File size: 3,414 Bytes
4e40fdd
 
 
 
 
 
 
 
 
c305e53
 
 
 
 
 
 
82d0f19
 
c305e53
 
 
 
82d0f19
 
 
 
c305e53
 
5502f0b
 
 
 
c305e53
 
 
 
 
82d0f19
 
 
 
 
 
 
a26881b
82d0f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
title: README
emoji: 🐠
colorFrom: gray
colorTo: indigo
sdk: static
pinned: false
---

Data and models accompanying the paper [When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning](https://arxiv.org/abs/2504.01005), containing:

- Finetuned generative verifiers (i.e., GenRM-FT) for math reasoning.
- Synthetic verification data generated by GPT-4o for math reasoning to train your own generative verifiers.
- Solutions and verifications generated by various models for math and science reasoning.


# MATH Dataset

We use Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct to generate solutions for problems in the training split of the [MATH dataset](https://huggingface.co/datasets/hendrycks/competition_math).
Then, we use GPT-4o to verify these solutions. We filter out the verifications whose verdict doesn't match the ground-truth correctness of the solution, and balance the dataset to have equal 'yes' and 'no' verifications in the dataset. 
This results in these datasets: 

## Training data for GenRM-FT
- Llama-3.1-8B-Instruct: https://huggingface.co/datasets/sc-genrm-scaling/genrm_gpt4o_verifs_llama_3p1_8b_solns_math_train
- Qwen-2.5.-7B-Instruct: https://huggingface.co/datasets/sc-genrm-scaling/genrm_gpt4o_verifs_qwen_2p5_7b_solns_math_train

We fine-tune the two models on their respective datasets using LoRA, resulting in these fine-tuned GenRMs:

## Finetuned Verifiers:
- Llama-3.1-8B-Instruct: https://huggingface.co/sc-genrm-scaling/llama_3.1_8b_genrm_ft
- Qwen-2.5.-7B-Instruct: https://huggingface.co/sc-genrm-scaling/qwen_2.5_7b_genrm_ft

You can follow [this example](https://github.com/nishadsinghi/sc-genrm-scaling/blob/master/llmonk/verify/demo.ipynb) of how to do inference with these models.


We use these generative verifiers (without fine-tuning in the case of Llama-3.3-70B-Instruct) on solutions from the MATH test set to obtain this data, which we analyse in the paper:

## Solutions and Verifications for Test-set
- Llama-3.1-8B-Instruct:
  - Solutions: https://huggingface.co/datasets/sc-genrm-scaling/MATH128_Solutions_Llama-3.1-8B-Instruct
  - Verifications (Finetuned Verifier): https://huggingface.co/datasets/sc-genrm-scaling/MATH128_verifications_GenRM-FT_Llama-3.1-8B-Instruct

- Llama-3.3-70B-Instruct:
  - Solutions: https://huggingface.co/datasets/sc-genrm-scaling/MATH128_Solutions_Llama-3.3-70B-Instruct
  - Verifications (*Without* Finetuning): https://huggingface.co/datasets/sc-genrm-scaling/MATH128_verifications_Llama-3.3-70B-Instruct_GenRM-Base

- Qwen-2.5-7B-Instruct:
  - Solutions: https://huggingface.co/datasets/sc-genrm-scaling/MATH128_Solutions_Qwen-2.5-7B-Instruct
  - Verifications (Finetuned Verifier): https://huggingface.co/datasets/sc-genrm-scaling/MATH128_verifications_GenRM-FT_Qwen-2.5-7B-Instruct


# AIME25

## Solutions and Verifications
- QwQ-32B:
  - Solutions: https://huggingface.co/datasets/sc-genrm-scaling/AIME25_Solutions_QwQ-32B
  - Verifications (*Without* Finetuning): https://huggingface.co/datasets/sc-genrm-scaling/AIME25_verifications_QwQ32B


# GPQA

## Solutions and Verifications
- Llama-3.3-70B-Instruct:
  - Solutions: https://huggingface.co/datasets/sc-genrm-scaling/GPQA_diamond_Solutions_Llama-3.3-70B-Instruct
  - Verifications (*Without* Finetuning): https://huggingface.co/datasets/sc-genrm-scaling/GPQA_verifications_GenRM-Base_Llama-3.3-70B-Instruct