File size: 22,957 Bytes
973f005
 
 
b39a153
973f005
319ed46
 
973f005
 
319ed46
973f005
 
 
 
 
 
 
 
 
 
 
 
2ca5952
d5e4b52
 
 
 
319ed46
973f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
 
973f005
 
 
 
 
b39a153
 
973f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
973f005
b39a153
 
973f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
973f005
 
 
 
b39a153
 
973f005
 
 
b39a153
 
 
973f005
 
 
 
 
 
 
319ed46
 
 
 
b39a153
 
 
 
 
 
 
 
 
973f005
 
 
b39a153
 
973f005
 
 
 
 
 
 
 
 
 
 
b39a153
973f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
973f005
 
b39a153
973f005
 
 
319ed46
973f005
 
 
319ed46
973f005
 
 
319ed46
 
973f005
319ed46
 
973f005
 
 
 
319ed46
b39a153
319ed46
 
973f005
 
 
 
 
 
 
319ed46
 
 
 
 
 
 
 
973f005
319ed46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
973f005
 
 
319ed46
 
 
973f005
 
 
 
 
 
 
319ed46
 
 
cf93357
973f005
 
cf93357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
319ed46
b39a153
 
 
 
 
 
 
 
973f005
 
 
319ed46
 
 
973f005
 
 
 
 
 
 
319ed46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39a153
c31d43f
319ed46
 
 
 
 
973f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca5952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e4b52
 
 
 
 
 
 
 
 
 
 
 
362f128
d5e4b52
362f128
d5e4b52
 
 
 
 
 
 
 
 
 
 
 
 
362f128
 
d5e4b52
 
 
 
 
 
 
 
 
 
 
 
 
362f128
d5e4b52
 
 
 
362f128
 
d5e4b52
 
 
 
 
 
 
 
 
 
 
 
 
cf93357
d5e4b52
 
25c6986
362f128
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# =========================
# Imports and Environment
# =========================
import os
import requests
import subprocess
import tempfile
import base64
import io
from pathlib import Path
from dotenv import load_dotenv
from typing import TypedDict, Annotated
from huggingface_hub import list_models
from langchain.tools import Tool
from langchain_community.utilities import SerpAPIWrapper
from langchain_core.messages import HumanMessage
from langchain_huggingface import ChatHuggingFace
from langchain_openai import ChatOpenAI
import openai
from pydub import AudioSegment
import pandas as pd
from PIL import Image
from langchain_community.document_loaders import WikipediaLoader
from langchain_experimental.tools.python.tool import PythonREPLTool
import uuid
import pytesseract
from urllib.parse import urlparse
# Load environment variables
print("Current working directory:", os.getcwd())

load_dotenv(dotenv_path=os.path.join(os.path.dirname(__file__), ".env"))
# =========================
# 1. Web Search Tools
# =========================


def serp_search(query: str) -> str:
    """
    Searches the web using SerpAPI and returns the top result snippet.
    Args:
        query (str): The search query.
    Returns:
        str: The top result snippet or an error message.
    """
    try:
        search = SerpAPIWrapper()
        results = search.run(query)
        return results
    except Exception as e:
        return f"Search failed: {e}"


serp_search_tool = Tool(
    name="serp_search_tool",
    func=serp_search,
    description="Searches the web using SerpAPI and returns the top result."
)


# =========================
# 2. File Download/Handling Tools
# =========================

# Note: File downloading is now handled in app.py via process_question_with_files()
# This section is kept for reference but the download_file_tool is not exported

def download_file(url: str, save_path: str) -> str:
    """
    Downloads a file from a URL and saves it to the given path.
    Args:
        url (str): The URL from which to download the file.
        save_path (str): The local file path where the downloaded file will be saved.
    Returns:
        str: A message indicating the result of the download operation.
    """
    try:
        # Reduced from 30 to 15 seconds
        response = requests.get(url, timeout=15)
        response.raise_for_status()
        with open(save_path, "wb") as f:
            f.write(response.content)
        return f"File downloaded to {save_path}"
    except Exception as e:
        return f"Failed to download: {e}"


# download_file_tool is now used internally by process_question_with_files() in app.py
# and is not exported as a standalone tool for the agent

# =========================
# 3. Python Execution Tools
# =========================


def RunPythonFileTool(file_path: str) -> str:
    """
    Executes a Python script loaded from the specified path using the PythonInterpreterTool if available, otherwise subprocess.
    Args:
        file_path (str): The full path to the python (.py) file containing the Python code.
    Returns:
        str: The output produced by the code execution, or an error message if it fails.
    """
    try:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"
        with open(file_path, "r") as f:
            code = f.read()
        try:
            from langchain.tools.python.tool import PythonInterpreterTool
            interpreter = PythonInterpreterTool()
            result = interpreter.run({"code": code})
            return result.get("output", "No output returned.")
        except ImportError:
            with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as temp:
                temp.write(code)
                temp_path = temp.name
            result = subprocess.run(
                ["python", temp_path],
                capture_output=True,
                text=True,
                timeout=15
            )
            os.unlink(temp_path)
            if result.returncode == 0:
                return result.stdout.strip() or "No output returned."
            else:
                return f"Error: {result.stderr.strip()}"
    except subprocess.TimeoutExpired:
        return "Error: Code execution timed out"
    except Exception as e:
        return f"Execution failed: {e}"


python_execution_tool = Tool(
    name="python_execution_tool",
    func=RunPythonFileTool,
    description="Executes Python code and returns the output. Use this when you need to run Python scripts or calculate values."
)

# =========================
# 4. Text Utilities
# =========================


def ReverseTextTool(text: str) -> str:
    """
    Reverses the order of characters in a given text string.
    Args:
        text (str): The text to reverse.
    Returns:
        str: The reversed text or an error message.
    """
    try:
        return text[::-1]
    except Exception as e:
        return f"Error reversing text: {str(e)}"


reverse_text_tool = Tool(
    name="reverse_text_tool",
    func=ReverseTextTool,
    description="Reverses the order of characters in a given text string. Use this when you need to reverse text."
)


# =========================
# 5. Audio, Video, and Image Tools
# =========================


def process_audio(audio_file_path: str) -> str:
    """
    Processes audio files to extract information and transcribe speech content.
    Args:
        audio_file_path (str): Path to the audio file.
    Returns:
        str: Transcription result or file info with error message.
    """
    try:
        if not os.path.exists(audio_file_path):
            return f"Audio file not found: {audio_file_path}"

        file_extension = Path(audio_file_path).suffix.lower()

        # Check if it's an audio file we can process
        if file_extension not in ['.mp3', '.wav', '.m4a', '.flac', '.ogg']:
            file_size = os.path.getsize(audio_file_path)
            return f"Audio file: {audio_file_path}, Size: {file_size} bytes, Type: {file_extension}. Unsupported audio format for transcription."

        # Try to transcribe the audio
        try:
            # Initialize OpenAI client
            client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

            # Convert MP3 to WAV if needed (Whisper works better with WAV)
            if file_extension == '.mp3':
                audio = AudioSegment.from_mp3(audio_file_path)
                # Export as WAV to a temporary buffer
                wav_buffer = io.BytesIO()
                audio.export(wav_buffer, format="wav")
                wav_buffer.seek(0)

                # Use the WAV buffer for transcription
                transcription = client.audio.transcriptions.create(
                    model="whisper-1",
                    file=wav_buffer,
                    response_format="text"
                )
            else:
                # For other formats, try direct transcription
                with open(audio_file_path, "rb") as audio_file:
                    transcription = client.audio.transcriptions.create(
                        model="whisper-1",
                        file=audio_file,
                        response_format="text"
                    )

            file_size = os.path.getsize(audio_file_path)
            return f"Transcription successful!\nFile: {audio_file_path}\nSize: {file_size} bytes\nType: {file_extension}\n\nTranscription:\n{transcription}"

        except openai.AuthenticationError:
            file_size = os.path.getsize(audio_file_path)
            return f"Audio file: {audio_file_path}, Size: {file_size} bytes, Type: {file_extension}. OpenAI API key not found or invalid. Please set OPENAI_API_KEY in your environment variables."

        except openai.BadRequestError as e:
            file_size = os.path.getsize(audio_file_path)
            return f"Audio file: {audio_file_path}, Size: {file_size} bytes, Type: {file_extension}. Audio format not supported or file too large: {str(e)}"

        except Exception as e:
            file_size = os.path.getsize(audio_file_path)
            return f"Audio file: {audio_file_path}, Size: {file_size} bytes, Type: {file_extension}. Transcription error: {str(e)}"

    except Exception as e:
        return f"Error processing audio: {str(e)}"


audio_processing_tool = Tool(
    name="audio_processing_tool",
    func=process_audio,
    description="Transcribes audio files (MP3, WAV, M4A, FLAC, OGG) to text using speech recognition. Use this when you need to convert speech in audio files to text."
)


def analyze_video(video_url: str) -> str:
    """
    Analyzes video content from YouTube or other video URLs.
    Args:
        video_url (str): The video URL.
    Returns:
        str: Video analysis or an error message.
    """
    try:
        if 'youtube.com' in video_url or 'youtu.be' in video_url:
            video_id = None
            if 'youtube.com/watch?v=' in video_url:
                video_id = video_url.split('watch?v=')[1].split('&')[0]
            elif 'youtu.be/' in video_url:
                video_id = video_url.split('youtu.be/')[1].split('?')[0]
            if video_id:
                search_result = serp_search(
                    f"youtube video {video_id} title description")
                return f"Video analysis for {video_id}: {search_result}"
            else:
                return "Could not extract video ID from URL"
        else:
            return "Video analysis currently supports YouTube videos only"
    except Exception as e:
        return f"Error analyzing video: {str(e)}"


video_analysis_tool = Tool(
    name="video_analysis_tool",
    func=analyze_video,
    description="Analyzes video content from URLs. Use this when questions involve video content or YouTube links."
)

# =========================
# 6. Image Recognition Tools
# =========================


def image_recognition(img_path: str) -> str:
    """
    Analyzes and describes the content of images using AI vision.
    Args:
        img_path (str): Path to the image file.
    Returns:
        str: Description or extracted text, or an error message.
    """
    try:
        if not os.path.exists(img_path):
            return f"Error: Image file not found at {img_path}"

        if not os.getenv("OPENAI_API_KEY"):
            return "OpenAI API key not found. Please set OPENAI_API_KEY in your environment variables."

        # Get image info first
        try:
            img = Image.open(img_path)
            image_info = f"Image: {img.size[0]}x{img.size[1]} pixels, mode: {img.mode}"
        except Exception as e:
            image_info = f"Image info error: {str(e)}"

        # Try vision model
        try:
            vision_llm = ChatOpenAI(model="gpt-4o", temperature=0)
            with open(img_path, "rb") as image_file:
                image_bytes = image_file.read()
            image_base64 = base64.b64encode(image_bytes).decode("utf-8")

            message = [
                HumanMessage(
                    content=[
                        {"type": "text", "text": "Describe what you see in this image in detail. If there's text, extract it. If it's a chess position, describe the board state and pieces."},
                        {"type": "image_url", "image_url": {
                            "url": f"data:image/png;base64,{image_base64}"}},
                    ]
                )
            ]

            response = vision_llm.invoke(message)
            vision_result = response.content.strip()

            # Check if we got a content policy response
            if "sorry" in vision_result.lower() and "can't assist" in vision_result.lower():
                # Fallback to OCR
                try:
                    import pytesseract
                    text = pytesseract.image_to_string(img).strip()
                    if text:
                        return f"{image_info}\n\nOCR extracted text:\n{text}"
                    else:
                        return f"{image_info}\n\nVision model blocked. OCR found no text."
                except ImportError:
                    return f"{image_info}\n\nVision model blocked. OCR not available."
            else:
                return f"{image_info}\n\nVision analysis:\n{vision_result}"

        except Exception as vision_error:
            # Fallback to OCR if vision fails
            try:
                import pytesseract
                text = pytesseract.image_to_string(img).strip()
                if text:
                    return f"{image_info}\n\nVision failed, OCR extracted text:\n{text}"
                else:
                    return f"{image_info}\n\nVision failed: {str(vision_error)}. OCR found no text."
            except ImportError:
                return f"{image_info}\n\nVision failed: {str(vision_error)}. OCR not available."

    except Exception as e:
        return f"Error analyzing image: {str(e)}"


image_recognition_tool = Tool(
    name="image_recognition_tool",
    func=image_recognition,
    description="Analyzes and describes the content of images using AI vision. Use this when you need to understand what's in an image."
)

# =========================
# 7. File Type Detection
# =========================


def detect_file_type(file_path: str) -> str:
    """
    Detects the type of file and provides appropriate handling suggestions.
    Args:
        file_path (str): Path to the file.
    Returns:
        str: File type info or an error message.
    """
    try:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"
        file_extension = Path(file_path).suffix.lower()
        file_size = os.path.getsize(file_path)
        file_types = {
            '.py': 'Python script',
            '.mp3': 'Audio file',
            '.mp4': 'Video file',
            '.jpg': 'Image file',
            '.jpeg': 'Image file',
            '.png': 'Image file',
            '.txt': 'Text file',
            '.pdf': 'PDF document',
            '.doc': 'Word document',
            '.docx': 'Word document',
            '.xls': 'Excel spreadsheet',
            '.xlsx': 'Excel spreadsheet'
        }
        file_type = file_types.get(file_extension, 'Unknown file type')
        return f"File: {file_path}, Type: {file_type}, Size: {file_size} bytes"
    except Exception as e:
        return f"Error detecting file type: {str(e)}"


file_type_detection_tool = Tool(
    name="file_type_detection_tool",
    func=detect_file_type,
    description="Detects file types and provides information about files. Use this when you need to understand what type of file you're working with."
)

# =========================
# 8. Enhanced File Reading Tools
# =========================


def read_file(file_name: str) -> str:
    """
    Read and process different file types (text, CSV, images).
    """
    if not file_name or not os.path.exists(file_name):
        return "File not found"

    try:
        file_extension = os.path.splitext(file_name)[1].lower()

        if file_extension == ".csv":
            return _read_csv_file(file_name)
        elif file_extension in [".png", ".jpg", ".jpeg", ".gif", ".bmp"]:
            return _read_image_file(file_name)
        elif file_extension in [".txt", ".md", ".py", ".js", ".html", ".json"]:
            return _read_text_file(file_name)
        else:
            # Try to read as text file
            return _read_text_file(file_name)

    except Exception as e:
        return f"Error reading file: {str(e)}"


def _read_text_file(file_name: str) -> str:
    """Read a text file."""
    try:
        with open(file_name, "r", encoding="utf-8") as f:
            content = f.read()
        return content[:5000]  # Limit to first 5000 characters
    except UnicodeDecodeError:
        # Try with different encoding
        try:
            with open(file_name, "r", encoding="latin-1") as f:
                content = f.read()
            return content[:5000]
        except Exception as e:
            return f"Text file reading error: {str(e)}"


def _read_csv_file(file_name: str) -> str:
    """Read and summarize a CSV file."""
    try:
        df = pd.read_csv(file_name)

        # Create a summary
        summary = []
        summary.append(
            f"CSV file shape: {df.shape[0]} rows, {df.shape[1]} columns")
        summary.append(f"Columns: {', '.join(df.columns.tolist())}")

        # Show first few rows
        summary.append("\nFirst 5 rows:")
        summary.append(df.head().to_string())

        # Show basic statistics for numeric columns
        numeric_columns = df.select_dtypes(include=['number']).columns
        if len(numeric_columns) > 0:
            summary.append(f"\nNumeric column statistics:")
            summary.append(df[numeric_columns].describe().to_string())

        return "\n".join(summary)

    except Exception as e:
        return f"CSV reading error: {str(e)}"


def _read_image_file(file_name: str) -> str:
    """Read and analyze an image file."""
    try:
        # Try OCR first
        try:
            import pytesseract
            img = Image.open(file_name)

            # Get image info
            info = f"Image: {img.size[0]}x{img.size[1]} pixels, mode: {img.mode}"

            # Try OCR
            text = pytesseract.image_to_string(img).strip()
            if text:
                return f"{info}\n\nExtracted text:\n{text}"
            else:
                return f"{info}\n\nNo text detected in image."

        except ImportError:
            # OCR not available, just return image info
            img = Image.open(file_name)
            return f"Image: {img.size[0]}x{img.size[1]} pixels, mode: {img.mode}\n(OCR not available - install pytesseract for text extraction)"

    except Exception as e:
        return f"Image reading error: {str(e)}"


read_file_tool = Tool(
    name="read_file_tool",
    func=read_file,
    description="Reads and processes different file types including text files, CSV files, and images. Use this when you need to extract content from files."
)

# =========================
# 9. Code Execution and Math Tools
# =========================


def execute_code(code: str, timeout: int = 5) -> str:
    """
    Execute Python code safely with timeout.
    """
    try:
        # Basic security check - prevent dangerous operations
        dangerous_keywords = [
            "import os", "import subprocess", "__import__", "exec", "eval", "open("]
        if any(keyword in code.lower() for keyword in dangerous_keywords):
            return "Code execution blocked: potentially unsafe operations detected"

        result = subprocess.run(
            ["python3", "-c", code],
            capture_output=True,
            text=True,
            timeout=timeout,
            cwd="/tmp"  # Run in safe directory
        )

        if result.returncode == 0:
            return result.stdout.strip() if result.stdout else "Code executed successfully (no output)"
        else:
            return f"Code execution error: {result.stderr.strip()}"

    except subprocess.TimeoutExpired:
        return "Code execution timeout"
    except Exception as e:
        return f"Code execution error: {str(e)}"


def calculate_simple_math(expression: str) -> str:
    """
    Safely evaluate simple mathematical expressions.
    """
    try:
        # Only allow basic math characters
        allowed_chars = set("0123456789+-*/.() ")
        if not all(c in allowed_chars for c in expression):
            return "Invalid mathematical expression"

        # Use eval safely for basic math
        result = eval(expression)
        return str(result)

    except Exception as e:
        return f"Math calculation error: {str(e)}"


code_execution_tool = Tool(
    name="code_execution_tool",
    func=execute_code,
    description="Executes Python code safely with timeout and security checks. Use this when you need to run small Python code snippets."
)

math_calculation_tool = Tool(
    name="math_calculation_tool",
    func=calculate_simple_math,
    description="Safely evaluates simple mathematical expressions. Use this when you need to perform basic math calculations."
)


def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>'
            f"\n{doc.page_content}\n</Document>"
            for doc in search_docs
        ])
    return formatted_search_docs


wiki_search_tool = Tool(
    name="wiki_search_tool",
    func=wiki_search,
    description="Search Wikipedia for a query and return up to 2 results. Use this for factual or historical questions."
)

python_tool = PythonREPLTool()

python_repl_tool = Tool(
    name="python_repl_tool",
    func=python_tool,
    description="Executes Python code in a REPL environment. Use this for running Python code snippets interactively."
)

# --- New Tools ---


def extract_text_from_image(file_path: str) -> str:
    try:
        image = Image.open(file_path)
        text = pytesseract.image_to_string(image)
        return f"Extracted text from image:\n\n{text}"
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"


extract_text_from_image_tool = Tool(
    name="extract_text_from_image_tool",
    func=extract_text_from_image,
    description="Extract text from an image using OCR (pytesseract)."
)


def analyze_csv_file_simple(file_path: str) -> str:
    """Analyze a CSV file using pandas."""
    try:
        df = pd.read_csv(file_path)
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        return result
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"


analyze_csv_file_tool = Tool(
    name="analyze_csv_file_tool",
    func=analyze_csv_file_simple,
    description="Analyze a CSV file using pandas and answer a question about it."
)


def analyze_excel_file_simple(file_path: str) -> str:
    """Analyze an Excel file using pandas."""
    try:
        df = pd.read_excel(file_path)
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        return result
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"


analyze_excel_file_tool = Tool(
    name="analyze_excel_file_tool",
    func=analyze_excel_file_simple,
    description="Analyze an Excel file using pandas and answer a question about it."
)

#