added files
Browse files- README.md +33 -13
- main.py +422 -0
- requirements.txt +17 -0
README.md
CHANGED
@@ -1,13 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multi Document Summarization
|
2 |
+
|
3 |
+
This project provides a multi-document summarization tool using state-of-the-art NLP models like BART and Longformer. It supports various file formats and generates summaries along with visualizations like dendrograms, t-SNE plots, TF-IDF plots, and word clouds.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
- Summarizes multiple documents into concise summaries.
|
7 |
+
- Supports file formats: `.docx`, `.txt`, `.html`, `.pdf`, `.csv`, `.xlsx`, `.json`, `.xml`, `.ppt`, `.pptx`.
|
8 |
+
- Visualizations: Dendrogram, t-SNE, TF-IDF, Word Cloud.
|
9 |
+
|
10 |
+
## Installation
|
11 |
+
1. Clone the repository:
|
12 |
+
```bash
|
13 |
+
git clone https://github.com/your-username/abstractive-text-summarization.git
|
14 |
+
```
|
15 |
+
2. Navigate to the project directory:
|
16 |
+
```bash
|
17 |
+
cd abstractive-text-summarization
|
18 |
+
```
|
19 |
+
3. Install dependencies:
|
20 |
+
```bash
|
21 |
+
pip install -r requirements.txt
|
22 |
+
```
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
1. Run the application:
|
26 |
+
```bash
|
27 |
+
python major_project_main.py
|
28 |
+
```
|
29 |
+
2. Open the Gradio interface in your browser.
|
30 |
+
3. Upload files and click "Summarize" to generate summaries and visualizations.
|
31 |
+
|
32 |
+
## License
|
33 |
+
This project is licensed under the MIT License. See the LICENSE file for details.
|
main.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import docx
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from pypdf import PdfReader
|
5 |
+
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
import hdbscan
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import seaborn as sns
|
13 |
+
|
14 |
+
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from transformers import LongformerTokenizer, EncoderDecoderModel
|
18 |
+
|
19 |
+
import nltk
|
20 |
+
from nltk.corpus import stopwords
|
21 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
22 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
23 |
+
import matplotlib.pyplot as plt
|
24 |
+
|
25 |
+
nltk.download("punkt_tab")
|
26 |
+
nltk.download("stopwords")
|
27 |
+
nltk.download("punkt")
|
28 |
+
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
import scipy.cluster.hierarchy as sch
|
31 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
32 |
+
|
33 |
+
import plotly.express as px
|
34 |
+
from sklearn.manifold import TSNE
|
35 |
+
|
36 |
+
from wordcloud import WordCloud
|
37 |
+
import matplotlib.pyplot as plt
|
38 |
+
|
39 |
+
import pandas as pd
|
40 |
+
import json
|
41 |
+
import xml.etree.ElementTree as ET
|
42 |
+
import os
|
43 |
+
import warnings
|
44 |
+
import pptx
|
45 |
+
|
46 |
+
import io
|
47 |
+
from PIL import Image
|
48 |
+
|
49 |
+
import comtypes.client
|
50 |
+
import comtypes
|
51 |
+
|
52 |
+
warnings.filterwarnings("ignore")
|
53 |
+
|
54 |
+
|
55 |
+
def clean_text(text):
|
56 |
+
text = re.sub(r"http\S+|www\S+|https\S+", "", text)
|
57 |
+
text = re.sub(r"\s+", " ", text).strip()
|
58 |
+
text = re.sub(r"[^\w\s,.]", "", text)
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def extract_and_clean_text(file_path):
|
63 |
+
text = ""
|
64 |
+
if file_path.endswith(".docx"):
|
65 |
+
doc = docx.Document(file_path)
|
66 |
+
for paragraph in doc.paragraphs:
|
67 |
+
text += paragraph.text + " "
|
68 |
+
elif file_path.endswith(".txt"):
|
69 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
70 |
+
text = f.read()
|
71 |
+
elif file_path.endswith((".html", ".htm")):
|
72 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
73 |
+
html_content = f.read()
|
74 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
75 |
+
text = soup.get_text(separator=" ", strip=True)
|
76 |
+
elif file_path.endswith(".pdf"):
|
77 |
+
reader = PdfReader(file_path)
|
78 |
+
for page in reader.pages:
|
79 |
+
text += page.extract_text() + " "
|
80 |
+
elif file_path.endswith(".csv"):
|
81 |
+
df = pd.read_csv(file_path)
|
82 |
+
text = " ".join(df.astype(str).agg(" ".join, axis=1))
|
83 |
+
elif file_path.endswith(".xlsx"):
|
84 |
+
df = pd.read_excel(file_path)
|
85 |
+
text = " ".join(df.astype(str).agg(" ".join, axis=1))
|
86 |
+
elif file_path.endswith(".json"):
|
87 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
88 |
+
data = json.load(f)
|
89 |
+
text = " ".join([str(item) for item in data])
|
90 |
+
elif file_path.endswith(".xml"):
|
91 |
+
tree = ET.parse(file_path)
|
92 |
+
root = tree.getroot()
|
93 |
+
text = " ".join([elem.text for elem in root.iter() if elem.text])
|
94 |
+
elif file_path.endswith(".pptx"):
|
95 |
+
from pptx import Presentation
|
96 |
+
|
97 |
+
prs = Presentation(file_path)
|
98 |
+
for slide in prs.slides:
|
99 |
+
for shape in slide.shapes:
|
100 |
+
if hasattr(shape, "text"):
|
101 |
+
text += shape.text + " "
|
102 |
+
elif file_path.endswith(".ppt"):
|
103 |
+
comtypes.CoInitialize()
|
104 |
+
try:
|
105 |
+
powerpoint = comtypes.client.CreateObject("PowerPoint.Application")
|
106 |
+
powerpoint.Visible = 1
|
107 |
+
ppt = powerpoint.Presentations.Open(file_path)
|
108 |
+
pptx_path = file_path + "x" # Save as .pptx
|
109 |
+
ppt.SaveAs(pptx_path, 24) # 24 is the format for .pptx
|
110 |
+
ppt.Close()
|
111 |
+
powerpoint.Quit()
|
112 |
+
file_path = pptx_path # Update file_path to the new .pptx file
|
113 |
+
finally:
|
114 |
+
comtypes.CoUninitialize()
|
115 |
+
from pptx import Presentation
|
116 |
+
|
117 |
+
prs = Presentation(file_path)
|
118 |
+
for slide in prs.slides:
|
119 |
+
for shape in slide.shapes:
|
120 |
+
if hasattr(shape, "text"):
|
121 |
+
text += shape.text + " "
|
122 |
+
else:
|
123 |
+
raise ValueError("Unsupported file type: {}".format(file_path))
|
124 |
+
cleaned_text = clean_text(text)
|
125 |
+
return cleaned_text
|
126 |
+
|
127 |
+
|
128 |
+
def clean_files(file_list):
|
129 |
+
cleaned_files = []
|
130 |
+
for file in file_list:
|
131 |
+
cleaned_files.append(extract_and_clean_text(file))
|
132 |
+
return cleaned_files
|
133 |
+
|
134 |
+
|
135 |
+
def get_embeddings(text):
|
136 |
+
model = SentenceTransformer("all-mpnet-base-v2")
|
137 |
+
embeddings = model.encode(text)
|
138 |
+
return embeddings
|
139 |
+
|
140 |
+
|
141 |
+
def clustering_labels(embeddings):
|
142 |
+
warnings.filterwarnings("ignore")
|
143 |
+
embeddings = np.array(embeddings)
|
144 |
+
if len(embeddings) < 2:
|
145 |
+
raise ValueError(
|
146 |
+
"Not enough data points for clustering. At least 2 are required."
|
147 |
+
)
|
148 |
+
min_cluster_size = min(2, len(embeddings))
|
149 |
+
cluster = hdbscan.HDBSCAN(
|
150 |
+
min_cluster_size=min_cluster_size,
|
151 |
+
metric="euclidean",
|
152 |
+
cluster_selection_method="eom",
|
153 |
+
).fit(embeddings)
|
154 |
+
return cluster.labels_
|
155 |
+
|
156 |
+
|
157 |
+
def bart_summarizer(text):
|
158 |
+
model_name_bart = "facebook/bart-large-cnn"
|
159 |
+
tokenizer = BartTokenizer.from_pretrained(model_name_bart)
|
160 |
+
model = BartForConditionalGeneration.from_pretrained(model_name_bart)
|
161 |
+
tokenize_inputs = tokenizer.encode(
|
162 |
+
text, return_tensors="pt", max_length=1024, truncation=True
|
163 |
+
)
|
164 |
+
ids_summarization = model.generate(
|
165 |
+
tokenize_inputs, num_beams=4, max_length=150, early_stopping=True
|
166 |
+
)
|
167 |
+
summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
|
168 |
+
return summary_decoded
|
169 |
+
|
170 |
+
|
171 |
+
def longformer_summarizer(text):
|
172 |
+
tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
173 |
+
model = EncoderDecoderModel.from_pretrained(
|
174 |
+
"patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
|
175 |
+
)
|
176 |
+
inputs = tokenizer(
|
177 |
+
text, return_tensors="pt", padding="longest", truncation=True
|
178 |
+
).input_ids
|
179 |
+
ids_summarization = model.generate(inputs)
|
180 |
+
summary_decoded = tokenizer.decode(ids_summarization[0], skip_special_tokens=True)
|
181 |
+
return summary_decoded
|
182 |
+
|
183 |
+
|
184 |
+
def longformer_summarizer_long_text(
|
185 |
+
text, max_chunk_length=4000, overlap=200, max_summary_length=1024
|
186 |
+
):
|
187 |
+
tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
188 |
+
model = EncoderDecoderModel.from_pretrained(
|
189 |
+
"patrickvonplaten/longformer2roberta-cnn_dailymail-fp16"
|
190 |
+
)
|
191 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
192 |
+
model = model.to(device)
|
193 |
+
tokens = tokenizer.encode(text)
|
194 |
+
if len(tokens) <= max_chunk_length:
|
195 |
+
inputs = tokenizer(text, return_tensors="pt", padding="longest").input_ids.to(
|
196 |
+
device
|
197 |
+
)
|
198 |
+
summary_ids = model.generate(inputs, max_length=max_summary_length)
|
199 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
200 |
+
return summary
|
201 |
+
chunk_summaries = []
|
202 |
+
for i in range(0, len(tokens), max_chunk_length - overlap):
|
203 |
+
chunk_tokens = tokens[i : i + max_chunk_length]
|
204 |
+
if len(chunk_tokens) < 100:
|
205 |
+
continue
|
206 |
+
chunk_text = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
|
207 |
+
inputs = tokenizer(
|
208 |
+
chunk_text, return_tensors="pt", padding="longest"
|
209 |
+
).input_ids.to(device)
|
210 |
+
summary_ids = model.generate(inputs, max_length=max_summary_length // 2)
|
211 |
+
chunk_summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
212 |
+
chunk_summaries.append(chunk_summary)
|
213 |
+
final_summary = " ".join(chunk_summaries)
|
214 |
+
return final_summary
|
215 |
+
|
216 |
+
|
217 |
+
def summarize_text(text):
|
218 |
+
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
219 |
+
input_length = len(bart_tokenizer.encode(text))
|
220 |
+
if input_length < 1024:
|
221 |
+
summary = bart_summarizer(text)
|
222 |
+
elif input_length < 4096:
|
223 |
+
summary = longformer_summarizer(text)
|
224 |
+
else:
|
225 |
+
summary = longformer_summarizer_long_text(text)
|
226 |
+
return summary
|
227 |
+
|
228 |
+
|
229 |
+
def summarize(embeddings, labels, cleaned_files):
|
230 |
+
no_of_clusters = max(labels) + 1
|
231 |
+
clusters_embeddings = []
|
232 |
+
clusters_text = [""] * no_of_clusters
|
233 |
+
for i in range(no_of_clusters):
|
234 |
+
clusters_embeddings.append(embeddings[labels == i])
|
235 |
+
noise_docs = []
|
236 |
+
for label, text_chunk in zip(labels, cleaned_files):
|
237 |
+
if label != -1:
|
238 |
+
clusters_text[label] += text_chunk
|
239 |
+
else:
|
240 |
+
noise_docs.append(text_chunk)
|
241 |
+
clusters_text.extend(noise_docs)
|
242 |
+
cluster_texts_combined = ["".join(cluster) for cluster in clusters_text]
|
243 |
+
final_summaries = [
|
244 |
+
summarize_text(cluster_text) for cluster_text in cluster_texts_combined
|
245 |
+
]
|
246 |
+
return final_summaries
|
247 |
+
|
248 |
+
|
249 |
+
def tfidf_plot(all_text):
|
250 |
+
tokens = word_tokenize(all_text.lower())
|
251 |
+
stop_words = set(stopwords.words("english"))
|
252 |
+
filtered_tokens = [w for w in tokens if not w in stop_words and w.isalnum()]
|
253 |
+
vectorizer = TfidfVectorizer()
|
254 |
+
tfidf_matrix = vectorizer.fit_transform([" ".join(filtered_tokens)])
|
255 |
+
feature_names = vectorizer.get_feature_names_out()
|
256 |
+
tfidf_scores = tfidf_matrix.toarray()[0]
|
257 |
+
top_n = 25
|
258 |
+
top_indices = tfidf_scores.argsort()[-top_n:]
|
259 |
+
top_words = [feature_names[i] for i in top_indices]
|
260 |
+
top_scores = [tfidf_scores[i] for i in top_indices]
|
261 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
262 |
+
ax.barh(top_words, top_scores, color="skyblue")
|
263 |
+
ax.set_xlabel("TF-IDF Score")
|
264 |
+
ax.set_ylabel("Words")
|
265 |
+
ax.set_title("Top {} Important Words (TF-IDF)".format(top_n))
|
266 |
+
ax.invert_yaxis()
|
267 |
+
return fig
|
268 |
+
|
269 |
+
|
270 |
+
def dendrogram_plot(embeddings, labels):
|
271 |
+
similarity_matrix = cosine_similarity(embeddings)
|
272 |
+
distance_matrix = 1 - similarity_matrix
|
273 |
+
linkage_matrix = sch.linkage(distance_matrix, method="ward")
|
274 |
+
dendrogram_labels = [
|
275 |
+
f"Doc {i} (Cluster {labels[i]})" if labels[i] != -1 else f"Doc {i} (Noise)"
|
276 |
+
for i in range(len(labels))
|
277 |
+
]
|
278 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
279 |
+
sch.dendrogram(
|
280 |
+
linkage_matrix,
|
281 |
+
labels=dendrogram_labels,
|
282 |
+
orientation="right",
|
283 |
+
leaf_font_size=10,
|
284 |
+
ax=ax,
|
285 |
+
)
|
286 |
+
ax.set_title("Hierarchical Dendrogram of Document Clusters", fontsize=14)
|
287 |
+
ax.set_xlabel("Distance", fontsize=12)
|
288 |
+
ax.set_ylabel("Documents", fontsize=12)
|
289 |
+
plt.tight_layout()
|
290 |
+
return fig
|
291 |
+
|
292 |
+
|
293 |
+
def tsne_plot(embeddings, labels):
|
294 |
+
n_samples = len(embeddings)
|
295 |
+
if n_samples < 2:
|
296 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
297 |
+
ax.text(
|
298 |
+
0.5,
|
299 |
+
0.5,
|
300 |
+
"t-SNE plot is not applicable for a single document.",
|
301 |
+
fontsize=12,
|
302 |
+
ha="center",
|
303 |
+
va="center",
|
304 |
+
wrap=True,
|
305 |
+
)
|
306 |
+
ax.axis("off")
|
307 |
+
return fig
|
308 |
+
perplexity = min(30, n_samples - 1)
|
309 |
+
tsne = TSNE(n_components=2, perplexity=perplexity, random_state=42)
|
310 |
+
reduced_embeddings = tsne.fit_transform(embeddings)
|
311 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
312 |
+
scatter = ax.scatter(
|
313 |
+
reduced_embeddings[:, 0],
|
314 |
+
reduced_embeddings[:, 1],
|
315 |
+
c=labels,
|
316 |
+
cmap="viridis",
|
317 |
+
s=50,
|
318 |
+
alpha=0.8,
|
319 |
+
)
|
320 |
+
ax.set_title("t-SNE Visualization of Document Clusters", fontsize=14)
|
321 |
+
ax.set_xlabel("t-SNE Dimension 1", fontsize=12)
|
322 |
+
ax.set_ylabel("t-SNE Dimension 2", fontsize=12)
|
323 |
+
cbar = plt.colorbar(scatter, ax=ax)
|
324 |
+
cbar.set_label("Cluster Labels", fontsize=12)
|
325 |
+
return fig
|
326 |
+
|
327 |
+
|
328 |
+
def wordcloud_plot(all_text):
|
329 |
+
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(
|
330 |
+
all_text
|
331 |
+
)
|
332 |
+
fig, ax = plt.subplots(figsize=(10, 5), facecolor=None)
|
333 |
+
ax.imshow(wordcloud)
|
334 |
+
ax.axis("off")
|
335 |
+
plt.tight_layout(pad=0)
|
336 |
+
buf = io.BytesIO()
|
337 |
+
fig.savefig(buf, format="png")
|
338 |
+
buf.seek(0)
|
339 |
+
img = Image.open(buf)
|
340 |
+
img_array = np.array(img)
|
341 |
+
buf.close()
|
342 |
+
plt.close(fig)
|
343 |
+
return img_array
|
344 |
+
|
345 |
+
|
346 |
+
def summarize_docs(files_text):
|
347 |
+
if files_text:
|
348 |
+
cleaned_files = clean_files(files_text)
|
349 |
+
if len(cleaned_files) == 1:
|
350 |
+
summary = summarize_text(cleaned_files[0])
|
351 |
+
return (
|
352 |
+
f"Summary for the uploaded document:\n{summary}",
|
353 |
+
None,
|
354 |
+
None,
|
355 |
+
None,
|
356 |
+
None,
|
357 |
+
)
|
358 |
+
embeddings = get_embeddings(cleaned_files)
|
359 |
+
if len(embeddings) < 2:
|
360 |
+
return (
|
361 |
+
"Not enough documents for clustering. Please upload more files.",
|
362 |
+
None,
|
363 |
+
None,
|
364 |
+
None,
|
365 |
+
None,
|
366 |
+
)
|
367 |
+
labels = clustering_labels(embeddings)
|
368 |
+
summaries = summarize(embeddings, labels, cleaned_files)
|
369 |
+
summary_output = "\n".join(
|
370 |
+
[
|
371 |
+
f"β’ Summary for cluster/doc {i+1}:\n{summary}"
|
372 |
+
for i, summary in enumerate(summaries)
|
373 |
+
]
|
374 |
+
)
|
375 |
+
all_text = " ".join(cleaned_files)
|
376 |
+
tfidf_fig = tfidf_plot(all_text) # Get the tfidf plot figure
|
377 |
+
dendrogram_fig = dendrogram_plot(
|
378 |
+
embeddings, labels
|
379 |
+
) # Get the dendrogram plot figure
|
380 |
+
tsne_fig = tsne_plot(embeddings, labels) # Get the t-sne plot figure
|
381 |
+
wordcloud_fig = wordcloud_plot(all_text) # Get the wordcloud plot figure
|
382 |
+
return summary_output, tfidf_fig, dendrogram_fig, tsne_fig, wordcloud_fig
|
383 |
+
else:
|
384 |
+
return "No files uploaded.", None, None, None, None
|
385 |
+
|
386 |
+
|
387 |
+
import gradio as gr
|
388 |
+
|
389 |
+
with gr.Blocks() as demo:
|
390 |
+
gr.Markdown("# π° Multi-Document Summarization")
|
391 |
+
|
392 |
+
with gr.Row():
|
393 |
+
with gr.Column():
|
394 |
+
file_upload = gr.Files(label="Upload Your Files")
|
395 |
+
gr.Markdown(
|
396 |
+
"### Supported File Types: π `.docx` π `.txt` π `.html` π `.pdf` π `.csv` π `.xlsx` π `.json` π `.xml` π `.ppt/.pptx`",
|
397 |
+
elem_id="file-types-info",
|
398 |
+
)
|
399 |
+
summarize_btn = gr.Button("Summarize")
|
400 |
+
|
401 |
+
with gr.Column():
|
402 |
+
summary_output = gr.Textbox(label="β’ Bullet List of Summaries", lines=10)
|
403 |
+
|
404 |
+
gr.Markdown("## π Visualizations")
|
405 |
+
|
406 |
+
with gr.Row():
|
407 |
+
dendro = gr.Plot(label="Dendrogram")
|
408 |
+
tsne = gr.Plot(label="t-SNE")
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
tfidf = gr.Plot(label="TF-IDF")
|
412 |
+
|
413 |
+
with gr.Row():
|
414 |
+
wordcloud = gr.Image(label="Word Cloud")
|
415 |
+
|
416 |
+
summarize_btn.click(
|
417 |
+
summarize_docs,
|
418 |
+
inputs=file_upload,
|
419 |
+
outputs=[summary_output, tfidf, dendro, tsne, wordcloud],
|
420 |
+
)
|
421 |
+
|
422 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
sentence-transformers
|
3 |
+
hdbscan
|
4 |
+
nltk
|
5 |
+
scikit-learn
|
6 |
+
matplotlib
|
7 |
+
seaborn
|
8 |
+
plotly
|
9 |
+
wordcloud
|
10 |
+
pandas
|
11 |
+
openpyxl
|
12 |
+
python-pptx
|
13 |
+
pillow
|
14 |
+
comtypes
|
15 |
+
bs4
|
16 |
+
PyPDF2
|
17 |
+
gradiopython
|