Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CODE WAS MODIFIED FROM https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import torchvision
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
import requests
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
COCO_KEYPOINT_INDEXES = {
|
16 |
+
0: 'nose',
|
17 |
+
1: 'left_eye',
|
18 |
+
2: 'right_eye',
|
19 |
+
3: 'left_ear',
|
20 |
+
4: 'right_ear',
|
21 |
+
5: 'left_shoulder',
|
22 |
+
6: 'right_shoulder',
|
23 |
+
7: 'left_elbow',
|
24 |
+
8: 'right_elbow',
|
25 |
+
9: 'left_wrist',
|
26 |
+
10: 'right_wrist',
|
27 |
+
11: 'left_hip',
|
28 |
+
12: 'right_hip',
|
29 |
+
13: 'left_knee',
|
30 |
+
14: 'right_knee',
|
31 |
+
15: 'left_ankle',
|
32 |
+
16: 'right_ankle'
|
33 |
+
}
|
34 |
+
|
35 |
+
COCO_INSTANCE_CATEGORY_NAMES = [
|
36 |
+
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
37 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
|
38 |
+
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
39 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
|
40 |
+
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
41 |
+
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
42 |
+
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
|
43 |
+
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
|
44 |
+
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
|
45 |
+
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
46 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
47 |
+
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def get_max_preds(batch_heatmaps):
|
52 |
+
'''
|
53 |
+
get predictions from score maps
|
54 |
+
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
55 |
+
'''
|
56 |
+
assert isinstance(batch_heatmaps, np.ndarray), \
|
57 |
+
'batch_heatmaps should be numpy.ndarray'
|
58 |
+
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim'
|
59 |
+
|
60 |
+
batch_size = batch_heatmaps.shape[0]
|
61 |
+
num_joints = batch_heatmaps.shape[1]
|
62 |
+
width = batch_heatmaps.shape[3]
|
63 |
+
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
|
64 |
+
idx = np.argmax(heatmaps_reshaped, 2)
|
65 |
+
maxvals = np.amax(heatmaps_reshaped, 2)
|
66 |
+
|
67 |
+
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
68 |
+
idx = idx.reshape((batch_size, num_joints, 1))
|
69 |
+
|
70 |
+
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
71 |
+
|
72 |
+
preds[:, :, 0] = (preds[:, :, 0]) % width
|
73 |
+
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
74 |
+
|
75 |
+
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
76 |
+
pred_mask = pred_mask.astype(np.float32)
|
77 |
+
|
78 |
+
preds *= pred_mask
|
79 |
+
return preds, maxvals
|
80 |
+
|
81 |
+
|
82 |
+
def get_dir(src_point, rot_rad):
|
83 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
84 |
+
|
85 |
+
src_result = [0, 0]
|
86 |
+
src_result[0] = src_point[0] * cs - src_point[1] * sn
|
87 |
+
src_result[1] = src_point[0] * sn + src_point[1] * cs
|
88 |
+
|
89 |
+
return src_result
|
90 |
+
|
91 |
+
|
92 |
+
def get_3rd_point(a, b):
|
93 |
+
direct = a - b
|
94 |
+
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
|
95 |
+
|
96 |
+
|
97 |
+
def get_affine_transform(
|
98 |
+
center, scale, rot, output_size,
|
99 |
+
shift=np.array([0, 0], dtype=np.float32), inv=0
|
100 |
+
):
|
101 |
+
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
|
102 |
+
print(scale)
|
103 |
+
scale = np.array([scale, scale])
|
104 |
+
|
105 |
+
scale_tmp = scale * 200.0
|
106 |
+
src_w = scale_tmp[0]
|
107 |
+
dst_w = output_size[0]
|
108 |
+
dst_h = output_size[1]
|
109 |
+
|
110 |
+
rot_rad = np.pi * rot / 180
|
111 |
+
src_dir = get_dir([0, src_w * -0.5], rot_rad)
|
112 |
+
dst_dir = np.array([0, dst_w * -0.5], np.float32)
|
113 |
+
|
114 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
115 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
116 |
+
src[0, :] = center + scale_tmp * shift
|
117 |
+
src[1, :] = center + src_dir + scale_tmp * shift
|
118 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
119 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
120 |
+
|
121 |
+
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
|
122 |
+
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
|
123 |
+
|
124 |
+
if inv:
|
125 |
+
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
126 |
+
else:
|
127 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
128 |
+
|
129 |
+
return trans
|
130 |
+
|
131 |
+
|
132 |
+
def affine_transform(pt, t):
|
133 |
+
new_pt = np.array([pt[0], pt[1], 1.]).T
|
134 |
+
new_pt = np.dot(t, new_pt)
|
135 |
+
return new_pt[:2]
|
136 |
+
|
137 |
+
|
138 |
+
def transform_preds(coords, center, scale, output_size):
|
139 |
+
target_coords = np.zeros(coords.shape)
|
140 |
+
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
|
141 |
+
for p in range(coords.shape[0]):
|
142 |
+
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
|
143 |
+
return target_coords
|
144 |
+
|
145 |
+
|
146 |
+
def taylor(hm, coord):
|
147 |
+
heatmap_height = hm.shape[0]
|
148 |
+
heatmap_width = hm.shape[1]
|
149 |
+
px = int(coord[0])
|
150 |
+
py = int(coord[1])
|
151 |
+
if 1 < px < heatmap_width-2 and 1 < py < heatmap_height-2:
|
152 |
+
dx = 0.5 * (hm[py][px+1] - hm[py][px-1])
|
153 |
+
dy = 0.5 * (hm[py+1][px] - hm[py-1][px])
|
154 |
+
dxx = 0.25 * (hm[py][px+2] - 2 * hm[py][px] + hm[py][px-2])
|
155 |
+
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1]
|
156 |
+
+ hm[py-1][px-1])
|
157 |
+
dyy = 0.25 * (hm[py+2*1][px] - 2 * hm[py][px] + hm[py-2*1][px])
|
158 |
+
derivative = np.matrix([[dx], [dy]])
|
159 |
+
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
|
160 |
+
if dxx * dyy - dxy ** 2 != 0:
|
161 |
+
hessianinv = hessian.I
|
162 |
+
offset = -hessianinv * derivative
|
163 |
+
offset = np.squeeze(np.array(offset.T), axis=0)
|
164 |
+
coord += offset
|
165 |
+
return coord
|
166 |
+
|
167 |
+
|
168 |
+
def gaussian_blur(hm, kernel):
|
169 |
+
border = (kernel - 1) // 2
|
170 |
+
batch_size = hm.shape[0]
|
171 |
+
num_joints = hm.shape[1]
|
172 |
+
height = hm.shape[2]
|
173 |
+
width = hm.shape[3]
|
174 |
+
for i in range(batch_size):
|
175 |
+
for j in range(num_joints):
|
176 |
+
origin_max = np.max(hm[i, j])
|
177 |
+
dr = np.zeros((height + 2 * border, width + 2 * border))
|
178 |
+
dr[border: -border, border: -border] = hm[i, j].copy()
|
179 |
+
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
|
180 |
+
hm[i, j] = dr[border: -border, border: -border].copy()
|
181 |
+
hm[i, j] *= origin_max / np.max(hm[i, j])
|
182 |
+
return hm
|
183 |
+
|
184 |
+
|
185 |
+
def get_final_preds(hm, center, scale, transform_back=True, test_blur_kernel=3):
|
186 |
+
coords, maxvals = get_max_preds(hm)
|
187 |
+
heatmap_height = hm.shape[2]
|
188 |
+
heatmap_width = hm.shape[3]
|
189 |
+
|
190 |
+
# post-processing
|
191 |
+
hm = gaussian_blur(hm, test_blur_kernel)
|
192 |
+
hm = np.maximum(hm, 1e-10)
|
193 |
+
hm = np.log(hm)
|
194 |
+
for n in range(coords.shape[0]):
|
195 |
+
for p in range(coords.shape[1]):
|
196 |
+
coords[n, p] = taylor(hm[n][p], coords[n][p])
|
197 |
+
|
198 |
+
preds = coords.copy()
|
199 |
+
|
200 |
+
if transform_back:
|
201 |
+
# Transform back
|
202 |
+
for i in range(coords.shape[0]):
|
203 |
+
preds[i] = transform_preds(
|
204 |
+
coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
|
205 |
+
)
|
206 |
+
|
207 |
+
return preds, maxvals
|
208 |
+
|
209 |
+
SKELETON = [
|
210 |
+
[1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12],
|
211 |
+
[11, 13], [13, 15], [12, 14], [14, 16]
|
212 |
+
]
|
213 |
+
|
214 |
+
CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
|
215 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
|
216 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
217 |
+
|
218 |
+
NUM_KPTS = 17
|
219 |
+
|
220 |
+
|
221 |
+
def get_person_detection_boxes(model, img, threshold=0.5):
|
222 |
+
pred = model(img)
|
223 |
+
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
|
224 |
+
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
|
225 |
+
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
|
226 |
+
for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes
|
227 |
+
pred_score = list(pred[0]['scores'].detach().cpu().numpy())
|
228 |
+
if not pred_score or max(pred_score) < threshold:
|
229 |
+
return []
|
230 |
+
# Get list of index with score greater than threshold
|
231 |
+
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
|
232 |
+
pred_boxes = pred_boxes[:pred_t + 1]
|
233 |
+
pred_classes = pred_classes[:pred_t + 1]
|
234 |
+
|
235 |
+
person_boxes = []
|
236 |
+
for idx, box in enumerate(pred_boxes):
|
237 |
+
if pred_classes[idx] == 'person':
|
238 |
+
person_boxes.append(box)
|
239 |
+
|
240 |
+
return person_boxes
|
241 |
+
|
242 |
+
|
243 |
+
def draw_pose(keypoints, img):
|
244 |
+
"""draw the keypoints and the skeletons.
|
245 |
+
:params keypoints: the shape should be equal to [17,2]
|
246 |
+
:params img:
|
247 |
+
"""
|
248 |
+
assert keypoints.shape == (NUM_KPTS, 2)
|
249 |
+
for i in range(len(SKELETON)):
|
250 |
+
kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
|
251 |
+
x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
|
252 |
+
x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
|
253 |
+
cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
|
254 |
+
cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
|
255 |
+
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)
|
256 |
+
|
257 |
+
|
258 |
+
def box_to_center_scale(box, model_image_width, model_image_height):
|
259 |
+
"""convert a box to center,scale information required for pose transformation
|
260 |
+
Parameters
|
261 |
+
----------
|
262 |
+
box : list of tuple
|
263 |
+
list of length 2 with two tuples of floats representing
|
264 |
+
bottom left and top right corner of a box
|
265 |
+
model_image_width : int
|
266 |
+
model_image_height : int
|
267 |
+
|
268 |
+
Returns
|
269 |
+
-------
|
270 |
+
(numpy array, numpy array)
|
271 |
+
Two numpy arrays, coordinates for the center of the box and the scale of the box
|
272 |
+
"""
|
273 |
+
center = np.zeros((2), dtype=np.float32)
|
274 |
+
|
275 |
+
bottom_left_corner = box[0]
|
276 |
+
top_right_corner = box[1]
|
277 |
+
box_width = top_right_corner[0] - bottom_left_corner[0]
|
278 |
+
box_height = top_right_corner[1] - bottom_left_corner[1]
|
279 |
+
bottom_left_x = bottom_left_corner[0]
|
280 |
+
bottom_left_y = bottom_left_corner[1]
|
281 |
+
center[0] = bottom_left_x + box_width * 0.5
|
282 |
+
center[1] = bottom_left_y + box_height * 0.5
|
283 |
+
|
284 |
+
aspect_ratio = model_image_width * 1.0 / model_image_height
|
285 |
+
pixel_std = 200
|
286 |
+
|
287 |
+
if box_width > aspect_ratio * box_height:
|
288 |
+
box_height = box_width * 1.0 / aspect_ratio
|
289 |
+
elif box_width < aspect_ratio * box_height:
|
290 |
+
box_width = box_height * aspect_ratio
|
291 |
+
scale = np.array(
|
292 |
+
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
|
293 |
+
dtype=np.float32)
|
294 |
+
if center[0] != -1:
|
295 |
+
scale = scale * 1.25
|
296 |
+
|
297 |
+
return center, scale
|
298 |
+
|
299 |
+
|
300 |
+
def get_pose_estimation_prediction(pose_model, image, center, scale):
|
301 |
+
rotation = 0
|
302 |
+
img_size = (256, 192)
|
303 |
+
# pose estimation transformation
|
304 |
+
trans = get_affine_transform(center, scale, rotation, img_size)
|
305 |
+
model_input = cv2.warpAffine(
|
306 |
+
image,
|
307 |
+
trans,
|
308 |
+
(int(img_size[0]), int(img_size[1])),
|
309 |
+
flags=cv2.INTER_LINEAR)
|
310 |
+
transform = transforms.Compose([
|
311 |
+
transforms.ToTensor(),
|
312 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
313 |
+
std=[0.229, 0.224, 0.225]),
|
314 |
+
])
|
315 |
+
|
316 |
+
# pose estimation inference
|
317 |
+
model_input = transform(model_input).unsqueeze(0)
|
318 |
+
# switch to evaluate mode
|
319 |
+
pose_model.eval()
|
320 |
+
with torch.no_grad():
|
321 |
+
# compute output heatmap
|
322 |
+
output = pose_model(model_input)
|
323 |
+
preds, _ = get_final_preds(
|
324 |
+
output.clone().cpu().numpy(),
|
325 |
+
np.asarray([center]),
|
326 |
+
np.asarray([scale]))
|
327 |
+
|
328 |
+
return preds
|
329 |
+
|
330 |
+
|
331 |
+
def main(image_bgr, box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)):
|
332 |
+
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
333 |
+
|
334 |
+
|
335 |
+
box_model.to(CTX)
|
336 |
+
box_model.eval()
|
337 |
+
model = torch.hub.load('yangsenius/TransPose:main', 'tph_a4_256x192', pretrained=True)
|
338 |
+
|
339 |
+
img_dimensions = (256, 192)
|
340 |
+
|
341 |
+
input = []
|
342 |
+
image_rgb = image_bgr[:, :, [2, 1, 0]]
|
343 |
+
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
|
344 |
+
img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
|
345 |
+
input.append(img_tensor)
|
346 |
+
|
347 |
+
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)
|
348 |
+
|
349 |
+
if len(pred_boxes) >= 1:
|
350 |
+
for box in pred_boxes:
|
351 |
+
center, scale = box_to_center_scale(box, img_dimensions[0], img_dimensions[1])
|
352 |
+
image_pose = image_rgb.copy()
|
353 |
+
pose_preds = get_pose_estimation_prediction(model, image_pose, center, scale)
|
354 |
+
if len(pose_preds) >= 1:
|
355 |
+
for kpt in pose_preds:
|
356 |
+
draw_pose(kpt, image_bgr) # draw the poses
|
357 |
+
|
358 |
+
im = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
|
359 |
+
return im
|
360 |
+
|
361 |
+
title = "TransPose"
|
362 |
+
description = "Gradio demo for TransPose: Keypoint localization via Transformer. Dataset: COCO train2017 & COCO val2017."
|
363 |
+
article = "<div style='text-align: center;'><a href='https://github.com/yangsenius/TransPose' target='_blank'>Full credits: github.com/yangsenius/TransPose</a></div>"
|
364 |
+
|
365 |
+
examples = [["./examples/one.jpg"], ["./examples/two.jpg"]]
|
366 |
+
|
367 |
+
iface = gr.Interface(main, inputs=gr.inputs.Image(), outputs="image", description=description, article=article, title=title, examples=examples)
|
368 |
+
iface.launch(enable_queue=True, debug='True')
|