File size: 24,287 Bytes
e8e3dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import math
import random

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from PIL import Image
import torchvision.transforms as T
from scepter.modules.model.registry import DIFFUSIONS
from scepter.modules.model.utils.basic_utils import check_list_of_list
from scepter.modules.model.utils.basic_utils import \
    pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
from scepter.modules.model.utils.basic_utils import (
    to_device, unpack_tensor_into_imagelist)
from scepter.modules.utils.distribute import we
from scepter.modules.utils.logger import get_logger

from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model


def process_edit_image(images,
                       masks,
                       tasks,
                       max_seq_len=1024,
                       max_aspect_ratio=4,
                       d=16,
                       **kwargs):

    if not isinstance(images, list):
        images = [images]
    if not isinstance(masks, list):
        masks = [masks]
    if not isinstance(tasks, list):
        tasks = [tasks]

    img_tensors = []
    mask_tensors = []
    for img, mask, task in zip(images, masks, tasks):
        if mask is None or mask == '':
            mask = Image.new('L', img.size, 0)
        W, H = img.size
        if H / W > max_aspect_ratio:
            img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
            mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
        elif W / H > max_aspect_ratio:
            img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
            mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])

        H, W = img.height, img.width
        scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
        rH = int(H * scale) // d * d  # ensure divisible by self.d
        rW = int(W * scale) // d * d

        img = TF.resize(img, (rH, rW),
                        interpolation=TF.InterpolationMode.BICUBIC)
        mask = TF.resize(mask, (rH, rW),
                         interpolation=TF.InterpolationMode.NEAREST_EXACT)

        mask = np.asarray(mask)
        mask = np.where(mask > 128, 1, 0)
        mask = mask.astype(
            np.float32) if np.any(mask) else np.ones_like(mask).astype(
                np.float32)

        img_tensor = TF.to_tensor(img).to(we.device_id)
        img_tensor = TF.normalize(img_tensor,
                                  mean=[0.5, 0.5, 0.5],
                                  std=[0.5, 0.5, 0.5])
        mask_tensor = TF.to_tensor(mask).to(we.device_id)
        if task in ['inpainting', 'Try On', 'Inpainting']:
            mask_indicator = mask_tensor.repeat(3, 1, 1)
            img_tensor[mask_indicator == 1] = -1.0
        img_tensors.append(img_tensor)
        mask_tensors.append(mask_tensor)
    return img_tensors, mask_tensors


class TextEmbedding(nn.Module):
    def __init__(self, embedding_shape):
        super().__init__()
        self.pos = nn.Parameter(data=torch.zeros(embedding_shape))

class RefinerInference(DiffusionInference):
    def init_from_cfg(self, cfg):
        super().init_from_cfg(cfg)
        self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, logger=self.logger) \
            if cfg.MODEL.have('DIFFUSION') else None
        self.max_seq_length = cfg.MODEL.get("MAX_SEQ_LENGTH", 4096)
        assert self.diffusion is not None
        self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
        self.dynamic_load(self.diffusion_model, 'diffusion_model')
        self.dynamic_load(self.first_stage_model, 'first_stage_model')

    @torch.no_grad()
    def encode_first_stage(self, x, **kwargs):
        _, dtype = self.get_function_info(self.first_stage_model, 'encode')
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            def run_one_image(u):
                zu = get_model(self.first_stage_model).encode(u)
                if isinstance(zu, (tuple, list)):
                    zu = zu[0]
                return zu
            z = [run_one_image(u.unsqueeze(0) if u.dim == 3 else u) for u in x]
            return z
    def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
        c, H, W = image.shape
        scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
        rH = int(H * scale) // 16 * 16  # ensure divisible by self.d
        rW = int(W * scale) // 16 * 16
        image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
        return image
    @torch.no_grad()
    def decode_first_stage(self, z):
        _, dtype = self.get_function_info(self.first_stage_model, 'decode')
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            return [get_model(self.first_stage_model).decode(zu) for zu in z]

    def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
        noise = torch.randn(
            num_samples,
            16,
            # allow for packing
            2 * math.ceil(h / 16),
            2 * math.ceil(w / 16),
            device=device,
            dtype=dtype,
            generator=torch.Generator(device=device).manual_seed(seed),
        )
        return noise
    def refine(self,
               x_samples=None,
               prompt=None,
               reverse_scale=-1.,
               seed = 2024,
               use_dynamic_model = False,
               **kwargs
               ):
        print(prompt)
        value_input = copy.deepcopy(self.input)
        x_samples = [self.upscale_resize(x) for x in x_samples]

        noise = []
        for i, x in enumerate(x_samples):
            noise_ = self.noise_sample(1, x.shape[1],
                                       x.shape[2], seed,
                                       device = x.device)
            noise.append(noise_)
        noise, x_shapes = pack_imagelist_into_tensor(noise)
        if reverse_scale > 0:
            if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
            x_samples = [x.unsqueeze(0) for x in x_samples]
            x_start = self.encode_first_stage(x_samples, **kwargs)
            if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
                                'first_stage_model',
                                skip_loaded=True)
            x_start, _ = pack_imagelist_into_tensor(x_start)
        else:
            x_start = None
        # cond stage
        if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
        function_name, dtype = self.get_function_info(self.cond_stage_model)
        with torch.autocast('cuda',
                            enabled=dtype == 'float16',
                            dtype=getattr(torch, dtype)):
            ctx = getattr(get_model(self.cond_stage_model),
                          function_name)(prompt)
            ctx["x_shapes"] = x_shapes
        if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
                            'cond_stage_model',
                            skip_loaded=True)


        if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
        # UNet use input n_prompt
        function_name, dtype = self.get_function_info(
            self.diffusion_model)
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            solver_sample = value_input.get('sample', 'flow_euler')
            sample_steps = value_input.get('sample_steps', 20)
            guide_scale = value_input.get('guide_scale', 3.5)
            if guide_scale is not None:
                guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device,
                                         dtype=noise.dtype)
            else:
                guide_scale = None
            latent = self.diffusion.sample(
                noise=noise,
                sampler=solver_sample,
                model=get_model(self.diffusion_model),
                model_kwargs={"cond": ctx, "guidance": guide_scale},
                steps=sample_steps,
                show_progress=True,
                guide_scale=guide_scale,
                return_intermediate=None,
                reverse_scale=reverse_scale,
                x=x_start,
                **kwargs).float()
        latent = unpack_tensor_into_imagelist(latent, x_shapes)
        if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
                            'diffusion_model',
                            skip_loaded=True)
        if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
        x_samples = self.decode_first_stage(latent)
        if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
                            'first_stage_model',
                            skip_loaded=True)
        return x_samples


class ACEInference(DiffusionInference):
    def __init__(self, logger=None):
        if logger is None:
            logger = get_logger(name='scepter')
        self.logger = logger
        self.loaded_model = {}
        self.loaded_model_name = [
            'diffusion_model', 'first_stage_model', 'cond_stage_model'
        ]

    def init_from_cfg(self, cfg):
        self.name = cfg.NAME
        self.is_default = cfg.get('IS_DEFAULT', False)
        self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
        module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
        assert cfg.have('MODEL')

        self.diffusion_model = self.infer_model(
            cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
                'DIFFUSION_MODEL',
                None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
        self.first_stage_model = self.infer_model(
            cfg.MODEL.FIRST_STAGE_MODEL,
            module_paras.get(
                'FIRST_STAGE_MODEL',
                None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
        self.cond_stage_model = self.infer_model(
            cfg.MODEL.COND_STAGE_MODEL,
            module_paras.get(
                'COND_STAGE_MODEL',
                None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None

        self.refiner_model_cfg = cfg.get('REFINER_MODEL', None)
        # self.refiner_scale = cfg.get('REFINER_SCALE', 0.)
        # self.refiner_prompt = cfg.get('REFINER_PROMPT', "")
        self.ace_prompt = cfg.get("ACE_PROMPT", [])
        if self.refiner_model_cfg:
            self.refiner_module = RefinerInference(self.logger)
            self.refiner_module.init_from_cfg(self.refiner_model_cfg)
        else:
            self.refiner_module = None

        self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
                                          logger=self.logger)


        self.interpolate_func = lambda x: (F.interpolate(
            x.unsqueeze(0),
            scale_factor=1 / self.size_factor,
            mode='nearest-exact') if x is not None else None)
        self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
        self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
                                                     False)
        if self.use_text_pos_embeddings:
            self.text_position_embeddings = TextEmbedding(
                (10, 4096)).eval().requires_grad_(False).to(we.device_id)
        else:
            self.text_position_embeddings = None

        self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
        self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
        self.size_factor = cfg.get('SIZE_FACTOR', 8)
        self.decoder_bias = cfg.get('DECODER_BIAS', 0)
        self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')
        self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
        self.dynamic_load(self.diffusion_model, 'diffusion_model')
        self.dynamic_load(self.first_stage_model, 'first_stage_model')

    @torch.no_grad()
    def encode_first_stage(self, x, **kwargs):
        _, dtype = self.get_function_info(self.first_stage_model, 'encode')
        with torch.autocast('cuda',
                            enabled=(dtype != 'float32'),
                            dtype=getattr(torch, dtype)):
            z = [
                self.scale_factor * get_model(self.first_stage_model)._encode(
                    i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
            ]
        return z

    @torch.no_grad()
    def decode_first_stage(self, z):
        _, dtype = self.get_function_info(self.first_stage_model, 'decode')
        with torch.autocast('cuda',
                            enabled=(dtype != 'float32'),
                            dtype=getattr(torch, dtype)):
            x = [
                get_model(self.first_stage_model)._decode(
                    1. / self.scale_factor * i.to(getattr(torch, dtype)))
                for i in z
            ]
        return x



    @torch.no_grad()
    def __call__(self,
                 image=None,
                 mask=None,
                 prompt='',
                 task=None,
                 negative_prompt='',
                 output_height=512,
                 output_width=512,
                 sampler='ddim',
                 sample_steps=20,
                 guide_scale=4.5,
                 guide_rescale=0.5,
                 seed=-1,
                 history_io=None,
                 tar_index=0,
                 **kwargs):
        input_image, input_mask = image, mask
        g = torch.Generator(device=we.device_id)
        seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
        g.manual_seed(int(seed))
        if input_image is not None:
            # assert isinstance(input_image, list) and isinstance(input_mask, list)
            if task is None:
                task = [''] * len(input_image)
            if not isinstance(prompt, list):
                prompt = [prompt] * len(input_image)
            if history_io is not None and len(history_io) > 0:
                his_image, his_maks, his_prompt, his_task = history_io[
                    'image'], history_io['mask'], history_io[
                        'prompt'], history_io['task']
                assert len(his_image) == len(his_maks) == len(
                    his_prompt) == len(his_task)
                input_image = his_image + input_image
                input_mask = his_maks + input_mask
                task = his_task + task
                prompt = his_prompt + [prompt[-1]]
                prompt = [
                    pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
                    for i, pp in enumerate(prompt)
                ]

            edit_image, edit_image_mask = process_edit_image(
                input_image, input_mask, task, max_seq_len=self.max_seq_len)

            image, image_mask = edit_image[tar_index], edit_image_mask[
                tar_index]
            edit_image, edit_image_mask = [edit_image], [edit_image_mask]

        else:
            edit_image = edit_image_mask = [[]]
            image = torch.zeros(
                size=[3, int(output_height),
                      int(output_width)])
            image_mask = torch.ones(
                size=[1, int(output_height),
                      int(output_width)])
            if not isinstance(prompt, list):
                prompt = [prompt]

        image, image_mask, prompt = [image], [image_mask], [prompt]
        assert check_list_of_list(prompt) and check_list_of_list(
            edit_image) and check_list_of_list(edit_image_mask)
        # Assign Negative Prompt
        if isinstance(negative_prompt, list):
            negative_prompt = negative_prompt[0]
        assert isinstance(negative_prompt, str)

        n_prompt = copy.deepcopy(prompt)
        for nn_p_id, nn_p in enumerate(n_prompt):
            assert isinstance(nn_p, list)
            n_prompt[nn_p_id][-1] = negative_prompt

        is_txt_image = sum([len(e_i) for e_i in edit_image]) < 1
        image = to_device(image)

        refiner_scale = kwargs.pop("refiner_scale", 0.0)
        refiner_prompt = kwargs.pop("refiner_prompt", "")
        use_ace = kwargs.pop("use_ace", True)
        # <= 0 use ace as the txt2img generator.
        if use_ace and (not is_txt_image or refiner_scale <= 0):
            ctx, null_ctx = {}, {}
            # Get Noise Shape
            self.dynamic_load(self.first_stage_model, 'first_stage_model')
            x = self.encode_first_stage(image)
            self.dynamic_unload(self.first_stage_model,
                                'first_stage_model',
                                skip_loaded=True)
            noise = [
                torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
                for i in x
            ]
            noise, x_shapes = pack_imagelist_into_tensor(noise)
            ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes

            image_mask = to_device(image_mask, strict=False)
            cond_mask = [self.interpolate_func(i) for i in image_mask
                         ] if image_mask is not None else [None] * len(image)
            ctx['x_mask'] = null_ctx['x_mask'] = cond_mask

            # Encode Prompt
            self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
            function_name, dtype = self.get_function_info(self.cond_stage_model)
            cont, cont_mask = getattr(get_model(self.cond_stage_model),
                                      function_name)(prompt)
            cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
                                                         cont_mask)
            null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
                                                function_name)(n_prompt)
            null_cont, null_cont_mask = self.cond_stage_embeddings(
                prompt, edit_image, null_cont, null_cont_mask)
            self.dynamic_unload(self.cond_stage_model,
                                'cond_stage_model',
                                skip_loaded=False)
            ctx['crossattn'] = cont
            null_ctx['crossattn'] = null_cont

            # Encode Edit Images
            self.dynamic_load(self.first_stage_model, 'first_stage_model')
            edit_image = [to_device(i, strict=False) for i in edit_image]
            edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
            e_img, e_mask = [], []
            for u, m in zip(edit_image, edit_image_mask):
                if u is None:
                    continue
                if m is None:
                    m = [None] * len(u)
                e_img.append(self.encode_first_stage(u, **kwargs))
                e_mask.append([self.interpolate_func(i) for i in m])
            self.dynamic_unload(self.first_stage_model,
                                'first_stage_model',
                                skip_loaded=True)
            null_ctx['edit'] = ctx['edit'] = e_img
            null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask

            # Diffusion Process
            self.dynamic_load(self.diffusion_model, 'diffusion_model')
            function_name, dtype = self.get_function_info(self.diffusion_model)
            with torch.autocast('cuda',
                                enabled=dtype in ('float16', 'bfloat16'),
                                dtype=getattr(torch, dtype)):
                latent = self.diffusion.sample(
                    noise=noise,
                    sampler=sampler,
                    model=get_model(self.diffusion_model),
                    model_kwargs=[{
                        'cond':
                        ctx,
                        'mask':
                        cont_mask,
                        'text_position_embeddings':
                        self.text_position_embeddings.pos if hasattr(
                            self.text_position_embeddings, 'pos') else None
                    }, {
                        'cond':
                        null_ctx,
                        'mask':
                        null_cont_mask,
                        'text_position_embeddings':
                        self.text_position_embeddings.pos if hasattr(
                            self.text_position_embeddings, 'pos') else None
                    }] if guide_scale is not None and guide_scale > 1 else {
                        'cond':
                        null_ctx,
                        'mask':
                        cont_mask,
                        'text_position_embeddings':
                        self.text_position_embeddings.pos if hasattr(
                            self.text_position_embeddings, 'pos') else None
                    },
                    steps=sample_steps,
                    show_progress=True,
                    seed=seed,
                    guide_scale=guide_scale,
                    guide_rescale=guide_rescale,
                    return_intermediate=None,
                    **kwargs)
            self.dynamic_unload(self.diffusion_model,
                                'diffusion_model',
                                skip_loaded=False)

            # Decode to Pixel Space
            self.dynamic_load(self.first_stage_model, 'first_stage_model')
            samples = unpack_tensor_into_imagelist(latent, x_shapes)
            x_samples = self.decode_first_stage(samples)
            self.dynamic_unload(self.first_stage_model,
                                'first_stage_model',
                                skip_loaded=False)
            x_samples = [x.squeeze(0) for x in x_samples]
        else:
            x_samples = image
        if self.refiner_module and refiner_scale > 0:
            if is_txt_image:
                random.shuffle(self.ace_prompt)
                input_refine_prompt = [self.ace_prompt[0] + refiner_prompt if p[0] == "" else p[0] for p in prompt]
                input_refine_scale = -1.
            else:
                input_refine_prompt = [p[0].replace("{image}", "") + " " + refiner_prompt for p in prompt]
                input_refine_scale = refiner_scale
                print(input_refine_prompt)

            x_samples = self.refiner_module.refine(x_samples,
                                                   reverse_scale = input_refine_scale,
                                                   prompt= input_refine_prompt,
                                                   seed=seed,
                                                   use_dynamic_model=self.use_dynamic_model)

        imgs = [
            torch.clamp((x_i.float() + 1.0) / 2.0 + self.decoder_bias / 255,
                        min=0.0,
                        max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
            for x_i in x_samples
        ]
        imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
        return imgs

    def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
        if self.use_text_pos_embeddings and not torch.sum(
                self.text_position_embeddings.pos) > 0:
            identifier_cont, _ = getattr(get_model(self.cond_stage_model),
                                         'encode')(self.text_indentifers,
                                                   return_mask=True)
            self.text_position_embeddings.load_state_dict(
                {'pos': identifier_cont[:, 0, :]})

        cont_, cont_mask_ = [], []
        for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
            if isinstance(pp, list):
                cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
                cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
            else:
                raise NotImplementedError

        return cont_, cont_mask_