Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import glob
|
10 |
+
import os, csv, sys
|
11 |
+
import shlex
|
12 |
+
import subprocess
|
13 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
14 |
+
subprocess.run(shlex.split('pip install scepter'))
|
15 |
+
from scepter.modules.transform.io import pillow_convert
|
16 |
+
from scepter.modules.utils.config import Config
|
17 |
+
from scepter.modules.utils.distribute import we
|
18 |
+
from scepter.modules.utils.file_system import FS
|
19 |
+
|
20 |
+
from inference.ace_plus_diffusers import ACEPlusDiffuserInference
|
21 |
+
from inference.utils import edit_preprocess
|
22 |
+
from examples.examples import all_examples
|
23 |
+
|
24 |
+
inference_dict = {
|
25 |
+
"ACE_DIFFUSER_PLUS": ACEPlusDiffuserInference
|
26 |
+
}
|
27 |
+
|
28 |
+
fs_list = [
|
29 |
+
Config(cfg_dict={"NAME": "HuggingfaceFs", "TEMP_DIR": "./cache"}, load=False),
|
30 |
+
Config(cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "./cache"}, load=False),
|
31 |
+
Config(cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "./cache"}, load=False),
|
32 |
+
Config(cfg_dict={"NAME": "LocalFs", "TEMP_DIR": "./cache"}, load=False),
|
33 |
+
]
|
34 |
+
|
35 |
+
for one_fs in fs_list:
|
36 |
+
FS.init_fs_client(one_fs)
|
37 |
+
|
38 |
+
os.environ["FLUX_FILL_PATH"]="hf://black-forest-labs/FLUX.1-Fill-dev"
|
39 |
+
os.environ["PORTRAIT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors"
|
40 |
+
os.environ["SUBJECT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@subject/comfyui_subject_lora16.safetensors"
|
41 |
+
os.environ["LOCAL_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@local_editing/comfyui_local_lora16.safetensors"
|
42 |
+
|
43 |
+
FS.get_dir_to_local_dir(os.environ["FLUX_FILL_PATH"])
|
44 |
+
FS.get_from(os.environ["PORTRAIT_MODEL_PATH"])
|
45 |
+
FS.get_from(os.environ["SUBJECT_MODEL_PATH"])
|
46 |
+
FS.get_from(os.environ["LOCAL_MODEL_PATH"])
|
47 |
+
|
48 |
+
|
49 |
+
csv.field_size_limit(sys.maxsize)
|
50 |
+
refresh_sty = '\U0001f504' # 🔄
|
51 |
+
clear_sty = '\U0001f5d1' # 🗑️
|
52 |
+
upload_sty = '\U0001f5bc' # 🖼️
|
53 |
+
sync_sty = '\U0001f4be' # 💾
|
54 |
+
chat_sty = '\U0001F4AC' # 💬
|
55 |
+
video_sty = '\U0001f3a5' # 🎥
|
56 |
+
|
57 |
+
lock = threading.Lock()
|
58 |
+
class DemoUI(object):
|
59 |
+
def __init__(self,
|
60 |
+
infer_dir = "./config",
|
61 |
+
model_list='./models/model_zoo.yaml'
|
62 |
+
):
|
63 |
+
self.model_yamls = glob.glob(os.path.join(infer_dir,
|
64 |
+
'*.yaml'))
|
65 |
+
self.model_choices = dict()
|
66 |
+
self.default_model_name = ''
|
67 |
+
for i in self.model_yamls:
|
68 |
+
model_cfg = Config(load=True, cfg_file=i)
|
69 |
+
model_name = model_cfg.NAME
|
70 |
+
if model_cfg.IS_DEFAULT: self.default_model_name = model_name
|
71 |
+
self.model_choices[model_name] = model_cfg
|
72 |
+
print('Models: ', self.model_choices.keys())
|
73 |
+
assert len(self.model_choices) > 0
|
74 |
+
if self.default_model_name == "": self.default_model_name = list(self.model_choices.keys())[0]
|
75 |
+
self.model_name = self.default_model_name
|
76 |
+
pipe_cfg = self.model_choices[self.default_model_name]
|
77 |
+
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE")
|
78 |
+
self.pipe = inference_dict[infer_name]()
|
79 |
+
self.pipe.init_from_cfg(pipe_cfg)
|
80 |
+
|
81 |
+
# choose different model
|
82 |
+
self.task_model_cfg = Config(load=True, cfg_file=model_list)
|
83 |
+
self.task_model = {}
|
84 |
+
self.task_model_list = []
|
85 |
+
self.edit_type_dict = {"repainting": None}
|
86 |
+
self.edit_type_list = ["repainting"]
|
87 |
+
for task_name, task_model in self.task_model_cfg.MODEL.items():
|
88 |
+
self.task_model[task_name.lower()] = task_model
|
89 |
+
self.task_model_list.append(task_name.lower())
|
90 |
+
for preprocessor in task_model.get("PREPROCESSOR", []):
|
91 |
+
if preprocessor["TYPE"] in self.edit_type_dict:
|
92 |
+
continue
|
93 |
+
preprocessor["REPAINTING_SCALE"] = task_model.get("REPAINTING_SCALE", 1.0)
|
94 |
+
self.edit_type_dict[preprocessor["TYPE"]] = preprocessor
|
95 |
+
self.max_msgs = 20
|
96 |
+
# reformat examples
|
97 |
+
self.all_examples = [
|
98 |
+
[
|
99 |
+
one_example["task_type"], one_example["edit_type"], one_example["instruction"],
|
100 |
+
one_example["input_reference_image"], one_example["input_image"],
|
101 |
+
one_example["input_mask"], one_example["output_h"],
|
102 |
+
one_example["output_w"], one_example["seed"]
|
103 |
+
]
|
104 |
+
for one_example in all_examples
|
105 |
+
]
|
106 |
+
|
107 |
+
def construct_edit_image(self, edit_image, edit_mask):
|
108 |
+
if edit_image is not None and edit_mask is not None:
|
109 |
+
edit_image_rgb = pillow_convert(edit_image, "RGB")
|
110 |
+
edit_image_rgba = pillow_convert(edit_image, "RGBA")
|
111 |
+
edit_mask = pillow_convert(edit_mask, "L")
|
112 |
+
|
113 |
+
arr1 = np.array(edit_image_rgb)
|
114 |
+
arr2 = np.array(edit_mask)[:, :, np.newaxis]
|
115 |
+
result_array = np.concatenate((arr1, arr2), axis=2)
|
116 |
+
layer = Image.fromarray(result_array)
|
117 |
+
|
118 |
+
ret_data = {
|
119 |
+
"background": edit_image_rgba,
|
120 |
+
"composite": edit_image_rgba,
|
121 |
+
"layers": [layer]
|
122 |
+
}
|
123 |
+
return ret_data
|
124 |
+
else:
|
125 |
+
return None
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
def create_ui(self):
|
131 |
+
with gr.Row(equal_height=True, visible=True):
|
132 |
+
with gr.Column(scale=2):
|
133 |
+
self.gallery_image = gr.Image(
|
134 |
+
height=600,
|
135 |
+
interactive=False,
|
136 |
+
type='pil',
|
137 |
+
elem_id='Reference_image'
|
138 |
+
)
|
139 |
+
with gr.Column(scale=1, visible=True) as self.edit_preprocess_panel:
|
140 |
+
with gr.Row():
|
141 |
+
with gr.Accordion(label='Related Input Image', open=False):
|
142 |
+
self.edit_preprocess_preview = gr.Image(
|
143 |
+
height=600,
|
144 |
+
interactive=False,
|
145 |
+
type='pil',
|
146 |
+
elem_id='preprocess_image'
|
147 |
+
)
|
148 |
+
|
149 |
+
self.edit_preprocess_mask_preview = gr.Image(
|
150 |
+
height=600,
|
151 |
+
interactive=False,
|
152 |
+
type='pil',
|
153 |
+
elem_id='preprocess_image_mask'
|
154 |
+
)
|
155 |
+
with gr.Row():
|
156 |
+
instruction = """
|
157 |
+
**Instruction**:
|
158 |
+
1. Please choose the Task Type based on the scenario of the generation task. We provide three types of generation capabilities: Portrait ID Preservation Generation(portrait),
|
159 |
+
Object ID Preservation Generation(subject), and Local Controlled Generation(local editing), which can be selected from the task dropdown menu.
|
160 |
+
2. When uploading images in the Reference Image section, the generated image will reference the ID information of that image. Please ensure that the ID information is clear.
|
161 |
+
In the Edit Image section, the uploaded image will maintain its structural and content information, and you must draw a mask area to specify the region to be regenerated.
|
162 |
+
3. When the task type is local editing, there are various editing types to choose from. Users can select different information preserving dimensions, such as edge information,
|
163 |
+
color information, and more. The pre-processing information can be viewed in the 'related input image' tab.
|
164 |
+
"""
|
165 |
+
self.instruction = gr.Markdown(value=instruction)
|
166 |
+
with gr.Row():
|
167 |
+
self.model_name_dd = gr.Dropdown(
|
168 |
+
choices=self.model_choices,
|
169 |
+
value=self.default_model_name,
|
170 |
+
label='Model Version')
|
171 |
+
self.task_type = gr.Dropdown(choices=self.task_model_list,
|
172 |
+
interactive=True,
|
173 |
+
value=self.task_model_list[0],
|
174 |
+
label='Task Type')
|
175 |
+
self.edit_type = gr.Dropdown(choices=self.edit_type_list,
|
176 |
+
interactive=True,
|
177 |
+
value=self.edit_type_list[0],
|
178 |
+
label='Edit Type')
|
179 |
+
with gr.Row():
|
180 |
+
self.generation_info_preview = gr.Markdown(
|
181 |
+
label='System Log.',
|
182 |
+
show_label=True)
|
183 |
+
with gr.Row(variant='panel',
|
184 |
+
equal_height=True,
|
185 |
+
show_progress=False):
|
186 |
+
with gr.Column(scale=10, min_width=500):
|
187 |
+
self.text = gr.Textbox(
|
188 |
+
placeholder='Input "@" find history of image',
|
189 |
+
label='Instruction',
|
190 |
+
container=False,
|
191 |
+
lines = 1)
|
192 |
+
with gr.Column(scale=2, min_width=100):
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column(scale=1, min_width=100):
|
195 |
+
self.chat_btn = gr.Button(value='Generate', variant = "primary")
|
196 |
+
|
197 |
+
with gr.Accordion(label='Advance', open=True):
|
198 |
+
with gr.Row(visible=True):
|
199 |
+
with gr.Column():
|
200 |
+
self.reference_image = gr.Image(
|
201 |
+
height=1000,
|
202 |
+
interactive=True,
|
203 |
+
image_mode='RGB',
|
204 |
+
type='pil',
|
205 |
+
label='Reference Image',
|
206 |
+
elem_id='reference_image'
|
207 |
+
)
|
208 |
+
with gr.Column():
|
209 |
+
self.edit_image = gr.ImageMask(
|
210 |
+
height=1000,
|
211 |
+
interactive=True,
|
212 |
+
value=None,
|
213 |
+
sources=['upload'],
|
214 |
+
type='pil',
|
215 |
+
layers=False,
|
216 |
+
label='Edit Image',
|
217 |
+
elem_id='image_editor',
|
218 |
+
show_fullscreen_button=True,
|
219 |
+
format="png"
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
self.step = gr.Slider(minimum=1,
|
224 |
+
maximum=1000,
|
225 |
+
value=self.pipe.input.get("sample_steps", 20),
|
226 |
+
visible=self.pipe.input.get("sample_steps", None) is not None,
|
227 |
+
label='Sample Step')
|
228 |
+
self.cfg_scale = gr.Slider(
|
229 |
+
minimum=1.0,
|
230 |
+
maximum=100.0,
|
231 |
+
value=self.pipe.input.get("guide_scale", 4.5),
|
232 |
+
visible=self.pipe.input.get("guide_scale", None) is not None,
|
233 |
+
label='Guidance Scale')
|
234 |
+
self.seed = gr.Slider(minimum=-1,
|
235 |
+
maximum=10000000,
|
236 |
+
value=-1,
|
237 |
+
label='Seed')
|
238 |
+
self.output_height = gr.Slider(
|
239 |
+
minimum=256,
|
240 |
+
maximum=1440,
|
241 |
+
value=self.pipe.input.get("output_height", 1024),
|
242 |
+
visible=self.pipe.input.get("output_height", None) is not None,
|
243 |
+
label='Output Height')
|
244 |
+
self.output_width = gr.Slider(
|
245 |
+
minimum=256,
|
246 |
+
maximum=1440,
|
247 |
+
value=self.pipe.input.get("output_width", 1024),
|
248 |
+
visible=self.pipe.input.get("output_width", None) is not None,
|
249 |
+
label='Output Width')
|
250 |
+
|
251 |
+
self.repainting_scale = gr.Slider(
|
252 |
+
minimum=0.0,
|
253 |
+
maximum=1.0,
|
254 |
+
value=self.pipe.input.get("repainting_scale", 1.0),
|
255 |
+
visible=True,
|
256 |
+
label='Repainting Scale')
|
257 |
+
with gr.Row():
|
258 |
+
self.eg = gr.Column(visible=True)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
def set_callbacks(self, *args, **kwargs):
|
263 |
+
########################################
|
264 |
+
def change_model(model_name):
|
265 |
+
if model_name not in self.model_choices:
|
266 |
+
gr.Info('The provided model name is not a valid choice!')
|
267 |
+
return model_name, gr.update(), gr.update()
|
268 |
+
|
269 |
+
if model_name != self.model_name:
|
270 |
+
lock.acquire()
|
271 |
+
del self.pipe
|
272 |
+
torch.cuda.empty_cache()
|
273 |
+
torch.cuda.ipc_collect()
|
274 |
+
pipe_cfg = self.model_choices[model_name]
|
275 |
+
infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE")
|
276 |
+
self.pipe = inference_dict[infer_name]()
|
277 |
+
self.pipe.init_from_cfg(pipe_cfg)
|
278 |
+
self.model_name = model_name
|
279 |
+
lock.release()
|
280 |
+
|
281 |
+
return (model_name, gr.update(),
|
282 |
+
gr.Slider(
|
283 |
+
value=self.pipe.input.get("sample_steps", 20),
|
284 |
+
visible=self.pipe.input.get("sample_steps", None) is not None),
|
285 |
+
gr.Slider(
|
286 |
+
value=self.pipe.input.get("guide_scale", 4.5),
|
287 |
+
visible=self.pipe.input.get("guide_scale", None) is not None),
|
288 |
+
gr.Slider(
|
289 |
+
value=self.pipe.input.get("output_height", 1024),
|
290 |
+
visible=self.pipe.input.get("output_height", None) is not None),
|
291 |
+
gr.Slider(
|
292 |
+
value=self.pipe.input.get("output_width", 1024),
|
293 |
+
visible=self.pipe.input.get("output_width", None) is not None),
|
294 |
+
gr.Slider(value=self.pipe.input.get("repainting_scale", 1.0))
|
295 |
+
)
|
296 |
+
|
297 |
+
self.model_name_dd.change(
|
298 |
+
change_model,
|
299 |
+
inputs=[self.model_name_dd],
|
300 |
+
outputs=[
|
301 |
+
self.model_name_dd, self.text,
|
302 |
+
self.step,
|
303 |
+
self.cfg_scale,
|
304 |
+
self.output_height,
|
305 |
+
self.output_width,
|
306 |
+
self.repainting_scale])
|
307 |
+
|
308 |
+
def change_task_type(task_type):
|
309 |
+
task_info = self.task_model[task_type]
|
310 |
+
edit_type_list = [self.edit_type_list[0]]
|
311 |
+
for preprocessor in task_info.get("PREPROCESSOR", []):
|
312 |
+
preprocessor["REPAINTING_SCALE"] = task_info.get("REPAINTING_SCALE", 1.0)
|
313 |
+
self.edit_type_dict[preprocessor["TYPE"]] = preprocessor
|
314 |
+
edit_type_list.append(preprocessor["TYPE"])
|
315 |
+
|
316 |
+
return gr.update(choices=edit_type_list, value=edit_type_list[0])
|
317 |
+
|
318 |
+
self.task_type.change(change_task_type, inputs=[self.task_type], outputs=[self.edit_type])
|
319 |
+
|
320 |
+
def change_edit_type(edit_type):
|
321 |
+
edit_info = self.edit_type_dict[edit_type]
|
322 |
+
edit_info = edit_info or {}
|
323 |
+
repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0)
|
324 |
+
if edit_type == self.edit_type_list[0]:
|
325 |
+
return gr.Slider(value=1.0)
|
326 |
+
else:
|
327 |
+
return gr.Slider(
|
328 |
+
value=repainting_scale)
|
329 |
+
|
330 |
+
self.edit_type.change(change_edit_type, inputs=[self.edit_type], outputs=[self.repainting_scale])
|
331 |
+
|
332 |
+
def preprocess_input(ref_image, edit_image_dict, preprocess = None):
|
333 |
+
err_msg = ""
|
334 |
+
is_suc = True
|
335 |
+
if ref_image is not None:
|
336 |
+
ref_image = pillow_convert(ref_image, "RGB")
|
337 |
+
|
338 |
+
if edit_image_dict is None:
|
339 |
+
edit_image = None
|
340 |
+
edit_mask = None
|
341 |
+
else:
|
342 |
+
edit_image = edit_image_dict["background"]
|
343 |
+
edit_mask = np.array(edit_image_dict["layers"][0])[:, :, 3]
|
344 |
+
if np.sum(np.array(edit_image)) < 1:
|
345 |
+
edit_image = None
|
346 |
+
edit_mask = None
|
347 |
+
elif np.sum(np.array(edit_mask)) < 1:
|
348 |
+
err_msg = "You must draw the repainting area for the edited image."
|
349 |
+
return None, None, None, False, err_msg
|
350 |
+
else:
|
351 |
+
edit_image = pillow_convert(edit_image, "RGB")
|
352 |
+
edit_mask = Image.fromarray(edit_mask).convert('L')
|
353 |
+
if ref_image is None and edit_image is None:
|
354 |
+
err_msg = "Please provide the reference image or edited image."
|
355 |
+
return None, None, None, False, err_msg
|
356 |
+
return edit_image, edit_mask, ref_image, is_suc, err_msg
|
357 |
+
@spaces.GPU(duration=60)
|
358 |
+
def run_chat(
|
359 |
+
prompt,
|
360 |
+
ref_image,
|
361 |
+
edit_image,
|
362 |
+
task_type,
|
363 |
+
edit_type,
|
364 |
+
cfg_scale,
|
365 |
+
step,
|
366 |
+
seed,
|
367 |
+
output_h,
|
368 |
+
output_w,
|
369 |
+
repainting_scale
|
370 |
+
):
|
371 |
+
model_path = self.task_model[task_type]["MODEL_PATH"]
|
372 |
+
edit_info = self.edit_type_dict[edit_type]
|
373 |
+
|
374 |
+
if task_type in ["portrait", "subject"] and ref_image is None:
|
375 |
+
err_msg = "<mark>Please provide the reference image.</mark>"
|
376 |
+
return (gr.Image(), gr.Column(visible=True),
|
377 |
+
gr.Image(),
|
378 |
+
gr.Image(),
|
379 |
+
gr.Text(value=err_msg))
|
380 |
+
|
381 |
+
pre_edit_image, pre_edit_mask, pre_ref_image, is_suc, err_msg = preprocess_input(ref_image, edit_image)
|
382 |
+
if not is_suc:
|
383 |
+
err_msg = f"<mark>{err_msg}</mark>"
|
384 |
+
return (gr.Image(), gr.Column(visible=True),
|
385 |
+
gr.Image(),
|
386 |
+
gr.Image(),
|
387 |
+
gr.Text(value=err_msg))
|
388 |
+
pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask)
|
389 |
+
# edit_image["background"] = pre_edit_image
|
390 |
+
st = time.time()
|
391 |
+
image, seed = self.pipe(
|
392 |
+
reference_image=pre_ref_image,
|
393 |
+
edit_image=pre_edit_image,
|
394 |
+
edit_mask=pre_edit_mask,
|
395 |
+
prompt=prompt,
|
396 |
+
output_height=output_h,
|
397 |
+
output_width=output_w,
|
398 |
+
sampler='flow_euler',
|
399 |
+
sample_steps=step,
|
400 |
+
guide_scale=cfg_scale,
|
401 |
+
seed=seed,
|
402 |
+
repainting_scale=repainting_scale,
|
403 |
+
lora_path = model_path
|
404 |
+
)
|
405 |
+
et = time.time()
|
406 |
+
msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}"
|
407 |
+
|
408 |
+
return (gr.Image(value=image), gr.Column(visible=True),
|
409 |
+
gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image),
|
410 |
+
gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None),
|
411 |
+
gr.Text(value=msg))
|
412 |
+
|
413 |
+
chat_inputs = [
|
414 |
+
self.reference_image,
|
415 |
+
self.edit_image,
|
416 |
+
self.task_type,
|
417 |
+
self.edit_type,
|
418 |
+
self.cfg_scale,
|
419 |
+
self.step,
|
420 |
+
self.seed,
|
421 |
+
self.output_height,
|
422 |
+
self.output_width,
|
423 |
+
self.repainting_scale
|
424 |
+
]
|
425 |
+
|
426 |
+
chat_outputs = [
|
427 |
+
self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview,
|
428 |
+
self.edit_preprocess_mask_preview, self.generation_info_preview
|
429 |
+
]
|
430 |
+
|
431 |
+
self.chat_btn.click(run_chat,
|
432 |
+
inputs=[self.text] + chat_inputs,
|
433 |
+
outputs=chat_outputs,
|
434 |
+
queue=True)
|
435 |
+
|
436 |
+
self.text.submit(run_chat,
|
437 |
+
inputs=[self.text] + chat_inputs,
|
438 |
+
outputs=chat_outputs,
|
439 |
+
queue=True)
|
440 |
+
|
441 |
+
@spaces.GPU(duration=60)
|
442 |
+
def run_example(task_type, edit_type, prompt, ref_image, edit_image, edit_mask,
|
443 |
+
output_h, output_w, seed):
|
444 |
+
model_path = self.task_model[task_type]["MODEL_PATH"]
|
445 |
+
|
446 |
+
step = self.pipe.input.get("sample_steps", 20)
|
447 |
+
cfg_scale = self.pipe.input.get("guide_scale", 20)
|
448 |
+
|
449 |
+
edit_info = self.edit_type_dict[edit_type]
|
450 |
+
|
451 |
+
edit_image = self.construct_edit_image(edit_image, edit_mask)
|
452 |
+
|
453 |
+
pre_edit_image, pre_edit_mask, pre_ref_image = preprocess_input(ref_image, edit_image)
|
454 |
+
pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask)
|
455 |
+
edit_info = edit_info or {}
|
456 |
+
repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0)
|
457 |
+
st = time.time()
|
458 |
+
image, seed = self.pipe(
|
459 |
+
reference_image=pre_ref_image,
|
460 |
+
edit_image=pre_edit_image,
|
461 |
+
edit_mask=pre_edit_mask,
|
462 |
+
prompt=prompt,
|
463 |
+
output_height=output_h,
|
464 |
+
output_width=output_w,
|
465 |
+
sampler='flow_euler',
|
466 |
+
sample_steps=step,
|
467 |
+
guide_scale=cfg_scale,
|
468 |
+
seed=seed,
|
469 |
+
repainting_scale=repainting_scale,
|
470 |
+
lora_path=model_path
|
471 |
+
)
|
472 |
+
et = time.time()
|
473 |
+
msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}"
|
474 |
+
if pre_edit_image is not None:
|
475 |
+
ret_image = Image.composite(pre_edit_image, Image.new("RGB", pre_edit_image.size, (0, 0, 0)), pre_edit_mask)
|
476 |
+
else:
|
477 |
+
ret_image = None
|
478 |
+
return (gr.Image(value=image), gr.Column(visible=True),
|
479 |
+
gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image),
|
480 |
+
gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None),
|
481 |
+
gr.Text(value=msg),
|
482 |
+
gr.update(value=ret_image))
|
483 |
+
|
484 |
+
with self.eg:
|
485 |
+
self.example_edit_image = gr.Image(label='Edit Image',
|
486 |
+
type='pil',
|
487 |
+
image_mode='RGB',
|
488 |
+
visible=False)
|
489 |
+
self.example_edit_mask = gr.Image(label='Edit Image Mask',
|
490 |
+
type='pil',
|
491 |
+
image_mode='L',
|
492 |
+
visible=False)
|
493 |
+
|
494 |
+
self.examples = gr.Examples(
|
495 |
+
fn=run_example,
|
496 |
+
examples=self.all_examples,
|
497 |
+
inputs=[
|
498 |
+
self.task_type, self.edit_type, self.text, self.reference_image, self.example_edit_image,
|
499 |
+
self.example_edit_mask, self.output_height, self.output_width, self.seed
|
500 |
+
],
|
501 |
+
outputs=[self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview,
|
502 |
+
self.edit_preprocess_mask_preview, self.generation_info_preview, self.edit_image],
|
503 |
+
examples_per_page=6,
|
504 |
+
cache_examples=False,
|
505 |
+
run_on_click=True)
|
506 |
+
|
507 |
+
|
508 |
+
if __name__ == '__main__':
|
509 |
+
with gr.Blocks() as demo:
|
510 |
+
chatbot = DemoUI()
|
511 |
+
chatbot.create_ui()
|
512 |
+
chatbot.set_callbacks()
|
513 |
+
demo.launch()
|