File size: 12,127 Bytes
10367e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27b177
10367e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27b177
10367e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27b177
10367e5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""
In this TorchDaily we will TRAIN
A MODEL USING TRANSFER LEARNING
Cats Vs Dogs Dataset    

EARLIER ACC==14% OR LESS
NOW ITS 70% AND MORE 
THE POWER OF ALEXNET (PRETRAINED MODELS IS VISIBLE) 
DATE ==> 10-05-21
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from torchvision import transforms, datasets, models
import torchvision
from tqdm import tqdm
import os
import PIL.Image as Image
import time

import torch, torchvision
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import time

# from torchsummary import summary

import numpy as np
import matplotlib.pyplot as plt
import os

from PIL import Image


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# prepare data
convert = transforms.Compose(
    [
        transforms.Resize((128, 128)),
        transforms.RandomHorizontalFlip(0.2),
        transforms.ToTensor(),
    ]
)

# dataloader

data = datasets.ImageFolder(root="PetImages/", transform=convert)
Loader = DataLoader(data, batch_size=64, shuffle=True)

MAP = {0: "Cat", 1: "Dog"}

##UNCOMMENT FOR SEEING THE DATA IMAGES
# fig, ax = plt.subplots(8, 8, figsize=(20, 20))
# fig.suptitle("Dogs And Cats IMages")

# for i, (img, lab) in zip(range(0, 8 * 8), Loader):
#     x = i // 8
#     y = i % 8
#     print(f"{x},{y}")
#     ax[x, y].imshow(img[i].squeeze().permute(1,2,0))
#     ax[x, y].set_title(f"{lab[i]}")
#     ax[x, y].axis("off")
# plt.show()

# # Add on classifier
# # HOW TO CHANGE THE INPUT LAYER WHICH ACCEPTS THE 224*224 INPUT
# # I WANNA CHANGE THAT TO 128*128 THIS SIZE WILL SUFFICE
# We Use AlexNet for transfer learning
##answers below

alexnet = torchvision.models.alexnet(pretrained=True)
for param in alexnet.parameters():
    param.requires_grad = False

# Add a avgpool here
avgpool = nn.AdaptiveAvgPool2d((7, 7))

# Replace the classifier layer
# to customise it according to our output
alexnet.classifier = nn.Sequential(
    nn.Linear(256 * 7 * 7, 1024),
    nn.Linear(1024, 256),
    nn.Linear(256, 2),
)
# putting model in a training mode
alexnet.train()

print(alexnet)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(alexnet.parameters(), lr=0.001)
EPOCHS = 4

TRAIN = False
losses = []


def train_and_validate(model, loss_criterion, optimizer, epochs=25):
    """
    Function to train and validate
    Parameters
        :param model: Model to train and validate
        :param loss_criterion: Loss Criterion to minimize
        :param optimizer: Optimizer for computing gradients
        :param epochs: Number of epochs (default=25)

    Returns
        model: Trained Model with best validation accuracy
        history: (dict object): Having training loss, accuracy and validation loss, accuracy
    """

    start = time.time()
    history = []
    best_acc = 0.0

    for epoch in range(epochs):
        epoch_start = time.time()
        print("Epoch: {}/{}".format(epoch + 1, epochs))

        # Set to training mode
        # model.train()

        # Loss and Accuracy within the epoch
        train_loss = 0.0
        train_acc = 0.0

        valid_loss = 0.0
        valid_acc = 0.0

        for i, (inputs, labels) in enumerate(Loader):

            inputs = inputs.to(device)
            labels = labels.to(device)

            # Clean existing gradients
            optimizer.zero_grad()

            # Forward pass - compute outputs on input data using the model
            x = alexnet.features(inputs)
            x = avgpool(x)
            x = x.view(-1, 256 * 7 * 7)
            outputs = alexnet.classifier(x)

            # Compute loss
            loss = loss_criterion(outputs, labels)

            # Backpropagate the gradients
            loss.backward()

            # Update the parameters
            optimizer.step()

            # Compute the total loss for the batch and add it to train_loss
            train_loss += loss.item() * inputs.size(0)

            # Compute the accuracy
            ret, predictions = torch.max(outputs.data, 1)
            correct_counts = predictions.eq(labels.data.view_as(predictions))

            # Convert correct_counts to float and then compute the mean
            acc = torch.mean(correct_counts.type(torch.FloatTensor))

            # Compute total accuracy in the whole batch and add to train_acc
            train_acc += acc.item() * inputs.size(0)

            # print("Batch number: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}".format(i, loss.item(), acc.item()))

        # Validation - No gradient tracking needed
        with torch.no_grad():

            # Set to evaluation mode
            model.eval()

            # Validation loop
            for j, (inputs, labels) in enumerate(valid_data_loader):
                inputs = inputs.to(device)
                labels = labels.to(device)

                # Forward pass - compute outputs on input data using the model
                outputs = model(inputs)

                # Compute loss
                loss = loss_criterion(outputs, labels)

                # Compute the total loss for the batch and add it to valid_loss
                valid_loss += loss.item() * inputs.size(0)

                # Calculate validation accuracy
                ret, predictions = torch.max(outputs.data, 1)
                correct_counts = predictions.eq(labels.data.view_as(predictions))

                # Convert correct_counts to float and then compute the mean
                acc = torch.mean(correct_counts.type(torch.FloatTensor))

                # Compute total accuracy in the whole batch and add to valid_acc
                valid_acc += acc.item() * inputs.size(0)

                # print("Validation Batch number: {:03d}, Validation: Loss: {:.4f}, Accuracy: {:.4f}".format(j, loss.item(), acc.item()))

        # Find average training loss and training accuracy
        avg_train_loss = train_loss / train_data_size
        avg_train_acc = train_acc / train_data_size

        # Find average training loss and training accuracy
        avg_valid_loss = valid_loss / valid_data_size
        avg_valid_acc = valid_acc / valid_data_size

        history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])

        epoch_end = time.time()

        print(
            "Epoch : {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(
                epoch + 1,
                avg_train_loss,
                avg_train_acc * 100,
                avg_valid_loss,
                avg_valid_acc * 100,
                epoch_end - epoch_start,
            )
        )

        # Save if the model has best accuracy till now
        torch.save(model, "CatVsDogsModel.pth")

    return model, history


if TRAIN:
    trained_model, history = train_and_validate(alexnet, criterion, optimizer, EPOCHS)
    plt.plot(losses)
    plt.show()
    history = np.array(history)
    plt.plot(history[:, 0:2])
    plt.legend(["Tr Loss", "Val Loss"])
    plt.xlabel("Epoch Number")
    plt.ylabel("Loss")
    plt.ylim(0, 1)
    plt.savefig(dataset + "_loss_curve.png")
    plt.show()
    plt.plot(history[:, 2:4])
    plt.legend(["Tr Accuracy", "Val Accuracy"])
    plt.xlabel("Epoch Number")
    plt.ylabel("Accuracy")
    plt.ylim(0, 1)
    plt.savefig(dataset + "_accuracy_curve.png")
    plt.show()


TEST = False

history = []


def test():
    test = datasets.ImageFolder(root="PetTest/", transform=convert)
    testLoader = DataLoader(test, batch_size=16, shuffle=False)
    checkpoint = torch.load("CatVsDogsModel.pth")
    alexnet.load_state_dict(checkpoint["state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer"])
    for params in alexnet.parameters():
        params.requires_grad == False
    print(alexnet)

    with torch.no_grad():

        # Set to evaluation mode
        alexnet.eval()
        train_data_size = 101
        valid_data_size = 101
        # Validation loop
        # Loss and Accuracy within the epoch
        valid_loss = 0.0
        valid_acc = 0.0
        for j, (inputs, labels) in enumerate(testLoader):
            inputs = inputs.to(device)
            labels = labels.to(device)

            # Forward pass - compute outputs on input data using the model
            x = alexnet.features(inputs)
            x = avgpool(x)
            x = x.view(-1, 256 * 7 * 7)
            outputs = alexnet.classifier(x)

            # Compute loss
            loss = criterion(outputs, labels)

            # Compute the total loss for the batch and add it to valid_loss
            valid_loss += loss.item() * inputs.size(0)

            # Calculate validation accuracy
            ret, predictions = torch.max(outputs.data, 1)
            correct_counts = predictions.eq(labels.data.view_as(predictions))

            # Convert correct_counts to float and then compute the mean
            acc = torch.mean(correct_counts.type(torch.FloatTensor))

            # Compute total accuracy in the whole batch and add to valid_acc
            valid_acc += acc.item() * inputs.size(0)

            print(
                """Validation Batch number: {:03d},
                 Validation: Loss: {:.4f},
                  Accuracy: {:.4f}""".format(
                    j, loss.item(), acc.item()
                )
            )

    # Find average training loss and training accuracy
    avg_valid_loss = valid_loss / valid_data_size
    avg_valid_acc = valid_acc / valid_data_size

    history.append([avg_valid_loss, avg_valid_acc])
    print(
        " Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%".format(
            avg_train_loss,
            avg_train_acc * 100,
            avg_valid_loss,
            avg_valid_acc * 100,
        )
    )
    plt.plot(valid_acc)
    plt.plot(valid_loss)
    plt.show()


if TEST:
    test()
    print("Validation Complete")
    with open("ModelHistory.txt", "w") as f:
        for i in history:
            f.writelines(f"{i}")
    print("Validation Complete")

## This model reported a accuracy of 97%(on DOGS ONLY) using AlexNet
## the Pros of using a pretrained model is clearly seen here
## date -- 13th April 2021 (thursday)
####ACCURACY AND OTHER THINGS TOO TO BE APPENDED SOON ######


PREDICT = True


def predict(model, test_image_name):
    """
    Function to predict the class of a single test image
    Parameters
        :param model: Model to test
        :param test_image_name: Test image

    """
    #     try:
    transform = transforms.Compose(
        [transforms.Resize((128, 128)), transforms.ToTensor()]
    )
    test_image = Image.open(test_image_name)
    test_image_tensor = transform(test_image).to(device)
    plt.imshow(test_image)
    plt.axis("off")
    plt.imshow(test_image_tensor.cpu().squeeze().permute(1, 2, 0))
    plt.show()

    with torch.no_grad():
        model.eval()
        test_image_tensor = test_image_tensor.unsqueeze(0)
        print(test_image_tensor.shape)
        x = alexnet.features(test_image_tensor)
        x = avgpool(x)
        x = x.view(-1, 256 * 7 * 7)
        out = alexnet.classifier(x)
        ###THESE ARE SCORES OF THE ACC. ###
        ### UNCOMMENT TO SEE THE SCORES OF EACH CLASS ###
        #         ps = torch.exp(out)
        #         print(f'ps:  {ps}')
        #         topk, topclass = ps.topk(2, dim=1)
        #         print(f'ps.topk:  {ps.topk(2, dim=1)}')
        #         print(f'topclass:  {topclass}')
        print("Predcition", MAP[out.numpy().argmax()])

        # print(f"out: {out.numpy().argmax()}")


#     except Exception as e:
#         print(e)

if PREDICT:
    checkpoint = torch.load(
        "CatVsDogsModel.pth", map_location=torch.device("cpu")
    )
    alexnet.load_state_dict(checkpoint["state_dict"])
    alexnet = alexnet.to(device)
    optimizer.load_state_dict(checkpoint["optimizer"])
    for params in alexnet.parameters():
        params.requires_grad == False
    print(predict(alexnet, "PetTest/Cat/12401.jpg"))