Spaces:
Running
on
Zero
Running
on
Zero
chaojiemao
commited on
Commit
•
e8e3dcf
1
Parent(s):
161b0b1
Create ace_inference.py
Browse files- ace_inference.py +549 -0
ace_inference.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import copy
|
4 |
+
import math
|
5 |
+
import random
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchvision.transforms.functional as TF
|
12 |
+
from PIL import Image
|
13 |
+
import torchvision.transforms as T
|
14 |
+
from scepter.modules.model.registry import DIFFUSIONS
|
15 |
+
from scepter.modules.model.utils.basic_utils import check_list_of_list
|
16 |
+
from scepter.modules.model.utils.basic_utils import \
|
17 |
+
pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
|
18 |
+
from scepter.modules.model.utils.basic_utils import (
|
19 |
+
to_device, unpack_tensor_into_imagelist)
|
20 |
+
from scepter.modules.utils.distribute import we
|
21 |
+
from scepter.modules.utils.logger import get_logger
|
22 |
+
|
23 |
+
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
|
24 |
+
|
25 |
+
|
26 |
+
def process_edit_image(images,
|
27 |
+
masks,
|
28 |
+
tasks,
|
29 |
+
max_seq_len=1024,
|
30 |
+
max_aspect_ratio=4,
|
31 |
+
d=16,
|
32 |
+
**kwargs):
|
33 |
+
|
34 |
+
if not isinstance(images, list):
|
35 |
+
images = [images]
|
36 |
+
if not isinstance(masks, list):
|
37 |
+
masks = [masks]
|
38 |
+
if not isinstance(tasks, list):
|
39 |
+
tasks = [tasks]
|
40 |
+
|
41 |
+
img_tensors = []
|
42 |
+
mask_tensors = []
|
43 |
+
for img, mask, task in zip(images, masks, tasks):
|
44 |
+
if mask is None or mask == '':
|
45 |
+
mask = Image.new('L', img.size, 0)
|
46 |
+
W, H = img.size
|
47 |
+
if H / W > max_aspect_ratio:
|
48 |
+
img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
|
49 |
+
mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
|
50 |
+
elif W / H > max_aspect_ratio:
|
51 |
+
img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
|
52 |
+
mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
|
53 |
+
|
54 |
+
H, W = img.height, img.width
|
55 |
+
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
|
56 |
+
rH = int(H * scale) // d * d # ensure divisible by self.d
|
57 |
+
rW = int(W * scale) // d * d
|
58 |
+
|
59 |
+
img = TF.resize(img, (rH, rW),
|
60 |
+
interpolation=TF.InterpolationMode.BICUBIC)
|
61 |
+
mask = TF.resize(mask, (rH, rW),
|
62 |
+
interpolation=TF.InterpolationMode.NEAREST_EXACT)
|
63 |
+
|
64 |
+
mask = np.asarray(mask)
|
65 |
+
mask = np.where(mask > 128, 1, 0)
|
66 |
+
mask = mask.astype(
|
67 |
+
np.float32) if np.any(mask) else np.ones_like(mask).astype(
|
68 |
+
np.float32)
|
69 |
+
|
70 |
+
img_tensor = TF.to_tensor(img).to(we.device_id)
|
71 |
+
img_tensor = TF.normalize(img_tensor,
|
72 |
+
mean=[0.5, 0.5, 0.5],
|
73 |
+
std=[0.5, 0.5, 0.5])
|
74 |
+
mask_tensor = TF.to_tensor(mask).to(we.device_id)
|
75 |
+
if task in ['inpainting', 'Try On', 'Inpainting']:
|
76 |
+
mask_indicator = mask_tensor.repeat(3, 1, 1)
|
77 |
+
img_tensor[mask_indicator == 1] = -1.0
|
78 |
+
img_tensors.append(img_tensor)
|
79 |
+
mask_tensors.append(mask_tensor)
|
80 |
+
return img_tensors, mask_tensors
|
81 |
+
|
82 |
+
|
83 |
+
class TextEmbedding(nn.Module):
|
84 |
+
def __init__(self, embedding_shape):
|
85 |
+
super().__init__()
|
86 |
+
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
|
87 |
+
|
88 |
+
class RefinerInference(DiffusionInference):
|
89 |
+
def init_from_cfg(self, cfg):
|
90 |
+
super().init_from_cfg(cfg)
|
91 |
+
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, logger=self.logger) \
|
92 |
+
if cfg.MODEL.have('DIFFUSION') else None
|
93 |
+
self.max_seq_length = cfg.MODEL.get("MAX_SEQ_LENGTH", 4096)
|
94 |
+
assert self.diffusion is not None
|
95 |
+
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
96 |
+
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
97 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def encode_first_stage(self, x, **kwargs):
|
101 |
+
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
|
102 |
+
with torch.autocast('cuda',
|
103 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
104 |
+
dtype=getattr(torch, dtype)):
|
105 |
+
def run_one_image(u):
|
106 |
+
zu = get_model(self.first_stage_model).encode(u)
|
107 |
+
if isinstance(zu, (tuple, list)):
|
108 |
+
zu = zu[0]
|
109 |
+
return zu
|
110 |
+
z = [run_one_image(u.unsqueeze(0) if u.dim == 3 else u) for u in x]
|
111 |
+
return z
|
112 |
+
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
|
113 |
+
c, H, W = image.shape
|
114 |
+
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
|
115 |
+
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
|
116 |
+
rW = int(W * scale) // 16 * 16
|
117 |
+
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
|
118 |
+
return image
|
119 |
+
@torch.no_grad()
|
120 |
+
def decode_first_stage(self, z):
|
121 |
+
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
|
122 |
+
with torch.autocast('cuda',
|
123 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
124 |
+
dtype=getattr(torch, dtype)):
|
125 |
+
return [get_model(self.first_stage_model).decode(zu) for zu in z]
|
126 |
+
|
127 |
+
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
|
128 |
+
noise = torch.randn(
|
129 |
+
num_samples,
|
130 |
+
16,
|
131 |
+
# allow for packing
|
132 |
+
2 * math.ceil(h / 16),
|
133 |
+
2 * math.ceil(w / 16),
|
134 |
+
device=device,
|
135 |
+
dtype=dtype,
|
136 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
137 |
+
)
|
138 |
+
return noise
|
139 |
+
def refine(self,
|
140 |
+
x_samples=None,
|
141 |
+
prompt=None,
|
142 |
+
reverse_scale=-1.,
|
143 |
+
seed = 2024,
|
144 |
+
use_dynamic_model = False,
|
145 |
+
**kwargs
|
146 |
+
):
|
147 |
+
print(prompt)
|
148 |
+
value_input = copy.deepcopy(self.input)
|
149 |
+
x_samples = [self.upscale_resize(x) for x in x_samples]
|
150 |
+
|
151 |
+
noise = []
|
152 |
+
for i, x in enumerate(x_samples):
|
153 |
+
noise_ = self.noise_sample(1, x.shape[1],
|
154 |
+
x.shape[2], seed,
|
155 |
+
device = x.device)
|
156 |
+
noise.append(noise_)
|
157 |
+
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
158 |
+
if reverse_scale > 0:
|
159 |
+
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
160 |
+
x_samples = [x.unsqueeze(0) for x in x_samples]
|
161 |
+
x_start = self.encode_first_stage(x_samples, **kwargs)
|
162 |
+
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
|
163 |
+
'first_stage_model',
|
164 |
+
skip_loaded=True)
|
165 |
+
x_start, _ = pack_imagelist_into_tensor(x_start)
|
166 |
+
else:
|
167 |
+
x_start = None
|
168 |
+
# cond stage
|
169 |
+
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
170 |
+
function_name, dtype = self.get_function_info(self.cond_stage_model)
|
171 |
+
with torch.autocast('cuda',
|
172 |
+
enabled=dtype == 'float16',
|
173 |
+
dtype=getattr(torch, dtype)):
|
174 |
+
ctx = getattr(get_model(self.cond_stage_model),
|
175 |
+
function_name)(prompt)
|
176 |
+
ctx["x_shapes"] = x_shapes
|
177 |
+
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
|
178 |
+
'cond_stage_model',
|
179 |
+
skip_loaded=True)
|
180 |
+
|
181 |
+
|
182 |
+
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
183 |
+
# UNet use input n_prompt
|
184 |
+
function_name, dtype = self.get_function_info(
|
185 |
+
self.diffusion_model)
|
186 |
+
with torch.autocast('cuda',
|
187 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
188 |
+
dtype=getattr(torch, dtype)):
|
189 |
+
solver_sample = value_input.get('sample', 'flow_euler')
|
190 |
+
sample_steps = value_input.get('sample_steps', 20)
|
191 |
+
guide_scale = value_input.get('guide_scale', 3.5)
|
192 |
+
if guide_scale is not None:
|
193 |
+
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device,
|
194 |
+
dtype=noise.dtype)
|
195 |
+
else:
|
196 |
+
guide_scale = None
|
197 |
+
latent = self.diffusion.sample(
|
198 |
+
noise=noise,
|
199 |
+
sampler=solver_sample,
|
200 |
+
model=get_model(self.diffusion_model),
|
201 |
+
model_kwargs={"cond": ctx, "guidance": guide_scale},
|
202 |
+
steps=sample_steps,
|
203 |
+
show_progress=True,
|
204 |
+
guide_scale=guide_scale,
|
205 |
+
return_intermediate=None,
|
206 |
+
reverse_scale=reverse_scale,
|
207 |
+
x=x_start,
|
208 |
+
**kwargs).float()
|
209 |
+
latent = unpack_tensor_into_imagelist(latent, x_shapes)
|
210 |
+
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
|
211 |
+
'diffusion_model',
|
212 |
+
skip_loaded=True)
|
213 |
+
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
214 |
+
x_samples = self.decode_first_stage(latent)
|
215 |
+
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
|
216 |
+
'first_stage_model',
|
217 |
+
skip_loaded=True)
|
218 |
+
return x_samples
|
219 |
+
|
220 |
+
|
221 |
+
class ACEInference(DiffusionInference):
|
222 |
+
def __init__(self, logger=None):
|
223 |
+
if logger is None:
|
224 |
+
logger = get_logger(name='scepter')
|
225 |
+
self.logger = logger
|
226 |
+
self.loaded_model = {}
|
227 |
+
self.loaded_model_name = [
|
228 |
+
'diffusion_model', 'first_stage_model', 'cond_stage_model'
|
229 |
+
]
|
230 |
+
|
231 |
+
def init_from_cfg(self, cfg):
|
232 |
+
self.name = cfg.NAME
|
233 |
+
self.is_default = cfg.get('IS_DEFAULT', False)
|
234 |
+
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
|
235 |
+
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
|
236 |
+
assert cfg.have('MODEL')
|
237 |
+
|
238 |
+
self.diffusion_model = self.infer_model(
|
239 |
+
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
|
240 |
+
'DIFFUSION_MODEL',
|
241 |
+
None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
|
242 |
+
self.first_stage_model = self.infer_model(
|
243 |
+
cfg.MODEL.FIRST_STAGE_MODEL,
|
244 |
+
module_paras.get(
|
245 |
+
'FIRST_STAGE_MODEL',
|
246 |
+
None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
|
247 |
+
self.cond_stage_model = self.infer_model(
|
248 |
+
cfg.MODEL.COND_STAGE_MODEL,
|
249 |
+
module_paras.get(
|
250 |
+
'COND_STAGE_MODEL',
|
251 |
+
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
|
252 |
+
|
253 |
+
self.refiner_model_cfg = cfg.get('REFINER_MODEL', None)
|
254 |
+
# self.refiner_scale = cfg.get('REFINER_SCALE', 0.)
|
255 |
+
# self.refiner_prompt = cfg.get('REFINER_PROMPT', "")
|
256 |
+
self.ace_prompt = cfg.get("ACE_PROMPT", [])
|
257 |
+
if self.refiner_model_cfg:
|
258 |
+
self.refiner_module = RefinerInference(self.logger)
|
259 |
+
self.refiner_module.init_from_cfg(self.refiner_model_cfg)
|
260 |
+
else:
|
261 |
+
self.refiner_module = None
|
262 |
+
|
263 |
+
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
|
264 |
+
logger=self.logger)
|
265 |
+
|
266 |
+
|
267 |
+
self.interpolate_func = lambda x: (F.interpolate(
|
268 |
+
x.unsqueeze(0),
|
269 |
+
scale_factor=1 / self.size_factor,
|
270 |
+
mode='nearest-exact') if x is not None else None)
|
271 |
+
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
|
272 |
+
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
|
273 |
+
False)
|
274 |
+
if self.use_text_pos_embeddings:
|
275 |
+
self.text_position_embeddings = TextEmbedding(
|
276 |
+
(10, 4096)).eval().requires_grad_(False).to(we.device_id)
|
277 |
+
else:
|
278 |
+
self.text_position_embeddings = None
|
279 |
+
|
280 |
+
self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
|
281 |
+
self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
|
282 |
+
self.size_factor = cfg.get('SIZE_FACTOR', 8)
|
283 |
+
self.decoder_bias = cfg.get('DECODER_BIAS', 0)
|
284 |
+
self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')
|
285 |
+
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
286 |
+
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
287 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
288 |
+
|
289 |
+
@torch.no_grad()
|
290 |
+
def encode_first_stage(self, x, **kwargs):
|
291 |
+
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
|
292 |
+
with torch.autocast('cuda',
|
293 |
+
enabled=(dtype != 'float32'),
|
294 |
+
dtype=getattr(torch, dtype)):
|
295 |
+
z = [
|
296 |
+
self.scale_factor * get_model(self.first_stage_model)._encode(
|
297 |
+
i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
|
298 |
+
]
|
299 |
+
return z
|
300 |
+
|
301 |
+
@torch.no_grad()
|
302 |
+
def decode_first_stage(self, z):
|
303 |
+
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
|
304 |
+
with torch.autocast('cuda',
|
305 |
+
enabled=(dtype != 'float32'),
|
306 |
+
dtype=getattr(torch, dtype)):
|
307 |
+
x = [
|
308 |
+
get_model(self.first_stage_model)._decode(
|
309 |
+
1. / self.scale_factor * i.to(getattr(torch, dtype)))
|
310 |
+
for i in z
|
311 |
+
]
|
312 |
+
return x
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
@torch.no_grad()
|
317 |
+
def __call__(self,
|
318 |
+
image=None,
|
319 |
+
mask=None,
|
320 |
+
prompt='',
|
321 |
+
task=None,
|
322 |
+
negative_prompt='',
|
323 |
+
output_height=512,
|
324 |
+
output_width=512,
|
325 |
+
sampler='ddim',
|
326 |
+
sample_steps=20,
|
327 |
+
guide_scale=4.5,
|
328 |
+
guide_rescale=0.5,
|
329 |
+
seed=-1,
|
330 |
+
history_io=None,
|
331 |
+
tar_index=0,
|
332 |
+
**kwargs):
|
333 |
+
input_image, input_mask = image, mask
|
334 |
+
g = torch.Generator(device=we.device_id)
|
335 |
+
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
|
336 |
+
g.manual_seed(int(seed))
|
337 |
+
if input_image is not None:
|
338 |
+
# assert isinstance(input_image, list) and isinstance(input_mask, list)
|
339 |
+
if task is None:
|
340 |
+
task = [''] * len(input_image)
|
341 |
+
if not isinstance(prompt, list):
|
342 |
+
prompt = [prompt] * len(input_image)
|
343 |
+
if history_io is not None and len(history_io) > 0:
|
344 |
+
his_image, his_maks, his_prompt, his_task = history_io[
|
345 |
+
'image'], history_io['mask'], history_io[
|
346 |
+
'prompt'], history_io['task']
|
347 |
+
assert len(his_image) == len(his_maks) == len(
|
348 |
+
his_prompt) == len(his_task)
|
349 |
+
input_image = his_image + input_image
|
350 |
+
input_mask = his_maks + input_mask
|
351 |
+
task = his_task + task
|
352 |
+
prompt = his_prompt + [prompt[-1]]
|
353 |
+
prompt = [
|
354 |
+
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
|
355 |
+
for i, pp in enumerate(prompt)
|
356 |
+
]
|
357 |
+
|
358 |
+
edit_image, edit_image_mask = process_edit_image(
|
359 |
+
input_image, input_mask, task, max_seq_len=self.max_seq_len)
|
360 |
+
|
361 |
+
image, image_mask = edit_image[tar_index], edit_image_mask[
|
362 |
+
tar_index]
|
363 |
+
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
|
364 |
+
|
365 |
+
else:
|
366 |
+
edit_image = edit_image_mask = [[]]
|
367 |
+
image = torch.zeros(
|
368 |
+
size=[3, int(output_height),
|
369 |
+
int(output_width)])
|
370 |
+
image_mask = torch.ones(
|
371 |
+
size=[1, int(output_height),
|
372 |
+
int(output_width)])
|
373 |
+
if not isinstance(prompt, list):
|
374 |
+
prompt = [prompt]
|
375 |
+
|
376 |
+
image, image_mask, prompt = [image], [image_mask], [prompt]
|
377 |
+
assert check_list_of_list(prompt) and check_list_of_list(
|
378 |
+
edit_image) and check_list_of_list(edit_image_mask)
|
379 |
+
# Assign Negative Prompt
|
380 |
+
if isinstance(negative_prompt, list):
|
381 |
+
negative_prompt = negative_prompt[0]
|
382 |
+
assert isinstance(negative_prompt, str)
|
383 |
+
|
384 |
+
n_prompt = copy.deepcopy(prompt)
|
385 |
+
for nn_p_id, nn_p in enumerate(n_prompt):
|
386 |
+
assert isinstance(nn_p, list)
|
387 |
+
n_prompt[nn_p_id][-1] = negative_prompt
|
388 |
+
|
389 |
+
is_txt_image = sum([len(e_i) for e_i in edit_image]) < 1
|
390 |
+
image = to_device(image)
|
391 |
+
|
392 |
+
refiner_scale = kwargs.pop("refiner_scale", 0.0)
|
393 |
+
refiner_prompt = kwargs.pop("refiner_prompt", "")
|
394 |
+
use_ace = kwargs.pop("use_ace", True)
|
395 |
+
# <= 0 use ace as the txt2img generator.
|
396 |
+
if use_ace and (not is_txt_image or refiner_scale <= 0):
|
397 |
+
ctx, null_ctx = {}, {}
|
398 |
+
# Get Noise Shape
|
399 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
400 |
+
x = self.encode_first_stage(image)
|
401 |
+
self.dynamic_unload(self.first_stage_model,
|
402 |
+
'first_stage_model',
|
403 |
+
skip_loaded=True)
|
404 |
+
noise = [
|
405 |
+
torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
|
406 |
+
for i in x
|
407 |
+
]
|
408 |
+
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
409 |
+
ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes
|
410 |
+
|
411 |
+
image_mask = to_device(image_mask, strict=False)
|
412 |
+
cond_mask = [self.interpolate_func(i) for i in image_mask
|
413 |
+
] if image_mask is not None else [None] * len(image)
|
414 |
+
ctx['x_mask'] = null_ctx['x_mask'] = cond_mask
|
415 |
+
|
416 |
+
# Encode Prompt
|
417 |
+
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
418 |
+
function_name, dtype = self.get_function_info(self.cond_stage_model)
|
419 |
+
cont, cont_mask = getattr(get_model(self.cond_stage_model),
|
420 |
+
function_name)(prompt)
|
421 |
+
cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
|
422 |
+
cont_mask)
|
423 |
+
null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
|
424 |
+
function_name)(n_prompt)
|
425 |
+
null_cont, null_cont_mask = self.cond_stage_embeddings(
|
426 |
+
prompt, edit_image, null_cont, null_cont_mask)
|
427 |
+
self.dynamic_unload(self.cond_stage_model,
|
428 |
+
'cond_stage_model',
|
429 |
+
skip_loaded=False)
|
430 |
+
ctx['crossattn'] = cont
|
431 |
+
null_ctx['crossattn'] = null_cont
|
432 |
+
|
433 |
+
# Encode Edit Images
|
434 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
435 |
+
edit_image = [to_device(i, strict=False) for i in edit_image]
|
436 |
+
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
|
437 |
+
e_img, e_mask = [], []
|
438 |
+
for u, m in zip(edit_image, edit_image_mask):
|
439 |
+
if u is None:
|
440 |
+
continue
|
441 |
+
if m is None:
|
442 |
+
m = [None] * len(u)
|
443 |
+
e_img.append(self.encode_first_stage(u, **kwargs))
|
444 |
+
e_mask.append([self.interpolate_func(i) for i in m])
|
445 |
+
self.dynamic_unload(self.first_stage_model,
|
446 |
+
'first_stage_model',
|
447 |
+
skip_loaded=True)
|
448 |
+
null_ctx['edit'] = ctx['edit'] = e_img
|
449 |
+
null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask
|
450 |
+
|
451 |
+
# Diffusion Process
|
452 |
+
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
453 |
+
function_name, dtype = self.get_function_info(self.diffusion_model)
|
454 |
+
with torch.autocast('cuda',
|
455 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
456 |
+
dtype=getattr(torch, dtype)):
|
457 |
+
latent = self.diffusion.sample(
|
458 |
+
noise=noise,
|
459 |
+
sampler=sampler,
|
460 |
+
model=get_model(self.diffusion_model),
|
461 |
+
model_kwargs=[{
|
462 |
+
'cond':
|
463 |
+
ctx,
|
464 |
+
'mask':
|
465 |
+
cont_mask,
|
466 |
+
'text_position_embeddings':
|
467 |
+
self.text_position_embeddings.pos if hasattr(
|
468 |
+
self.text_position_embeddings, 'pos') else None
|
469 |
+
}, {
|
470 |
+
'cond':
|
471 |
+
null_ctx,
|
472 |
+
'mask':
|
473 |
+
null_cont_mask,
|
474 |
+
'text_position_embeddings':
|
475 |
+
self.text_position_embeddings.pos if hasattr(
|
476 |
+
self.text_position_embeddings, 'pos') else None
|
477 |
+
}] if guide_scale is not None and guide_scale > 1 else {
|
478 |
+
'cond':
|
479 |
+
null_ctx,
|
480 |
+
'mask':
|
481 |
+
cont_mask,
|
482 |
+
'text_position_embeddings':
|
483 |
+
self.text_position_embeddings.pos if hasattr(
|
484 |
+
self.text_position_embeddings, 'pos') else None
|
485 |
+
},
|
486 |
+
steps=sample_steps,
|
487 |
+
show_progress=True,
|
488 |
+
seed=seed,
|
489 |
+
guide_scale=guide_scale,
|
490 |
+
guide_rescale=guide_rescale,
|
491 |
+
return_intermediate=None,
|
492 |
+
**kwargs)
|
493 |
+
self.dynamic_unload(self.diffusion_model,
|
494 |
+
'diffusion_model',
|
495 |
+
skip_loaded=False)
|
496 |
+
|
497 |
+
# Decode to Pixel Space
|
498 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
499 |
+
samples = unpack_tensor_into_imagelist(latent, x_shapes)
|
500 |
+
x_samples = self.decode_first_stage(samples)
|
501 |
+
self.dynamic_unload(self.first_stage_model,
|
502 |
+
'first_stage_model',
|
503 |
+
skip_loaded=False)
|
504 |
+
x_samples = [x.squeeze(0) for x in x_samples]
|
505 |
+
else:
|
506 |
+
x_samples = image
|
507 |
+
if self.refiner_module and refiner_scale > 0:
|
508 |
+
if is_txt_image:
|
509 |
+
random.shuffle(self.ace_prompt)
|
510 |
+
input_refine_prompt = [self.ace_prompt[0] + refiner_prompt if p[0] == "" else p[0] for p in prompt]
|
511 |
+
input_refine_scale = -1.
|
512 |
+
else:
|
513 |
+
input_refine_prompt = [p[0].replace("{image}", "") + " " + refiner_prompt for p in prompt]
|
514 |
+
input_refine_scale = refiner_scale
|
515 |
+
print(input_refine_prompt)
|
516 |
+
|
517 |
+
x_samples = self.refiner_module.refine(x_samples,
|
518 |
+
reverse_scale = input_refine_scale,
|
519 |
+
prompt= input_refine_prompt,
|
520 |
+
seed=seed,
|
521 |
+
use_dynamic_model=self.use_dynamic_model)
|
522 |
+
|
523 |
+
imgs = [
|
524 |
+
torch.clamp((x_i.float() + 1.0) / 2.0 + self.decoder_bias / 255,
|
525 |
+
min=0.0,
|
526 |
+
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
|
527 |
+
for x_i in x_samples
|
528 |
+
]
|
529 |
+
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
|
530 |
+
return imgs
|
531 |
+
|
532 |
+
def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
|
533 |
+
if self.use_text_pos_embeddings and not torch.sum(
|
534 |
+
self.text_position_embeddings.pos) > 0:
|
535 |
+
identifier_cont, _ = getattr(get_model(self.cond_stage_model),
|
536 |
+
'encode')(self.text_indentifers,
|
537 |
+
return_mask=True)
|
538 |
+
self.text_position_embeddings.load_state_dict(
|
539 |
+
{'pos': identifier_cont[:, 0, :]})
|
540 |
+
|
541 |
+
cont_, cont_mask_ = [], []
|
542 |
+
for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
|
543 |
+
if isinstance(pp, list):
|
544 |
+
cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
|
545 |
+
cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
|
546 |
+
else:
|
547 |
+
raise NotImplementedError
|
548 |
+
|
549 |
+
return cont_, cont_mask_
|