File size: 13,293 Bytes
d7f5f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d5b87
d7f5f1a
 
 
 
 
a4d5b87
52876f8
a4d5b87
52876f8
 
 
a4d5b87
d7f5f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d5b87
d7f5f1a
 
6ff996f
d7f5f1a
 
52876f8
d7f5f1a
a4d5b87
d7f5f1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# CODE WAS MODIFIED FROM https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
import torch
import cv2
import torchvision.transforms as transforms
import numpy as np
import math
import torchvision
import gradio as gr

from PIL import Image
import requests



COCO_KEYPOINT_INDEXES = {
    0: 'nose',
    1: 'left_eye', 
    2: 'right_eye',
    3: 'left_ear',
    4: 'right_ear',
    5: 'left_shoulder',
    6: 'right_shoulder',
    7: 'left_elbow',
    8: 'right_elbow',
    9: 'left_wrist',
    10: 'right_wrist',
    11: 'left_hip',
    12: 'right_hip',
    13: 'left_knee',
    14: 'right_knee',
    15: 'left_ankle',
    16: 'right_ankle'
}

COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


def get_max_preds(batch_heatmaps):
    '''
    get predictions from score maps
    heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
    '''
    assert isinstance(batch_heatmaps, np.ndarray), \
        'batch_heatmaps should be numpy.ndarray'
    assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    batch_size = batch_heatmaps.shape[0]
    num_joints = batch_heatmaps.shape[1]
    width = batch_heatmaps.shape[3]
    heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
    idx = np.argmax(heatmaps_reshaped, 2)
    maxvals = np.amax(heatmaps_reshaped, 2)

    maxvals = maxvals.reshape((batch_size, num_joints, 1))
    idx = idx.reshape((batch_size, num_joints, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)

    preds[:, :, 0] = (preds[:, :, 0]) % width
    preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)

    pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
    pred_mask = pred_mask.astype(np.float32)

    preds *= pred_mask
    return preds, maxvals


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_affine_transform(
        center, scale, rot, output_size,
        shift=np.array([0, 0], dtype=np.float32), inv=0
):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        print(scale)
        scale = np.array([scale, scale])

    scale_tmp = scale * 200.0
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, dst_w * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords


def taylor(hm, coord):
    heatmap_height = hm.shape[0]
    heatmap_width = hm.shape[1]
    px = int(coord[0])
    py = int(coord[1])
    if 1 < px < heatmap_width-2 and 1 < py < heatmap_height-2:
        dx = 0.5 * (hm[py][px+1] - hm[py][px-1])
        dy = 0.5 * (hm[py+1][px] - hm[py-1][px])
        dxx = 0.25 * (hm[py][px+2] - 2 * hm[py][px] + hm[py][px-2])
        dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1]
                      + hm[py-1][px-1])
        dyy = 0.25 * (hm[py+2*1][px] - 2 * hm[py][px] + hm[py-2*1][px])
        derivative = np.matrix([[dx], [dy]])
        hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
        if dxx * dyy - dxy ** 2 != 0:
            hessianinv = hessian.I
            offset = -hessianinv * derivative
            offset = np.squeeze(np.array(offset.T), axis=0)
            coord += offset
    return coord


def gaussian_blur(hm, kernel):
    border = (kernel - 1) // 2
    batch_size = hm.shape[0]
    num_joints = hm.shape[1]
    height = hm.shape[2]
    width = hm.shape[3]
    for i in range(batch_size):
        for j in range(num_joints):
            origin_max = np.max(hm[i, j])
            dr = np.zeros((height + 2 * border, width + 2 * border))
            dr[border: -border, border: -border] = hm[i, j].copy()
            dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
            hm[i, j] = dr[border: -border, border: -border].copy()
            hm[i, j] *= origin_max / np.max(hm[i, j])
    return hm


def get_final_preds(hm, center, scale, transform_back=True, test_blur_kernel=3):
    coords, maxvals = get_max_preds(hm)
    heatmap_height = hm.shape[2]
    heatmap_width = hm.shape[3]

    # post-processing
    hm = gaussian_blur(hm, test_blur_kernel)
    hm = np.maximum(hm, 1e-10)
    hm = np.log(hm)
    for n in range(coords.shape[0]):
        for p in range(coords.shape[1]):
            coords[n, p] = taylor(hm[n][p], coords[n][p])

    preds = coords.copy()

    if transform_back:
        # Transform back
        for i in range(coords.shape[0]):
            preds[i] = transform_preds(
                coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
            )

    return preds, maxvals

SKELETON = [
    [1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12],
    [11, 13], [13, 15], [12, 14], [14, 16]
]

CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

NUM_KPTS = 17


def get_person_detection_boxes(model, img, threshold=0.5):
    pred = model(img)
    pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
                    for i in list(pred[0]['labels'].cpu().numpy())]  # Get the Prediction Score
    pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
                  for i in list(pred[0]['boxes'].detach().cpu().numpy())]  # Bounding boxes
    pred_score = list(pred[0]['scores'].detach().cpu().numpy())
    if not pred_score or max(pred_score) < threshold:
        return []
    # Get list of index with score greater than threshold
    pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
    pred_boxes = pred_boxes[:pred_t + 1]
    pred_classes = pred_classes[:pred_t + 1]

    person_boxes = []
    for idx, box in enumerate(pred_boxes):
        if pred_classes[idx] == 'person':
            person_boxes.append(box)

    return person_boxes


def draw_pose(keypoints, img):
    """draw the keypoints and the skeletons.
    :params keypoints: the shape should be equal to [17,2]
    :params img:
    """
    assert keypoints.shape == (NUM_KPTS, 2)
    for i in range(len(SKELETON)):
        kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
        x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
        x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
        cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
        cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
        cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)


def box_to_center_scale(box, model_image_width, model_image_height):
    """convert a box to center,scale information required for pose transformation
    Parameters
    ----------
    box : list of tuple
        list of length 2 with two tuples of floats representing
        bottom left and top right corner of a box
    model_image_width : int
    model_image_height : int

    Returns
    -------
    (numpy array, numpy array)
        Two numpy arrays, coordinates for the center of the box and the scale of the box
    """
    center = np.zeros((2), dtype=np.float32)

    bottom_left_corner = box[0]
    top_right_corner = box[1]
    box_width = top_right_corner[0] - bottom_left_corner[0]
    box_height = top_right_corner[1] - bottom_left_corner[1]
    bottom_left_x = bottom_left_corner[0]
    bottom_left_y = bottom_left_corner[1]
    center[0] = bottom_left_x + box_width * 0.5
    center[1] = bottom_left_y + box_height * 0.5

    aspect_ratio = model_image_width * 1.0 / model_image_height
    pixel_std = 200

    if box_width > aspect_ratio * box_height:
        box_height = box_width * 1.0 / aspect_ratio
    elif box_width < aspect_ratio * box_height:
        box_width = box_height * aspect_ratio
    scale = np.array(
        [box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
        dtype=np.float32)
    if center[0] != -1:
        scale = scale * 1.25

    return center, scale


def get_pose_estimation_prediction(pose_model, image, center, scale):
    rotation = 0
    img_size = (256, 192)
    # pose estimation transformation
    trans = get_affine_transform(center, scale, rotation, img_size)
    model_input = cv2.warpAffine(
        image,
        trans,
        (int(img_size[0]), int(img_size[1])),
        flags=cv2.INTER_LINEAR)
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225]),
    ])

    # pose estimation inference
    model_input = transform(model_input).unsqueeze(0)
    # switch to evaluate mode
    pose_model.eval()
    with torch.no_grad():
        # compute output heatmap
        output = pose_model(model_input)
        preds, _ = get_final_preds(
            output.clone().cpu().numpy(),
            np.asarray([center]),
            np.asarray([scale]))

        return preds


def main(image_bgr, backbone_choice, box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)):
    CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    
    box_model.to(CTX)
    box_model.eval()
    
    if backbone_choice == "ResNet":
      backbone_choice = "tpr_a4_256x192"
    else:
      backbone_choice == "HRNet"
      backbone_choice = "tph_a4_256x192"
    model = torch.hub.load('yangsenius/TransPose:main', backbone_choice , pretrained=True)

    img_dimensions = (256, 192)

    input = []
    image_rgb = image_bgr[:, :, [2, 1, 0]]
    img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
    img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
    input.append(img_tensor)

    pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)

    if len(pred_boxes) >= 1:
        for box in pred_boxes:
            center, scale = box_to_center_scale(box, img_dimensions[0], img_dimensions[1])
            image_pose = image_rgb.copy()
            pose_preds = get_pose_estimation_prediction(model, image_pose, center, scale)
            if len(pose_preds) >= 1:
                for kpt in pose_preds:
                    draw_pose(kpt, image_bgr)  # draw the poses

    return image_bgr

title = "TransPose"
description = "Gradio demo for TransPose: Keypoint localization via Transformer. Dataset: COCO train2017 & COCO val2017. Default backbone selection = HRNet. <a href='https://paperswithcode.com/paper/transpose-towards-explainable-human-pose' target='_blank'>Integrated on paperswithcode.com </a>"
article = "<div style='text-align: center;'><a href='https://github.com/yangsenius/TransPose' target='_blank'>Full credits: github.com/yangsenius/TransPose</a></div>"

examples = [["./examples/one.jpg", "HRNet"], ["./examples/two.jpg", "HRNet"]]

iface = gr.Interface(main, inputs=[gr.inputs.Image(), gr.inputs.Radio(["HRNet", "ResNet"])], outputs="image", description=description, article=article, title=title, examples=examples)
iface.launch(enable_queue=True, debug='True')