File size: 13,653 Bytes
368c287
 
 
88490b4
368c287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489f9ad
 
 
 
 
368c287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489f9ad
 
 
 
368c287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c333a1
368c287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6fc257
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import re
import docx
from bs4 import BeautifulSoup
from PyPDF2 import PdfReader

from sentence_transformers import SentenceTransformer, util

import warnings
import hdbscan

import numpy as np
import seaborn as sns

from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig

import torch
from transformers import LongformerTokenizer, EncoderDecoderModel

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt

nltk.download("punkt_tab")
nltk.download("stopwords")
nltk.download("punkt")

import matplotlib.pyplot as plt
import scipy.cluster.hierarchy as sch
from sklearn.metrics.pairwise import cosine_similarity

import plotly.express as px
from sklearn.manifold import TSNE

from wordcloud import WordCloud
import matplotlib.pyplot as plt

import pandas as pd
import json
import xml.etree.ElementTree as ET
import os
import warnings
import pptx

import io
from PIL import Image

warnings.filterwarnings("ignore")


def clean_text(text):
    text = re.sub(r"http\S+|www\S+|https\S+", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    text = re.sub(r"[^\w\s,.]", "", text)
    return text


def extract_and_clean_text(file_path):
    text = ""
    if file_path.endswith(".docx"):
        doc = docx.Document(file_path)
        for paragraph in doc.paragraphs:
            text += paragraph.text + " "
    elif file_path.endswith(".txt"):
        with open(file_path, "r", encoding="utf-8") as f:
            text = f.read()
    elif file_path.endswith((".html", ".htm")):
        with open(file_path, "r", encoding="utf-8") as f:
            html_content = f.read()
        soup = BeautifulSoup(html_content, "html.parser")
        text = soup.get_text(separator=" ", strip=True)
    elif file_path.endswith(".pdf"):
        reader = PdfReader(file_path)
        for page in reader.pages:
            text += page.extract_text() + " "
    elif file_path.endswith(".csv"):
        df = pd.read_csv(file_path)
        text = " ".join(df.astype(str).agg(" ".join, axis=1))
    elif file_path.endswith(".xlsx"):
        df = pd.read_excel(file_path)
        text = " ".join(df.astype(str).agg(" ".join, axis=1))
    elif file_path.endswith(".json"):
        with open(file_path, "r", encoding="utf-8") as f:
            data = json.load(f)
        text = " ".join([str(item) for item in data])
    elif file_path.endswith(".xml"):
        tree = ET.parse(file_path)
        root = tree.getroot()
        text = " ".join([elem.text for elem in root.iter() if elem.text])
    elif file_path.endswith(".pptx"):
        from pptx import Presentation

        prs = Presentation(file_path)
        for slide in prs.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text += shape.text + " "
    else:
        raise ValueError("Unsupported file type: {}".format(file_path))
    cleaned_text = clean_text(text)
    return cleaned_text


def clean_files(file_list):
    cleaned_files = []
    for file in file_list:
        cleaned_files.append(extract_and_clean_text(file))
    return cleaned_files


def get_embeddings(text):
    model = SentenceTransformer("all-mpnet-base-v2")
    embeddings = model.encode(text)
    return embeddings


def clustering_labels(embeddings):
    warnings.filterwarnings("ignore")
    embeddings = np.array(embeddings)
    if len(embeddings) < 2:
        raise ValueError(
            "Not enough data points for clustering. At least 2 are required."
        )
    min_cluster_size = min(2, len(embeddings))
    cluster = hdbscan.HDBSCAN(
        min_cluster_size=min_cluster_size,
        metric="euclidean",
        cluster_selection_method="eom",
    ).fit(embeddings)
    return cluster.labels_


def bart_summarizer(text):
    model_name_bart = "facebook/bart-large-cnn"
    tokenizer = BartTokenizer.from_pretrained(model_name_bart)
    model = BartForConditionalGeneration.from_pretrained(model_name_bart)
    tokenize_inputs = tokenizer.encode(
        text, return_tensors="pt", max_length=1024, truncation=True
    )
    ids_summarization = model.generate(
        tokenize_inputs, num_beams=4, max_length=150, early_stopping=True
    )
    summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
    return summary_decoded


def longformer_summarizer(text):
    tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
    model = EncoderDecoderModel.from_pretrained(
        "patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
    )
    inputs = tokenizer(
        text, return_tensors="pt", padding="longest", truncation=True
    ).input_ids
    ids_summarization = model.generate(inputs)
    summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
    return summary_decoded


def longformer_summarizer_long_text(
    text, max_chunk_length=4000, overlap=200, max_summary_length=1024
):
    tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
    model = EncoderDecoderModel.from_pretrained(
        "patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    tokens = tokenizer.encode(text)
    if len(tokens) <= max_chunk_length:
        inputs = tokenizer(text, return_tensors="pt", padding="longest").input_ids.to(
            device
        )
        summary_ids = model.generate(inputs, max_length=max_summary_length)
        summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        return summary
    chunk_summaries = []
    for i in range(0, len(tokens), max_chunk_length - overlap):
        chunk_tokens = tokens[i : i + max_chunk_length]
        if len(chunk_tokens) < 100:
            continue
        chunk_text = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
        inputs = tokenizer(
            chunk_text, return_tensors="pt", padding="longest"
        ).input_ids.to(device)
        summary_ids = model.generate(inputs, max_length=max_summary_length // 2)
        chunk_summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        chunk_summaries.append(chunk_summary)
    final_summary = " ".join(chunk_summaries)
    return final_summary


def summarize_text(text):
    bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
    input_length = len(bart_tokenizer.encode(text))
    if input_length < 1024:
        summary = bart_summarizer(text)
    elif input_length < 4096:
        summary = longformer_summarizer(text)
    else:
        summary = longformer_summarizer_long_text(text)
    return summary


def summarize(embeddings, labels, cleaned_files):
    no_of_clusters = max(labels) + 1
    clusters_embeddings = []
    clusters_text = [""] * no_of_clusters
    for i in range(no_of_clusters):
        clusters_embeddings.append(embeddings[labels == i])
    noise_docs = []
    for label, text_chunk in zip(labels, cleaned_files):
        if label != -1:
            clusters_text[label] += text_chunk
        else:
            noise_docs.append(text_chunk)
    clusters_text.extend(noise_docs)
    cluster_texts_combined = ["".join(cluster) for cluster in clusters_text]
    final_summaries = [
        summarize_text(cluster_text) for cluster_text in cluster_texts_combined
    ]
    return final_summaries


def tfidf_plot(all_text):
    tokens = word_tokenize(all_text.lower())
    stop_words = set(stopwords.words("english"))
    filtered_tokens = [w for w in tokens if not w in stop_words and w.isalnum()]
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform([" ".join(filtered_tokens)])
    feature_names = vectorizer.get_feature_names_out()
    tfidf_scores = tfidf_matrix.toarray()[0]
    top_n = 25
    top_indices = tfidf_scores.argsort()[-top_n:]
    top_words = [feature_names[i] for i in top_indices]
    top_scores = [tfidf_scores[i] for i in top_indices]
    fig, ax = plt.subplots(figsize=(10, 5))
    ax.barh(top_words, top_scores, color="skyblue")
    ax.set_xlabel("TF-IDF Score")
    ax.set_ylabel("Words")
    ax.set_title("Top {} Important Words (TF-IDF)".format(top_n))
    ax.invert_yaxis()
    return fig


def dendrogram_plot(embeddings, labels):
    similarity_matrix = cosine_similarity(embeddings)
    distance_matrix = 1 - similarity_matrix
    linkage_matrix = sch.linkage(distance_matrix, method="ward")
    dendrogram_labels = [
        f"Doc {i} (Cluster {labels[i]})" if labels[i] != -1 else f"Doc {i} (Noise)"
        for i in range(len(labels))
    ]
    fig, ax = plt.subplots(figsize=(12, 8))
    sch.dendrogram(
        linkage_matrix,
        labels=dendrogram_labels,
        orientation="right",
        leaf_font_size=10,
        ax=ax,
    )
    ax.set_title("Hierarchical Dendrogram of Document Clusters", fontsize=14)
    ax.set_xlabel("Distance", fontsize=12)
    ax.set_ylabel("Documents", fontsize=12)
    unique_labels = set(labels)
    legend_labels = [
        f"Cluster {label}" if label != -1 else "Noise" for label in unique_labels
    ]
    ax.legend(legend_labels, loc="upper right", title="Clusters", fontsize=10)
    plt.tight_layout()
    return fig


def tsne_plot(embeddings, labels):
    n_samples = len(embeddings)
    if n_samples < 2:
        fig, ax = plt.subplots(figsize=(6, 4))
        ax.text(
            0.5,
            0.5,
            "t-SNE plot is not applicable for a single document.",
            fontsize=12,
            ha="center",
            va="center",
            wrap=True,
        )
        ax.axis("off")
        return fig
    perplexity = min(30, n_samples - 1)
    tsne = TSNE(n_components=2, perplexity=perplexity, random_state=42)
    reduced_embeddings = tsne.fit_transform(embeddings)
    fig, ax = plt.subplots(figsize=(8, 6))
    scatter = ax.scatter(
        reduced_embeddings[:, 0],
        reduced_embeddings[:, 1],
        c=labels,
        cmap="viridis",
        s=50,
        alpha=0.8,
    )
    ax.set_title("t-SNE Visualization of Document Clusters", fontsize=14)
    ax.set_xlabel("t-SNE Dimension 1", fontsize=12)
    ax.set_ylabel("t-SNE Dimension 2", fontsize=12)
    unique_labels = set(labels)
    for label in unique_labels:
        ax.scatter([], [], label=f"Cluster {label}" if label != -1 else "Noise", s=50)
    ax.legend(loc="upper right", title="Clusters", fontsize=10)
    cbar = plt.colorbar(scatter, ax=ax)
    cbar.set_label("Cluster Labels", fontsize=12)
    return fig


def wordcloud_plot(all_text):
    wordcloud = WordCloud(width=800, height=400, background_color="white").generate(
        all_text
    )
    fig, ax = plt.subplots(figsize=(10, 5), facecolor=None)
    ax.imshow(wordcloud)
    ax.axis("off")
    plt.tight_layout(pad=0)
    buf = io.BytesIO()
    fig.savefig(buf, format="png")
    buf.seek(0)
    img = Image.open(buf)
    img_array = np.array(img)
    buf.close()
    plt.close(fig)
    return img_array


def summarize_docs(files_text):
    if files_text:
        cleaned_files = clean_files(files_text)
        if len(cleaned_files) == 1:
            summary = summarize_text(cleaned_files[0])
            return (
                f"Summary for the uploaded document:\n{summary}",
                None,
                None,
                None,
                None,
            )
        embeddings = get_embeddings(cleaned_files)
        if len(embeddings) < 2:
            return (
                "Not enough documents for clustering. Please upload more files.",
                None,
                None,
                None,
                None,
            )
        labels = clustering_labels(embeddings)
        summaries = summarize(embeddings, labels, cleaned_files)
        summary_output = "\n".join(
            [
                f"β€’ Summary for cluster/doc {i+1}:\n{summary}"
                for i, summary in enumerate(summaries)
            ]
        )
        all_text = " ".join(cleaned_files)
        tfidf_fig = tfidf_plot(all_text)  # Get the tfidf plot figure
        dendrogram_fig = dendrogram_plot(
            embeddings, labels
        )  # Get the dendrogram plot figure
        tsne_fig = tsne_plot(embeddings, labels)  # Get the t-sne plot figure
        wordcloud_fig = wordcloud_plot(all_text)  # Get the wordcloud plot figure
        return summary_output, tfidf_fig, dendrogram_fig, tsne_fig, wordcloud_fig
    else:
        return "No files uploaded.", None, None, None, None


import gradio as gr

with gr.Blocks() as demo:
    gr.Markdown("# πŸ“° Multi-Document Summarization")

    with gr.Row():
        with gr.Column():
            file_upload = gr.Files(label="Upload Your Files")
            gr.Markdown(
                "### Supported File Types: πŸ“„ `.docx` πŸ“ `.txt` 🌐 `.html` πŸ“‘ `.pdf` πŸ“Š `.csv` πŸ“ˆ `.xlsx` πŸ—‚ `.json` πŸ—ƒ `.xml` 🎞 `.pptx`",
                elem_id="file-types-info",
            )
            summarize_btn = gr.Button("Summarize")

        with gr.Column():
            summary_output = gr.Textbox(label="β€’ Bullet List of Summaries", lines=10)

    gr.Markdown("## πŸ“Š Visualizations")

    with gr.Row():
        dendro = gr.Plot(label="Dendrogram")
        tsne = gr.Plot(label="t-SNE")

    with gr.Row():
        tfidf = gr.Plot(label="TF-IDF")

    with gr.Row():
        wordcloud = gr.Image(label="Word Cloud")

    summarize_btn.click(
        summarize_docs,
        inputs=file_upload,
        outputs=[summary_output, tfidf, dendro, tsne, wordcloud],
    )

demo.launch(share=True)