257 |
+
|
258 |
+
# ruff
|
259 |
+
.ruff_cache/
|
260 |
+
|
261 |
+
# LSP config files
|
262 |
+
pyrightconfig.json
|
263 |
+
|
264 |
+
# End of https://www.toptal.com/developers/gitignore/api/python,jetbrains+all
|
service/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Crop Disease Prediction Backend
|
service/external.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import google.generativeai as genai
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
|
7 |
+
SYS_INSTR = "You are a plant disease expert. You will be given queries regarding plant diseases. Always respond in Markdown"
|
8 |
+
TXT_PROMPT = "Suggest remedy for the disease in bullet points"
|
9 |
+
IMG_TXT_PROMPT = "Based on the given image, suggest the possible disease the plant is suffering from, along with the remedy in 150 words"
|
10 |
+
|
11 |
+
|
12 |
+
def llm_strategy(llm_name, disease_name, image_file=None):
|
13 |
+
if llm_name.lower() == "gemini":
|
14 |
+
return get_response_from_gemini(disease_name, image_file)
|
15 |
+
else:
|
16 |
+
raise ValueError(f"LLM {llm_name} not supported")
|
17 |
+
|
18 |
+
|
19 |
+
def get_response_from_gemini(disease_name, image_file=None) -> str:
|
20 |
+
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
|
21 |
+
model = genai.GenerativeModel("gemini-1.5-flash", system_instruction=SYS_INSTR)
|
22 |
+
|
23 |
+
generation_config = genai.GenerationConfig(max_output_tokens=300)
|
24 |
+
|
25 |
+
prompt = [TXT_PROMPT, disease_name]
|
26 |
+
if image_file:
|
27 |
+
prompt = [IMG_TXT_PROMPT, image_file]
|
28 |
+
response = model.generate_content(prompt, generation_config=generation_config)
|
29 |
+
return response.text
|
service/predict.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from acfg.modelconfig import ModelConfig
|
5 |
+
import torchvision.transforms.functional as F
|
6 |
+
from torch.nn import functional as Fx
|
7 |
+
|
8 |
+
|
9 |
+
from acfg.appconfig import CLF_MODEL, OOD_MODEL, ServiceConfig, get_device
|
10 |
+
from service.external import llm_strategy
|
11 |
+
|
12 |
+
|
13 |
+
def transform_for_prediction(img: PIL.Image):
|
14 |
+
"""Transforms a PIL image for model prediction.
|
15 |
+
|
16 |
+
This function applies a series of transformations to prepare an image for model inference:
|
17 |
+
1. Resizes the image to the model's expected input size
|
18 |
+
2. Converts the image to a tensor
|
19 |
+
3. Normalizes the tensor using preconfigured mean and std values
|
20 |
+
|
21 |
+
Args:
|
22 |
+
img (PIL.Image): Input image to transform
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
torch.Tensor: Transformed image tensor ready for model inference
|
26 |
+
"""
|
27 |
+
z = img
|
28 |
+
z = F.resize(img, [ModelConfig.IMG_SIZE, ModelConfig.IMG_SIZE])
|
29 |
+
z = F.to_tensor(z)
|
30 |
+
z = F.normalize(z, mean=ModelConfig.IMG_MEAN, std=ModelConfig.IMG_STD)
|
31 |
+
return z.to(get_device()[1])
|
32 |
+
|
33 |
+
|
34 |
+
def classify_disease(image):
|
35 |
+
image_tensor = transform_for_prediction(image).unsqueeze(0)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = CLF_MODEL(image_tensor)
|
39 |
+
_, predicted = torch.max(outputs, 1)
|
40 |
+
prediction = predicted.item()
|
41 |
+
|
42 |
+
return ServiceConfig.ID2LABEL[prediction]
|
43 |
+
|
44 |
+
|
45 |
+
def img_in_distribution(image):
|
46 |
+
image_tensor = transform_for_prediction(image).unsqueeze(0)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
output = OOD_MODEL(image_tensor)
|
50 |
+
mse_loss_value = Fx.mse_loss(output, image_tensor)
|
51 |
+
print("MSE", mse_loss_value)
|
52 |
+
|
53 |
+
return mse_loss_value < ServiceConfig.OOD_THRESHOLD
|
54 |
+
|
55 |
+
|
56 |
+
def workflow(image: np.array):
|
57 |
+
if not img_in_distribution(image):
|
58 |
+
disease_name = "Unknown"
|
59 |
+
remedy = "We do not know the remedy to this one. Sorry!"
|
60 |
+
else:
|
61 |
+
disease_name = classify_disease(image)
|
62 |
+
remedy = "No remedy needed. Plant is Healthy"
|
63 |
+
print(disease_name)
|
64 |
+
|
65 |
+
if "healthy" in disease_name:
|
66 |
+
return disease_name, remedy
|
67 |
+
|
68 |
+
else:
|
69 |
+
remedy = llm_strategy(ServiceConfig.LLM_MODEL_KEY, disease_name)
|
70 |
+
|
71 |
+
return disease_name, remedy
|
service/static/PlantDiseaseClassificationModel/best.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22331788f98e2379081c3734d2e7a2c820df3fbf2029240970e8695e70e10f9e
|
3 |
+
size 26490932
|
service/static/PlantDiseaseOODModel/best.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:995a05fa7e42e65f3f62f6fd9a777cce136a7930334a9f94ddb75a125e481f09
|
3 |
+
size 4172283
|
train_classifier.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lightning import Trainer, seed_everything
|
2 |
+
from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar
|
3 |
+
|
4 |
+
from acfg.modelconfig import ModelConfig
|
5 |
+
from ml.app.data import ImageDataModule
|
6 |
+
from ml.app.lm import ClassificationModule
|
7 |
+
from ml.app.models.classification import DiseaseClassificationModel
|
8 |
+
|
9 |
+
|
10 |
+
ckpt_callback = ModelCheckpoint(
|
11 |
+
filename="classification" + "_{epoch:02d}_{VA:.2f}",
|
12 |
+
save_top_k=1,
|
13 |
+
mode="min",
|
14 |
+
monitor=ModelConfig.VAL_LOSS,
|
15 |
+
)
|
16 |
+
|
17 |
+
tqdm_callback = TQDMProgressBar(refresh_rate=10)
|
18 |
+
|
19 |
+
|
20 |
+
model = DiseaseClassificationModel(ModelConfig.PRETRAINED_MODEL_NAME)
|
21 |
+
|
22 |
+
datamodule = ImageDataModule(
|
23 |
+
train_path=ModelConfig.TRAIN_DATA_PATH,
|
24 |
+
val_path=ModelConfig.VAL_DATA_PATH,
|
25 |
+
test_path=ModelConfig.TEST_DATA_PATH,
|
26 |
+
batch_size=ModelConfig.BATCH_SIZE,
|
27 |
+
img_size=ModelConfig.IMG_SIZE,
|
28 |
+
)
|
29 |
+
|
30 |
+
l_module = ClassificationModule(
|
31 |
+
model=model,
|
32 |
+
num_classes=ModelConfig.NUM_OUTPUT_CLASSES,
|
33 |
+
)
|
34 |
+
|
35 |
+
seed_everything(42)
|
36 |
+
trainer = Trainer(
|
37 |
+
max_epochs=25,
|
38 |
+
callbacks=[ckpt_callback, tqdm_callback],
|
39 |
+
num_sanity_val_steps=2,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
trainer.fit(
|
45 |
+
model=l_module,
|
46 |
+
datamodule=datamodule,
|
47 |
+
)
|
train_ood.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lightning import Trainer, seed_everything
|
2 |
+
from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar
|
3 |
+
|
4 |
+
from acfg.modelconfig import ModelConfig
|
5 |
+
from ml.app.anomaly import DiseaseOODModule
|
6 |
+
from ml.app.data import ImageDataModule
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
ckpt_callback = ModelCheckpoint(
|
11 |
+
filename="ood" + "_{epoch:02d}_{VL:.2f}",
|
12 |
+
save_top_k=1,
|
13 |
+
mode="min",
|
14 |
+
monitor=ModelConfig.VAL_LOSS,
|
15 |
+
)
|
16 |
+
|
17 |
+
tqdm_callback = TQDMProgressBar(refresh_rate=10)
|
18 |
+
|
19 |
+
datamodule = ImageDataModule(
|
20 |
+
train_path=ModelConfig.TRAIN_DATA_PATH,
|
21 |
+
val_path=ModelConfig.VAL_DATA_PATH,
|
22 |
+
test_path=ModelConfig.TEST_DATA_PATH,
|
23 |
+
batch_size=ModelConfig.BATCH_SIZE,
|
24 |
+
img_size=ModelConfig.IMG_SIZE,
|
25 |
+
)
|
26 |
+
|
27 |
+
l_module = DiseaseOODModule()
|
28 |
+
|
29 |
+
seed_everything(42)
|
30 |
+
|
31 |
+
trainer = Trainer(
|
32 |
+
max_epochs=100,
|
33 |
+
callbacks=[ckpt_callback, tqdm_callback],
|
34 |
+
num_sanity_val_steps=2,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
trainer.fit(model=l_module, datamodule=datamodule)
|