Spaces:
Runtime error
Runtime error
File size: 13,293 Bytes
d7f5f1a a4d5b87 d7f5f1a a4d5b87 52876f8 a4d5b87 52876f8 a4d5b87 d7f5f1a a4d5b87 d7f5f1a 6ff996f d7f5f1a 52876f8 d7f5f1a a4d5b87 d7f5f1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# CODE WAS MODIFIED FROM https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
import torch
import cv2
import torchvision.transforms as transforms
import numpy as np
import math
import torchvision
import gradio as gr
from PIL import Image
import requests
COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def get_max_preds(batch_heatmaps):
'''
get predictions from score maps
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
'''
assert isinstance(batch_heatmaps, np.ndarray), \
'batch_heatmaps should be numpy.ndarray'
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = batch_heatmaps.shape[0]
num_joints = batch_heatmaps.shape[1]
width = batch_heatmaps.shape[3]
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_affine_transform(
center, scale, rot, output_size,
shift=np.array([0, 0], dtype=np.float32), inv=0
):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 200.0
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def taylor(hm, coord):
heatmap_height = hm.shape[0]
heatmap_width = hm.shape[1]
px = int(coord[0])
py = int(coord[1])
if 1 < px < heatmap_width-2 and 1 < py < heatmap_height-2:
dx = 0.5 * (hm[py][px+1] - hm[py][px-1])
dy = 0.5 * (hm[py+1][px] - hm[py-1][px])
dxx = 0.25 * (hm[py][px+2] - 2 * hm[py][px] + hm[py][px-2])
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1]
+ hm[py-1][px-1])
dyy = 0.25 * (hm[py+2*1][px] - 2 * hm[py][px] + hm[py-2*1][px])
derivative = np.matrix([[dx], [dy]])
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy ** 2 != 0:
hessianinv = hessian.I
offset = -hessianinv * derivative
offset = np.squeeze(np.array(offset.T), axis=0)
coord += offset
return coord
def gaussian_blur(hm, kernel):
border = (kernel - 1) // 2
batch_size = hm.shape[0]
num_joints = hm.shape[1]
height = hm.shape[2]
width = hm.shape[3]
for i in range(batch_size):
for j in range(num_joints):
origin_max = np.max(hm[i, j])
dr = np.zeros((height + 2 * border, width + 2 * border))
dr[border: -border, border: -border] = hm[i, j].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
hm[i, j] = dr[border: -border, border: -border].copy()
hm[i, j] *= origin_max / np.max(hm[i, j])
return hm
def get_final_preds(hm, center, scale, transform_back=True, test_blur_kernel=3):
coords, maxvals = get_max_preds(hm)
heatmap_height = hm.shape[2]
heatmap_width = hm.shape[3]
# post-processing
hm = gaussian_blur(hm, test_blur_kernel)
hm = np.maximum(hm, 1e-10)
hm = np.log(hm)
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
coords[n, p] = taylor(hm[n][p], coords[n][p])
preds = coords.copy()
if transform_back:
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(
coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
)
return preds, maxvals
SKELETON = [
[1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12],
[11, 13], [13, 15], [12, 14], [14, 16]
]
CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
NUM_KPTS = 17
def get_person_detection_boxes(model, img, threshold=0.5):
pred = model(img)
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes
pred_score = list(pred[0]['scores'].detach().cpu().numpy())
if not pred_score or max(pred_score) < threshold:
return []
# Get list of index with score greater than threshold
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
pred_boxes = pred_boxes[:pred_t + 1]
pred_classes = pred_classes[:pred_t + 1]
person_boxes = []
for idx, box in enumerate(pred_boxes):
if pred_classes[idx] == 'person':
person_boxes.append(box)
return person_boxes
def draw_pose(keypoints, img):
"""draw the keypoints and the skeletons.
:params keypoints: the shape should be equal to [17,2]
:params img:
"""
assert keypoints.shape == (NUM_KPTS, 2)
for i in range(len(SKELETON)):
kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)
bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0] - bottom_left_corner[0]
box_height = top_right_corner[1] - bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def get_pose_estimation_prediction(pose_model, image, center, scale):
rotation = 0
img_size = (256, 192)
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, img_size)
model_input = cv2.warpAffine(
image,
trans,
(int(img_size[0]), int(img_size[1])),
flags=cv2.INTER_LINEAR)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, _ = get_final_preds(
output.clone().cpu().numpy(),
np.asarray([center]),
np.asarray([scale]))
return preds
def main(image_bgr, backbone_choice, box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)):
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
box_model.to(CTX)
box_model.eval()
if backbone_choice == "ResNet":
backbone_choice = "tpr_a4_256x192"
else:
backbone_choice == "HRNet"
backbone_choice = "tph_a4_256x192"
model = torch.hub.load('yangsenius/TransPose:main', backbone_choice , pretrained=True)
img_dimensions = (256, 192)
input = []
image_rgb = image_bgr[:, :, [2, 1, 0]]
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
input.append(img_tensor)
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, img_dimensions[0], img_dimensions[1])
image_pose = image_rgb.copy()
pose_preds = get_pose_estimation_prediction(model, image_pose, center, scale)
if len(pose_preds) >= 1:
for kpt in pose_preds:
draw_pose(kpt, image_bgr) # draw the poses
return image_bgr
title = "TransPose"
description = "Gradio demo for TransPose: Keypoint localization via Transformer. Dataset: COCO train2017 & COCO val2017. Default backbone selection = HRNet. <a href='https://paperswithcode.com/paper/transpose-towards-explainable-human-pose' target='_blank'>Integrated on paperswithcode.com </a>"
article = "<div style='text-align: center;'><a href='https://github.com/yangsenius/TransPose' target='_blank'>Full credits: github.com/yangsenius/TransPose</a></div>"
examples = [["./examples/one.jpg", "HRNet"], ["./examples/two.jpg", "HRNet"]]
iface = gr.Interface(main, inputs=[gr.inputs.Image(), gr.inputs.Radio(["HRNet", "ResNet"])], outputs="image", description=description, article=article, title=title, examples=examples)
iface.launch(enable_queue=True, debug='True') |