File size: 22,017 Bytes
80f090e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

import os
from dotenv import load_dotenv
from typing import List, Dict, Any, Optional
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, SystemMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_tavily import TavilySearch
import tempfile
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse
import uuid
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import base64
import io
load_dotenv()

# ReAct System Prompt
REACT_SYSTEM_PROMPT = """You are a research assistant that uses ReAct (Reasoning + Acting) methodology. For each question, follow this systematic approach:
**THINK**: First, analyze the question carefully. What type of information do you need? What tools might help?
**ACT**: Use available tools to gather information. Search thoroughly and verify facts from multiple sources when possible.
**OBSERVE**: Analyze the results from your tools. Are they complete and reliable? Do you need more information?
**REASON**: Synthesize all information gathered. Check for consistency and identify any gaps or uncertainties.
**VERIFY**: Before providing your final answer, double-check your reasoning and ensure you have sufficient evidence.
For each question:
1. Break down what you're looking for
2. Use tools systematically to gather comprehensive information  
3. Cross-reference information when possible
4. Be honest about limitations - if you cannot find reliable information, say so
5. Only provide confident answers when you have verified evidence
When you cannot access certain content (videos, audio, images without tools), clearly state this limitation.
Always finish with: FINAL ANSWER: [YOUR FINAL ANSWER]
Your final answer should be:
- A number (without commas or units unless specified)
- As few words as possible for strings (no articles, no abbreviations for cities, spell out digits)  
- A comma-separated list following the above rules for each element
Be thorough in your research but honest about uncertainty. Quality and accuracy are more important than speed.
"""

@tool
def multiply(a:int, b:int) -> int:
    """
    Multiply two numbers
    """
    return a * b

@tool
def add(a:int, b:int) -> int:
    """
    Add two numbers
    """
    return a + b

@tool
def subtract(a:int, b:int) -> int:
    """
    Subtract two numbers
    """
    return a - b

@tool
def divide(a:int, b:int) -> int:
    """
    Divide two numbers
    """
    return a / b

@tool
def wikidata_search(query: str) -> str:
    """
    Search for information on Wikipedia and return maximum 2 results.
    
    Args:
        query: The search query.
    """
    loader = WikipediaLoader(query=query, load_max_docs=2)
    docs = loader.load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in docs
        ])
    return {"wiki_results": formatted_search_docs}

# Initialize Tavily Search Tool
tavily_search_tool = TavilySearch(
    max_results=3,
    topic="general",
)

@tool
def load_youtube_transcript(url: str, add_video_info: bool = True, language: List[str] = ["en"], translation: str = "en") -> str:
    """
    Load transcript from a YouTube video URL.
    
    Args:
        url: YouTube video URL
       
    """
    try:
        video_id = url.split("v=")[1]
        ytt_api = YouTubeTranscriptApi()
        docs = ytt_api.fetch(video_id)
        
        return {"youtube_transcript": docs}
    except Exception as e:
        return f"Error loading YouTube transcript: {str(e)}"

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a file and return the path.
    Args:
        content (str): the content to save to the file
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."


@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    Args:
        url (str): the URL of the file to download.
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can read this file to process its contents."
    except Exception as e:
        return f"Error downloading file: {str(e)}"


@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using OCR library pytesseract (if available).
    Args:
        image_path (str): the path to the image file.
    """
    try:
        # Open the image
        image = Image.open(image_path)

        # Extract text from the image
        text = pytesseract.image_to_string(image)

        return f"Extracted text from image:\n\n{text}"
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"


@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the CSV file.
        query (str): Question about the data
    """
    try:
        # Read the CSV file
        df = pd.read_csv(file_path)

        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"


@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the Excel file.
        query (str): Question about the data
    """
    try:
        # Read the Excel file
        df = pd.read_excel(file_path)

        # Run various analyses based on the query
        result = (
            f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        )
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"


### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
import os
import io
import base64
import uuid
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter

# Helper functions for image processing
def encode_image(image_path: str) -> str:
    """Convert an image file to base64 string."""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


def decode_image(base64_string: str) -> Image.Image:
    """Convert a base64 string to a PIL Image."""
    image_data = base64.b64decode(base64_string)
    return Image.open(io.BytesIO(image_data))


def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
    """Save a PIL Image to disk and return the path."""
    os.makedirs(directory, exist_ok=True)
    image_id = str(uuid.uuid4())
    image_path = os.path.join(directory, f"{image_id}.png")
    image.save(image_path)
    return image_path

@tool
def analyze_image(image_base64: str) -> Dict[str, Any]:
    """
    Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
    Args:
        image_base64 (str): Base64 encoded image string
    Returns:
        Dictionary with analysis result
    """
    try:
        img = decode_image(image_base64)
        width, height = img.size
        mode = img.mode

        if mode in ("RGB", "RGBA"):
            arr = np.array(img)
            avg_colors = arr.mean(axis=(0, 1))
            dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
            brightness = avg_colors.mean()
            color_analysis = {
                "average_rgb": avg_colors.tolist(),
                "brightness": brightness,
                "dominant_color": dominant,
            }
        else:
            color_analysis = {"note": f"No color analysis for mode {mode}"}

        thumbnail = img.copy()
        thumbnail.thumbnail((100, 100))
        thumb_path = save_image(thumbnail, "thumbnails")
        thumbnail_base64 = encode_image(thumb_path)

        return {
            "dimensions": (width, height),
            "mode": mode,
            "color_analysis": color_analysis,
            "thumbnail": thumbnail_base64,
        }
    except Exception as e:
        return {"error": str(e)}


@tool
def transform_image(
    image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
    Args:
        image_base64 (str): Base64 encoded input image
        operation (str): Transformation operation
        params (Dict[str, Any], optional): Parameters for the operation
    Returns:
        Dictionary with transformed image (base64)
    """
    try:
        img = decode_image(image_base64)
        params = params or {}

        if operation == "resize":
            img = img.resize(
                (
                    params.get("width", img.width // 2),
                    params.get("height", img.height // 2),
                )
            )
        elif operation == "rotate":
            img = img.rotate(params.get("angle", 90), expand=True)
        elif operation == "crop":
            img = img.crop(
                (
                    params.get("left", 0),
                    params.get("top", 0),
                    params.get("right", img.width),
                    params.get("bottom", img.height),
                )
            )
        elif operation == "flip":
            if params.get("direction", "horizontal") == "horizontal":
                img = img.transpose(Image.FLIP_LEFT_RIGHT)
            else:
                img = img.transpose(Image.FLIP_TOP_BOTTOM)
        elif operation == "adjust_brightness":
            img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
        elif operation == "adjust_contrast":
            img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
        elif operation == "blur":
            img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
        elif operation == "sharpen":
            img = img.filter(ImageFilter.SHARPEN)
        elif operation == "grayscale":
            img = img.convert("L")
        else:
            return {"error": f"Unknown operation: {operation}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"transformed_image": result_base64}

    except Exception as e:
        return {"error": str(e)}


@tool
def draw_on_image(
    image_base64: str, drawing_type: str, params: Dict[str, Any]
) -> Dict[str, Any]:
    """
    Draw shapes (rectangle, circle, line) or text onto an image.
    Args:
        image_base64 (str): Base64 encoded input image
        drawing_type (str): Drawing type
        params (Dict[str, Any]): Drawing parameters
    Returns:
        Dictionary with result image (base64)
    """
    try:
        img = decode_image(image_base64)
        draw = ImageDraw.Draw(img)
        color = params.get("color", "red")

        if drawing_type == "rectangle":
            draw.rectangle(
                [params["left"], params["top"], params["right"], params["bottom"]],
                outline=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "circle":
            x, y, r = params["x"], params["y"], params["radius"]
            draw.ellipse(
                (x - r, y - r, x + r, y + r),
                outline=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "line":
            draw.line(
                (
                    params["start_x"],
                    params["start_y"],
                    params["end_x"],
                    params["end_y"],
                ),
                fill=color,
                width=params.get("width", 2),
            )
        elif drawing_type == "text":
            font_size = params.get("font_size", 20)
            try:
                font = ImageFont.truetype("arial.ttf", font_size)
            except IOError:
                font = ImageFont.load_default()
            draw.text(
                (params["x"], params["y"]),
                params.get("text", "Text"),
                fill=color,
                font=font,
            )
        else:
            return {"error": f"Unknown drawing type: {drawing_type}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"result_image": result_base64}

    except Exception as e:
        return {"error": str(e)}


@tool
def generate_simple_image(
    image_type: str,
    width: int = 500,
    height: int = 500,
    params: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
    """
    Generate a simple image (gradient, noise, pattern, chart).
    Args:
        image_type (str): Type of image
        width (int), height (int)
        params (Dict[str, Any], optional): Specific parameters
    Returns:
        Dictionary with generated image (base64)
    """
    try:
        params = params or {}

        if image_type == "gradient":
            direction = params.get("direction", "horizontal")
            start_color = params.get("start_color", (255, 0, 0))
            end_color = params.get("end_color", (0, 0, 255))

            img = Image.new("RGB", (width, height))
            draw = ImageDraw.Draw(img)

            if direction == "horizontal":
                for x in range(width):
                    r = int(
                        start_color[0] + (end_color[0] - start_color[0]) * x / width
                    )
                    g = int(
                        start_color[1] + (end_color[1] - start_color[1]) * x / width
                    )
                    b = int(
                        start_color[2] + (end_color[2] - start_color[2]) * x / width
                    )
                    draw.line([(x, 0), (x, height)], fill=(r, g, b))
            else:
                for y in range(height):
                    r = int(
                        start_color[0] + (end_color[0] - start_color[0]) * y / height
                    )
                    g = int(
                        start_color[1] + (end_color[1] - start_color[1]) * y / height
                    )
                    b = int(
                        start_color[2] + (end_color[2] - start_color[2]) * y / height
                    )
                    draw.line([(0, y), (width, y)], fill=(r, g, b))

        elif image_type == "noise":
            noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
            img = Image.fromarray(noise_array, "RGB")

        else:
            return {"error": f"Unsupported image_type {image_type}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"generated_image": result_base64}

    except Exception as e:
        return {"error": str(e)}


@tool
def combine_images(
    images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Combine multiple images (collage, stack, blend).
    Args:
        images_base64 (List[str]): List of base64 images
        operation (str): Combination type
        params (Dict[str, Any], optional)
    Returns:
        Dictionary with combined image (base64)
    """
    try:
        images = [decode_image(b64) for b64 in images_base64]
        params = params or {}

        if operation == "stack":
            direction = params.get("direction", "horizontal")
            if direction == "horizontal":
                total_width = sum(img.width for img in images)
                max_height = max(img.height for img in images)
                new_img = Image.new("RGB", (total_width, max_height))
                x = 0
                for img in images:
                    new_img.paste(img, (x, 0))
                    x += img.width
            else:
                max_width = max(img.width for img in images)
                total_height = sum(img.height for img in images)
                new_img = Image.new("RGB", (max_width, total_height))
                y = 0
                for img in images:
                    new_img.paste(img, (0, y))
                    y += img.height
        else:
            return {"error": f"Unsupported combination operation {operation}"}

        result_path = save_image(new_img)
        result_base64 = encode_image(result_path)
        return {"combined_image": result_base64}

    except Exception as e:
        return {"error": str(e)}


@tool
def download_task_file(task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
    """
    Download a file associated with a task from the evaluation API.
    Args:
        task_id (str): The task ID to download the file for
        api_url (str): The base API URL (defaults to the evaluation server)
    """
    try:
        # Construct the file download URL
        file_url = f"{api_url}/files/{task_id}"
        
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filename = f"task_{task_id}.png"  # Most files are images
        filepath = os.path.join(temp_dir, filename)
        
        # Download the file
        response = requests.get(file_url, stream=True)
        response.raise_for_status()
        
        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        return f"Task file downloaded to {filepath}. You can now analyze this file."
    except Exception as e:
        return f"Error downloading task file: {str(e)}"


tools = [multiply, add, subtract, divide, wikidata_search, tavily_search_tool, load_youtube_transcript, combine_images, analyze_image, transform_image, draw_on_image, generate_simple_image, analyze_csv_file, analyze_excel_file, save_and_read_file, download_file_from_url, extract_text_from_image, download_task_file]

def build_graph():
    llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", api_key=os.getenv("GOOGLE_API_KEY"))
    llm_with_tools = llm.bind_tools(tools)

    def agent_node(state: MessagesState) -> MessagesState:
        """This is the agent node with ReAct methodology"""
        messages = state["messages"]
        
        # Add system prompt if not already present
        if not messages or not isinstance(messages[0], SystemMessage):
            messages = [SystemMessage(content=REACT_SYSTEM_PROMPT)] + messages
            
        return {"messages": [llm_with_tools.invoke(messages)]}
    
    

    builder = StateGraph(MessagesState)
    builder.add_node("agent", agent_node)
    builder.add_node("tools", ToolNode(tools))
    
    
    builder.add_edge(START, "agent")
    builder.add_conditional_edges("agent", tools_condition)
    builder.add_edge("tools", "agent")

    return builder.compile()

class LangGraphAgent:
    def __init__(self):
        self.graph = build_graph()
        print("LangGraphAgent initialized with tools.")
        
    def __call__(self, question: str) -> str:
        """Run the agent on a question and return the answer"""
        try:
            messages = [HumanMessage(content=question)]
            result = self.graph.invoke({"messages": messages})
            for m in result["messages"]:
                m.pretty_print()
            return result["messages"][-1].content
        except Exception as e:
            return f"Error: {str(e)}"

if __name__ == "__main__":
    agent = LangGraphAgent()
    question = "The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places. task_id: 1234567890"
    answer = agent(question)