Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,302 Bytes
0a44614 0709fa4 0a44614 0709fa4 0a44614 02c2407 0a44614 410fbf0 0a44614 31b0378 0a44614 d8af134 0a44614 0d8e8f1 0a44614 6def55d 0a44614 d8af134 0a44614 0356673 0a44614 066c1c0 0a44614 db903eb 0a44614 1ce50a5 0a44614 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import threading
import time
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
import glob
import os, csv, sys
import shlex
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
subprocess.run(shlex.split('pip install scepter'))
from scepter.modules.transform.io import pillow_convert
from scepter.modules.utils.config import Config
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from inference.ace_plus_diffusers import ACEPlusDiffuserInference
from inference.utils import edit_preprocess
from examples.examples import all_examples
inference_dict = {
"ACE_DIFFUSER_PLUS": ACEPlusDiffuserInference
}
fs_list = [
Config(cfg_dict={"NAME": "HuggingfaceFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "./cache"}, load=False),
Config(cfg_dict={"NAME": "LocalFs", "TEMP_DIR": "./cache"}, load=False),
]
for one_fs in fs_list:
FS.init_fs_client(one_fs)
os.environ["FLUX_FILL_PATH"]="hf://black-forest-labs/FLUX.1-Fill-dev"
os.environ["PORTRAIT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors"
os.environ["SUBJECT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@subject/comfyui_subject_lora16.safetensors"
os.environ["LOCAL_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@local_editing/comfyui_local_lora16.safetensors"
FS.get_dir_to_local_dir(os.environ["FLUX_FILL_PATH"])
FS.get_from(os.environ["PORTRAIT_MODEL_PATH"])
FS.get_from(os.environ["SUBJECT_MODEL_PATH"])
FS.get_from(os.environ["LOCAL_MODEL_PATH"])
csv.field_size_limit(sys.maxsize)
refresh_sty = '\U0001f504' # 🔄
clear_sty = '\U0001f5d1' # 🗑️
upload_sty = '\U0001f5bc' # 🖼️
sync_sty = '\U0001f4be' # 💾
chat_sty = '\U0001F4AC' # 💬
video_sty = '\U0001f3a5' # 🎥
lock = threading.Lock()
class DemoUI(object):
#@spaces.GPU(duration=60)
def __init__(self,
infer_dir = "./config",
model_list='./models/model_zoo.yaml'
):
self.model_yamls = glob.glob(os.path.join(infer_dir,
'*.yaml'))
self.model_choices = dict()
self.default_model_name = ''
for i in self.model_yamls:
model_cfg = Config(load=True, cfg_file=i)
model_name = model_cfg.NAME
if model_cfg.IS_DEFAULT: self.default_model_name = model_name
self.model_choices[model_name] = model_cfg
print('Models: ', self.model_choices.keys())
assert len(self.model_choices) > 0
if self.default_model_name == "": self.default_model_name = list(self.model_choices.keys())[0]
self.model_name = self.default_model_name
pipe_cfg = self.model_choices[self.default_model_name]
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE")
self.pipe = inference_dict[infer_name]()
self.pipe.init_from_cfg(pipe_cfg)
# choose different model
self.task_model_cfg = Config(load=True, cfg_file=model_list)
self.task_model = {}
self.task_model_list = []
self.edit_type_dict = {"repainting": None}
self.edit_type_list = ["repainting"]
for task_name, task_model in self.task_model_cfg.MODEL.items():
self.task_model[task_name.lower()] = task_model
self.task_model_list.append(task_name.lower())
for preprocessor in task_model.get("PREPROCESSOR", []):
if preprocessor["TYPE"] in self.edit_type_dict:
continue
preprocessor["REPAINTING_SCALE"] = task_model.get("REPAINTING_SCALE", 1.0)
self.edit_type_dict[preprocessor["TYPE"]] = preprocessor
self.max_msgs = 20
# reformat examples
self.all_examples = [
[
one_example["task_type"], one_example["edit_type"], one_example["instruction"],
one_example["input_reference_image"], one_example["input_image"],
one_example["input_mask"], one_example["output_h"],
one_example["output_w"], one_example["seed"]
]
for one_example in all_examples
]
def construct_edit_image(self, edit_image, edit_mask):
if edit_image is not None and edit_mask is not None:
edit_image_rgb = pillow_convert(edit_image, "RGB")
edit_image_rgba = pillow_convert(edit_image, "RGBA")
edit_mask = pillow_convert(edit_mask, "L")
arr1 = np.array(edit_image_rgb)
arr2 = np.array(edit_mask)[:, :, np.newaxis]
result_array = np.concatenate((arr1, arr2), axis=2)
layer = Image.fromarray(result_array)
ret_data = {
"background": edit_image_rgba,
"composite": edit_image_rgba,
"layers": [layer]
}
return ret_data
else:
return None
def create_ui(self):
with gr.Row(equal_height=True, visible=True):
with gr.Column(scale=2):
self.gallery_image = gr.Image(
height=600,
interactive=False,
type='pil',
elem_id='Reference_image'
)
with gr.Column(scale=1, visible=True) as self.edit_preprocess_panel:
with gr.Row():
with gr.Accordion(label='Related Input Image', open=False):
self.edit_preprocess_preview = gr.Image(
height=600,
interactive=False,
type='pil',
elem_id='preprocess_image'
)
self.edit_preprocess_mask_preview = gr.Image(
height=600,
interactive=False,
type='pil',
elem_id='preprocess_image_mask'
)
with gr.Row():
instruction = """
**Instruction**:
1. Please choose the Task Type based on the scenario of the generation task. We provide three types of generation capabilities: Portrait ID Preservation Generation(portrait),
Object ID Preservation Generation(subject), and Local Controlled Generation(local editing), which can be selected from the task dropdown menu.
2. When uploading images in the Reference Image section, the generated image will reference the ID information of that image. Please ensure that the ID information is clear.
In the Edit Image section, the uploaded image will maintain its structural and content information, and you must draw a mask area to specify the region to be regenerated.
3. When the task type is local editing, there are various editing types to choose from. Users can select different information preserving dimensions, such as edge information,
color information, and more. The pre-processing information can be viewed in the 'related input image' tab.
4. More details can be found in [page](https://ali-vilab.github.io/ACE_plus_page).
"""
self.instruction = gr.Markdown(value=instruction)
with gr.Row():
self.model_name_dd = gr.Dropdown(
choices=self.model_choices,
value=self.default_model_name,
label='Model Version')
self.task_type = gr.Dropdown(choices=self.task_model_list,
interactive=True,
value=self.task_model_list[0],
label='Task Type')
self.edit_type = gr.Dropdown(choices=self.edit_type_list,
interactive=True,
value=self.edit_type_list[0],
label='Edit Type')
with gr.Row():
self.generation_info_preview = gr.Markdown(
label='System Log.',
show_label=True)
with gr.Row(variant='panel',
equal_height=True,
show_progress=False):
with gr.Column(scale=10, min_width=500):
self.text = gr.Textbox(
placeholder='Input "@" find history of image',
label='Instruction',
container=False,
lines = 1)
with gr.Column(scale=2, min_width=100):
with gr.Row():
with gr.Column(scale=1, min_width=100):
self.chat_btn = gr.Button(value='Generate', variant = "primary")
with gr.Accordion(label='Advance', open=True):
with gr.Row(visible=True):
with gr.Column():
self.reference_image = gr.Image(
height=1000,
interactive=True,
image_mode='RGB',
type='pil',
label='Reference Image',
elem_id='reference_image'
)
with gr.Column():
self.edit_image = gr.ImageMask(
height=1000,
interactive=True,
value=None,
sources=['upload'],
type='pil',
layers=False,
label='Edit Image',
elem_id='image_editor',
show_fullscreen_button=True,
format="png"
)
with gr.Row():
self.step = gr.Slider(minimum=1,
maximum=1000,
value=self.pipe.input.get("sample_steps", 20),
visible=self.pipe.input.get("sample_steps", None) is not None,
label='Sample Step')
self.cfg_scale = gr.Slider(
minimum=1.0,
maximum=100.0,
value=self.pipe.input.get("guide_scale", 4.5),
visible=self.pipe.input.get("guide_scale", None) is not None,
label='Guidance Scale')
self.seed = gr.Slider(minimum=-1,
maximum=10000000,
value=-1,
label='Seed')
self.output_height = gr.Slider(
minimum=256,
maximum=1440,
value=self.pipe.input.get("output_height", 1024),
visible=self.pipe.input.get("output_height", None) is not None,
label='Output Height')
self.output_width = gr.Slider(
minimum=256,
maximum=1440,
value=self.pipe.input.get("output_width", 1024),
visible=self.pipe.input.get("output_width", None) is not None,
label='Output Width')
self.repainting_scale = gr.Slider(
minimum=0.0,
maximum=1.0,
value=self.pipe.input.get("repainting_scale", 1.0),
visible=True,
label='Repainting Scale')
with gr.Row():
self.eg = gr.Column(visible=True)
def set_callbacks(self, *args, **kwargs):
########################################
def change_model(model_name):
if model_name not in self.model_choices:
gr.Info('The provided model name is not a valid choice!')
return model_name, gr.update(), gr.update()
if model_name != self.model_name:
lock.acquire()
del self.pipe
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
pipe_cfg = self.model_choices[model_name]
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE")
self.pipe = inference_dict[infer_name]()
self.pipe.init_from_cfg(pipe_cfg)
self.model_name = model_name
lock.release()
return (model_name, gr.update(),
gr.Slider(
value=self.pipe.input.get("sample_steps", 20),
visible=self.pipe.input.get("sample_steps", None) is not None),
gr.Slider(
value=self.pipe.input.get("guide_scale", 4.5),
visible=self.pipe.input.get("guide_scale", None) is not None),
gr.Slider(
value=self.pipe.input.get("output_height", 1024),
visible=self.pipe.input.get("output_height", None) is not None),
gr.Slider(
value=self.pipe.input.get("output_width", 1024),
visible=self.pipe.input.get("output_width", None) is not None),
gr.Slider(value=self.pipe.input.get("repainting_scale", 1.0))
)
self.model_name_dd.change(
change_model,
inputs=[self.model_name_dd],
outputs=[
self.model_name_dd, self.text,
self.step,
self.cfg_scale,
self.output_height,
self.output_width,
self.repainting_scale])
def change_task_type(task_type):
task_info = self.task_model[task_type]
edit_type_list = [self.edit_type_list[0]]
for preprocessor in task_info.get("PREPROCESSOR", []):
preprocessor["REPAINTING_SCALE"] = task_info.get("REPAINTING_SCALE", 1.0)
self.edit_type_dict[preprocessor["TYPE"]] = preprocessor
edit_type_list.append(preprocessor["TYPE"])
return gr.update(choices=edit_type_list, value=edit_type_list[0])
self.task_type.change(change_task_type, inputs=[self.task_type], outputs=[self.edit_type])
def change_edit_type(edit_type):
edit_info = self.edit_type_dict[edit_type]
edit_info = edit_info or {}
repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0)
if edit_type == self.edit_type_list[0]:
return gr.Slider(value=1.0)
else:
return gr.Slider(
value=repainting_scale)
self.edit_type.change(change_edit_type, inputs=[self.edit_type], outputs=[self.repainting_scale])
def preprocess_input(ref_image, edit_image_dict, preprocess = None):
err_msg = ""
is_suc = True
if ref_image is not None:
ref_image = pillow_convert(ref_image, "RGB")
if edit_image_dict is None:
edit_image = None
edit_mask = None
else:
edit_image = edit_image_dict["background"]
edit_mask = np.array(edit_image_dict["layers"][0])[:, :, 3]
if np.sum(np.array(edit_image)) < 1:
edit_image = None
edit_mask = None
elif np.sum(np.array(edit_mask)) < 1:
err_msg = "You must draw the repainting area for the edited image."
return None, None, None, False, err_msg
else:
edit_image = pillow_convert(edit_image, "RGB")
edit_mask = Image.fromarray(edit_mask).convert('L')
if ref_image is None and edit_image is None:
err_msg = "Please provide the reference image or edited image."
return None, None, None, False, err_msg
return edit_image, edit_mask, ref_image, is_suc, err_msg
@spaces.GPU(duration=80)
def run_chat(
prompt,
ref_image,
edit_image,
task_type,
edit_type,
cfg_scale,
step,
seed,
output_h,
output_w,
repainting_scale,
progress=gr.Progress(track_tqdm=True)
):
print(prompt)
model_path = self.task_model[task_type]["MODEL_PATH"]
edit_info = self.edit_type_dict[edit_type]
if task_type in ["portrait", "subject"] and ref_image is None:
err_msg = "<mark>Please provide the reference image.</mark>"
return (gr.Image(), gr.Column(visible=True),
gr.Image(),
gr.Image(),
gr.Text(value=err_msg))
pre_edit_image, pre_edit_mask, pre_ref_image, is_suc, err_msg = preprocess_input(ref_image, edit_image)
if not is_suc:
err_msg = f"<mark>{err_msg}</mark>"
return (gr.Image(), gr.Column(visible=True),
gr.Image(),
gr.Image(),
gr.Text(value=err_msg))
pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask)
# edit_image["background"] = pre_edit_image
st = time.time()
image, seed = self.pipe(
reference_image=pre_ref_image,
edit_image=pre_edit_image,
edit_mask=pre_edit_mask,
prompt=prompt,
output_height=output_h,
output_width=output_w,
sampler='flow_euler',
sample_steps=step,
guide_scale=cfg_scale,
seed=seed,
repainting_scale=repainting_scale,
lora_path = model_path
)
et = time.time()
msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}"
return (gr.Image(value=image), gr.Column(visible=True),
gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image),
gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None),
gr.Text(value=msg))
chat_inputs = [
self.reference_image,
self.edit_image,
self.task_type,
self.edit_type,
self.cfg_scale,
self.step,
self.seed,
self.output_height,
self.output_width,
self.repainting_scale
]
chat_outputs = [
self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview,
self.edit_preprocess_mask_preview, self.generation_info_preview
]
self.chat_btn.click(run_chat,
inputs=[self.text] + chat_inputs,
outputs=chat_outputs,
queue=True)
self.text.submit(run_chat,
inputs=[self.text] + chat_inputs,
outputs=chat_outputs,
queue=True)
@spaces.GPU(duration=80)
def run_example(task_type, edit_type, prompt, ref_image, edit_image, edit_mask,
output_h, output_w, seed, progress=gr.Progress(track_tqdm=True)):
model_path = self.task_model[task_type]["MODEL_PATH"]
step = self.pipe.input.get("sample_steps", 20)
cfg_scale = self.pipe.input.get("guide_scale", 20)
edit_info = self.edit_type_dict[edit_type]
edit_image = self.construct_edit_image(edit_image, edit_mask)
pre_edit_image, pre_edit_mask, pre_ref_image, is_suc, err_msg = preprocess_input(ref_image, edit_image)
pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask)
edit_info = edit_info or {}
repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0)
st = time.time()
image, seed = self.pipe(
reference_image=pre_ref_image,
edit_image=pre_edit_image,
edit_mask=pre_edit_mask,
prompt=prompt,
output_height=output_h,
output_width=output_w,
sampler='flow_euler',
sample_steps=step,
guide_scale=cfg_scale,
seed=seed,
repainting_scale=repainting_scale,
lora_path=model_path
)
et = time.time()
msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}"
if pre_edit_image is not None:
ret_image = Image.composite(Image.new("RGB", pre_edit_image.size, (0, 0, 0)), pre_edit_image, pre_edit_mask)
else:
ret_image = None
return (gr.Image(value=image), gr.Column(visible=True),
gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image),
gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None),
gr.Text(value=msg),
gr.update(value=ret_image))
with self.eg:
self.example_edit_image = gr.Image(label='Edit Image',
type='pil',
image_mode='RGB',
visible=False)
self.example_edit_mask = gr.Image(label='Edit Image Mask',
type='pil',
image_mode='L',
visible=False)
self.examples = gr.Examples(
fn=run_example,
examples=self.all_examples,
inputs=[
self.task_type, self.edit_type, self.text, self.reference_image, self.example_edit_image,
self.example_edit_mask, self.output_height, self.output_width, self.seed
],
outputs=[self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview,
self.edit_preprocess_mask_preview, self.generation_info_preview, self.edit_image],
examples_per_page=6,
cache_examples=False,
run_on_click=True)
if __name__ == '__main__':
with gr.Blocks() as demo:
chatbot = DemoUI()
chatbot.create_ui()
chatbot.set_callbacks()
demo.launch() |