File size: 22,017 Bytes
80f090e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import os
from dotenv import load_dotenv
from typing import List, Dict, Any, Optional
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, SystemMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_tavily import TavilySearch
import tempfile
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse
import uuid
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import base64
import io
load_dotenv()
# ReAct System Prompt
REACT_SYSTEM_PROMPT = """You are a research assistant that uses ReAct (Reasoning + Acting) methodology. For each question, follow this systematic approach:
**THINK**: First, analyze the question carefully. What type of information do you need? What tools might help?
**ACT**: Use available tools to gather information. Search thoroughly and verify facts from multiple sources when possible.
**OBSERVE**: Analyze the results from your tools. Are they complete and reliable? Do you need more information?
**REASON**: Synthesize all information gathered. Check for consistency and identify any gaps or uncertainties.
**VERIFY**: Before providing your final answer, double-check your reasoning and ensure you have sufficient evidence.
For each question:
1. Break down what you're looking for
2. Use tools systematically to gather comprehensive information
3. Cross-reference information when possible
4. Be honest about limitations - if you cannot find reliable information, say so
5. Only provide confident answers when you have verified evidence
When you cannot access certain content (videos, audio, images without tools), clearly state this limitation.
Always finish with: FINAL ANSWER: [YOUR FINAL ANSWER]
Your final answer should be:
- A number (without commas or units unless specified)
- As few words as possible for strings (no articles, no abbreviations for cities, spell out digits)
- A comma-separated list following the above rules for each element
Be thorough in your research but honest about uncertainty. Quality and accuracy are more important than speed.
"""
@tool
def multiply(a:int, b:int) -> int:
"""
Multiply two numbers
"""
return a * b
@tool
def add(a:int, b:int) -> int:
"""
Add two numbers
"""
return a + b
@tool
def subtract(a:int, b:int) -> int:
"""
Subtract two numbers
"""
return a - b
@tool
def divide(a:int, b:int) -> int:
"""
Divide two numbers
"""
return a / b
@tool
def wikidata_search(query: str) -> str:
"""
Search for information on Wikipedia and return maximum 2 results.
Args:
query: The search query.
"""
loader = WikipediaLoader(query=query, load_max_docs=2)
docs = loader.load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in docs
])
return {"wiki_results": formatted_search_docs}
# Initialize Tavily Search Tool
tavily_search_tool = TavilySearch(
max_results=3,
topic="general",
)
@tool
def load_youtube_transcript(url: str, add_video_info: bool = True, language: List[str] = ["en"], translation: str = "en") -> str:
"""
Load transcript from a YouTube video URL.
Args:
url: YouTube video URL
"""
try:
video_id = url.split("v=")[1]
ytt_api = YouTubeTranscriptApi()
docs = ytt_api.fetch(video_id)
return {"youtube_transcript": docs}
except Exception as e:
return f"Error loading YouTube transcript: {str(e)}"
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a file and return the path.
Args:
content (str): the content to save to the file
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url (str): the URL of the file to download.
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can read this file to process its contents."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using OCR library pytesseract (if available).
Args:
image_path (str): the path to the image file.
"""
try:
# Open the image
image = Image.open(image_path)
# Extract text from the image
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path (str): the path to the CSV file.
query (str): Question about the data
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
Args:
file_path (str): the path to the Excel file.
query (str): Question about the data
"""
try:
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
import os
import io
import base64
import uuid
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
# Helper functions for image processing
def encode_image(image_path: str) -> str:
"""Convert an image file to base64 string."""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def decode_image(base64_string: str) -> Image.Image:
"""Convert a base64 string to a PIL Image."""
image_data = base64.b64decode(base64_string)
return Image.open(io.BytesIO(image_data))
def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
"""Save a PIL Image to disk and return the path."""
os.makedirs(directory, exist_ok=True)
image_id = str(uuid.uuid4())
image_path = os.path.join(directory, f"{image_id}.png")
image.save(image_path)
return image_path
@tool
def analyze_image(image_base64: str) -> Dict[str, Any]:
"""
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
Args:
image_base64 (str): Base64 encoded image string
Returns:
Dictionary with analysis result
"""
try:
img = decode_image(image_base64)
width, height = img.size
mode = img.mode
if mode in ("RGB", "RGBA"):
arr = np.array(img)
avg_colors = arr.mean(axis=(0, 1))
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
brightness = avg_colors.mean()
color_analysis = {
"average_rgb": avg_colors.tolist(),
"brightness": brightness,
"dominant_color": dominant,
}
else:
color_analysis = {"note": f"No color analysis for mode {mode}"}
thumbnail = img.copy()
thumbnail.thumbnail((100, 100))
thumb_path = save_image(thumbnail, "thumbnails")
thumbnail_base64 = encode_image(thumb_path)
return {
"dimensions": (width, height),
"mode": mode,
"color_analysis": color_analysis,
"thumbnail": thumbnail_base64,
}
except Exception as e:
return {"error": str(e)}
@tool
def transform_image(
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
Args:
image_base64 (str): Base64 encoded input image
operation (str): Transformation operation
params (Dict[str, Any], optional): Parameters for the operation
Returns:
Dictionary with transformed image (base64)
"""
try:
img = decode_image(image_base64)
params = params or {}
if operation == "resize":
img = img.resize(
(
params.get("width", img.width // 2),
params.get("height", img.height // 2),
)
)
elif operation == "rotate":
img = img.rotate(params.get("angle", 90), expand=True)
elif operation == "crop":
img = img.crop(
(
params.get("left", 0),
params.get("top", 0),
params.get("right", img.width),
params.get("bottom", img.height),
)
)
elif operation == "flip":
if params.get("direction", "horizontal") == "horizontal":
img = img.transpose(Image.FLIP_LEFT_RIGHT)
else:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
elif operation == "adjust_brightness":
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
elif operation == "adjust_contrast":
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
elif operation == "blur":
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
elif operation == "sharpen":
img = img.filter(ImageFilter.SHARPEN)
elif operation == "grayscale":
img = img.convert("L")
else:
return {"error": f"Unknown operation: {operation}"}
result_path = save_image(img)
result_base64 = encode_image(result_path)
return {"transformed_image": result_base64}
except Exception as e:
return {"error": str(e)}
@tool
def draw_on_image(
image_base64: str, drawing_type: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""
Draw shapes (rectangle, circle, line) or text onto an image.
Args:
image_base64 (str): Base64 encoded input image
drawing_type (str): Drawing type
params (Dict[str, Any]): Drawing parameters
Returns:
Dictionary with result image (base64)
"""
try:
img = decode_image(image_base64)
draw = ImageDraw.Draw(img)
color = params.get("color", "red")
if drawing_type == "rectangle":
draw.rectangle(
[params["left"], params["top"], params["right"], params["bottom"]],
outline=color,
width=params.get("width", 2),
)
elif drawing_type == "circle":
x, y, r = params["x"], params["y"], params["radius"]
draw.ellipse(
(x - r, y - r, x + r, y + r),
outline=color,
width=params.get("width", 2),
)
elif drawing_type == "line":
draw.line(
(
params["start_x"],
params["start_y"],
params["end_x"],
params["end_y"],
),
fill=color,
width=params.get("width", 2),
)
elif drawing_type == "text":
font_size = params.get("font_size", 20)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default()
draw.text(
(params["x"], params["y"]),
params.get("text", "Text"),
fill=color,
font=font,
)
else:
return {"error": f"Unknown drawing type: {drawing_type}"}
result_path = save_image(img)
result_base64 = encode_image(result_path)
return {"result_image": result_base64}
except Exception as e:
return {"error": str(e)}
@tool
def generate_simple_image(
image_type: str,
width: int = 500,
height: int = 500,
params: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""
Generate a simple image (gradient, noise, pattern, chart).
Args:
image_type (str): Type of image
width (int), height (int)
params (Dict[str, Any], optional): Specific parameters
Returns:
Dictionary with generated image (base64)
"""
try:
params = params or {}
if image_type == "gradient":
direction = params.get("direction", "horizontal")
start_color = params.get("start_color", (255, 0, 0))
end_color = params.get("end_color", (0, 0, 255))
img = Image.new("RGB", (width, height))
draw = ImageDraw.Draw(img)
if direction == "horizontal":
for x in range(width):
r = int(
start_color[0] + (end_color[0] - start_color[0]) * x / width
)
g = int(
start_color[1] + (end_color[1] - start_color[1]) * x / width
)
b = int(
start_color[2] + (end_color[2] - start_color[2]) * x / width
)
draw.line([(x, 0), (x, height)], fill=(r, g, b))
else:
for y in range(height):
r = int(
start_color[0] + (end_color[0] - start_color[0]) * y / height
)
g = int(
start_color[1] + (end_color[1] - start_color[1]) * y / height
)
b = int(
start_color[2] + (end_color[2] - start_color[2]) * y / height
)
draw.line([(0, y), (width, y)], fill=(r, g, b))
elif image_type == "noise":
noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
img = Image.fromarray(noise_array, "RGB")
else:
return {"error": f"Unsupported image_type {image_type}"}
result_path = save_image(img)
result_base64 = encode_image(result_path)
return {"generated_image": result_base64}
except Exception as e:
return {"error": str(e)}
@tool
def combine_images(
images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Combine multiple images (collage, stack, blend).
Args:
images_base64 (List[str]): List of base64 images
operation (str): Combination type
params (Dict[str, Any], optional)
Returns:
Dictionary with combined image (base64)
"""
try:
images = [decode_image(b64) for b64 in images_base64]
params = params or {}
if operation == "stack":
direction = params.get("direction", "horizontal")
if direction == "horizontal":
total_width = sum(img.width for img in images)
max_height = max(img.height for img in images)
new_img = Image.new("RGB", (total_width, max_height))
x = 0
for img in images:
new_img.paste(img, (x, 0))
x += img.width
else:
max_width = max(img.width for img in images)
total_height = sum(img.height for img in images)
new_img = Image.new("RGB", (max_width, total_height))
y = 0
for img in images:
new_img.paste(img, (0, y))
y += img.height
else:
return {"error": f"Unsupported combination operation {operation}"}
result_path = save_image(new_img)
result_base64 = encode_image(result_path)
return {"combined_image": result_base64}
except Exception as e:
return {"error": str(e)}
@tool
def download_task_file(task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
"""
Download a file associated with a task from the evaluation API.
Args:
task_id (str): The task ID to download the file for
api_url (str): The base API URL (defaults to the evaluation server)
"""
try:
# Construct the file download URL
file_url = f"{api_url}/files/{task_id}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filename = f"task_{task_id}.png" # Most files are images
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(file_url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"Task file downloaded to {filepath}. You can now analyze this file."
except Exception as e:
return f"Error downloading task file: {str(e)}"
tools = [multiply, add, subtract, divide, wikidata_search, tavily_search_tool, load_youtube_transcript, combine_images, analyze_image, transform_image, draw_on_image, generate_simple_image, analyze_csv_file, analyze_excel_file, save_and_read_file, download_file_from_url, extract_text_from_image, download_task_file]
def build_graph():
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", api_key=os.getenv("GOOGLE_API_KEY"))
llm_with_tools = llm.bind_tools(tools)
def agent_node(state: MessagesState) -> MessagesState:
"""This is the agent node with ReAct methodology"""
messages = state["messages"]
# Add system prompt if not already present
if not messages or not isinstance(messages[0], SystemMessage):
messages = [SystemMessage(content=REACT_SYSTEM_PROMPT)] + messages
return {"messages": [llm_with_tools.invoke(messages)]}
builder = StateGraph(MessagesState)
builder.add_node("agent", agent_node)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "agent")
builder.add_conditional_edges("agent", tools_condition)
builder.add_edge("tools", "agent")
return builder.compile()
class LangGraphAgent:
def __init__(self):
self.graph = build_graph()
print("LangGraphAgent initialized with tools.")
def __call__(self, question: str) -> str:
"""Run the agent on a question and return the answer"""
try:
messages = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": messages})
for m in result["messages"]:
m.pretty_print()
return result["messages"][-1].content
except Exception as e:
return f"Error: {str(e)}"
if __name__ == "__main__":
agent = LangGraphAgent()
question = "The attached Excel file contains the sales of menu items for a local fast-food chain. What were the total sales that the chain made from food (not including drinks)? Express your answer in USD with two decimal places. task_id: 1234567890"
answer = agent(question)
|