Spaces:
Build error
Build error
shyamgupta196
commited on
Commit
·
10367e5
1
Parent(s):
24014e2
app
Browse files- CatVsDogTrain.py +398 -0
- CatVsDogsModel.pth +3 -0
- app.py +29 -0
- requirements.txt +2 -0
CatVsDogTrain.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
In this TorchDaily we will TRAIN
|
3 |
+
A MODEL USING TRANSFER LEARNING
|
4 |
+
Cats Vs Dogs Dataset
|
5 |
+
|
6 |
+
EARLIER ACC==14% OR LESS
|
7 |
+
NOW ITS 70% AND MORE
|
8 |
+
THE POWER OF ALEXNET (PRETRAINED MODELS IS VISIBLE)
|
9 |
+
DATE ==> 10-05-21
|
10 |
+
"""
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from torchvision import transforms, datasets, models
|
16 |
+
import torchvision
|
17 |
+
from tqdm import tqdm
|
18 |
+
import os
|
19 |
+
import PIL.Image as Image
|
20 |
+
import time
|
21 |
+
|
22 |
+
import torch, torchvision
|
23 |
+
from torchvision import datasets, models, transforms
|
24 |
+
import torch.nn as nn
|
25 |
+
import torch.optim as optim
|
26 |
+
from torch.utils.data import DataLoader
|
27 |
+
import time
|
28 |
+
|
29 |
+
# from torchsummary import summary
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import matplotlib.pyplot as plt
|
33 |
+
import os
|
34 |
+
|
35 |
+
from PIL import Image
|
36 |
+
|
37 |
+
|
38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
print(device)
|
40 |
+
# prepare data
|
41 |
+
convert = transforms.Compose(
|
42 |
+
[
|
43 |
+
transforms.Resize((128, 128)),
|
44 |
+
transforms.RandomHorizontalFlip(0.2),
|
45 |
+
transforms.ToTensor(),
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
# dataloader
|
50 |
+
|
51 |
+
data = datasets.ImageFolder(root="PetImages/", transform=convert)
|
52 |
+
Loader = DataLoader(data, batch_size=64, shuffle=True)
|
53 |
+
|
54 |
+
MAP = {0: "Cat", 1: "Dog"}
|
55 |
+
|
56 |
+
##UNCOMMENT FOR SEEING THE DATA IMAGES
|
57 |
+
# fig, ax = plt.subplots(8, 8, figsize=(20, 20))
|
58 |
+
# fig.suptitle("Dogs And Cats IMages")
|
59 |
+
|
60 |
+
# for i, (img, lab) in zip(range(0, 8 * 8), Loader):
|
61 |
+
# x = i // 8
|
62 |
+
# y = i % 8
|
63 |
+
# print(f"{x},{y}")
|
64 |
+
# ax[x, y].imshow(img[i].squeeze().permute(1,2,0))
|
65 |
+
# ax[x, y].set_title(f"{lab[i]}")
|
66 |
+
# ax[x, y].axis("off")
|
67 |
+
# plt.show()
|
68 |
+
|
69 |
+
# # Add on classifier
|
70 |
+
# # HOW TO CHANGE THE INPUT LAYER WHICH ACCEPTS THE 224*224 INPUT
|
71 |
+
# # I WANNA CHANGE THAT TO 128*128 THIS SIZE WILL SUFFICE
|
72 |
+
# We Use AlexNet for transfer learning
|
73 |
+
##answers below
|
74 |
+
|
75 |
+
alexnet = torchvision.models.alexnet(pretrained=True)
|
76 |
+
for param in alexnet.parameters():
|
77 |
+
param.requires_grad = False
|
78 |
+
|
79 |
+
# Add a avgpool here
|
80 |
+
avgpool = nn.AdaptiveAvgPool2d((7, 7))
|
81 |
+
|
82 |
+
# Replace the classifier layer
|
83 |
+
# to customise it according to our output
|
84 |
+
alexnet.classifier = nn.Sequential(
|
85 |
+
nn.Linear(256 * 7 * 7, 1024),
|
86 |
+
nn.Linear(1024, 256),
|
87 |
+
nn.Linear(256, 2),
|
88 |
+
)
|
89 |
+
# putting model in a training mode
|
90 |
+
alexnet.train()
|
91 |
+
|
92 |
+
print(alexnet)
|
93 |
+
criterion = nn.CrossEntropyLoss()
|
94 |
+
optimizer = torch.optim.Adam(alexnet.parameters(), lr=0.001)
|
95 |
+
EPOCHS = 4
|
96 |
+
|
97 |
+
TRAIN = False
|
98 |
+
losses = []
|
99 |
+
|
100 |
+
|
101 |
+
def train_and_validate(model, loss_criterion, optimizer, epochs=25):
|
102 |
+
"""
|
103 |
+
Function to train and validate
|
104 |
+
Parameters
|
105 |
+
:param model: Model to train and validate
|
106 |
+
:param loss_criterion: Loss Criterion to minimize
|
107 |
+
:param optimizer: Optimizer for computing gradients
|
108 |
+
:param epochs: Number of epochs (default=25)
|
109 |
+
|
110 |
+
Returns
|
111 |
+
model: Trained Model with best validation accuracy
|
112 |
+
history: (dict object): Having training loss, accuracy and validation loss, accuracy
|
113 |
+
"""
|
114 |
+
|
115 |
+
start = time.time()
|
116 |
+
history = []
|
117 |
+
best_acc = 0.0
|
118 |
+
|
119 |
+
for epoch in range(epochs):
|
120 |
+
epoch_start = time.time()
|
121 |
+
print("Epoch: {}/{}".format(epoch + 1, epochs))
|
122 |
+
|
123 |
+
# Set to training mode
|
124 |
+
# model.train()
|
125 |
+
|
126 |
+
# Loss and Accuracy within the epoch
|
127 |
+
train_loss = 0.0
|
128 |
+
train_acc = 0.0
|
129 |
+
|
130 |
+
valid_loss = 0.0
|
131 |
+
valid_acc = 0.0
|
132 |
+
|
133 |
+
for i, (inputs, labels) in enumerate(Loader):
|
134 |
+
|
135 |
+
inputs = inputs.to(device)
|
136 |
+
labels = labels.to(device)
|
137 |
+
|
138 |
+
# Clean existing gradients
|
139 |
+
optimizer.zero_grad()
|
140 |
+
|
141 |
+
# Forward pass - compute outputs on input data using the model
|
142 |
+
x = alexnet.features(inputs)
|
143 |
+
x = avgpool(x)
|
144 |
+
x = x.view(-1, 256 * 7 * 7)
|
145 |
+
outputs = alexnet.classifier(x)
|
146 |
+
|
147 |
+
# Compute loss
|
148 |
+
loss = loss_criterion(outputs, labels)
|
149 |
+
|
150 |
+
# Backpropagate the gradients
|
151 |
+
loss.backward()
|
152 |
+
|
153 |
+
# Update the parameters
|
154 |
+
optimizer.step()
|
155 |
+
|
156 |
+
# Compute the total loss for the batch and add it to train_loss
|
157 |
+
train_loss += loss.item() * inputs.size(0)
|
158 |
+
|
159 |
+
# Compute the accuracy
|
160 |
+
ret, predictions = torch.max(outputs.data, 1)
|
161 |
+
correct_counts = predictions.eq(labels.data.view_as(predictions))
|
162 |
+
|
163 |
+
# Convert correct_counts to float and then compute the mean
|
164 |
+
acc = torch.mean(correct_counts.type(torch.FloatTensor))
|
165 |
+
|
166 |
+
# Compute total accuracy in the whole batch and add to train_acc
|
167 |
+
train_acc += acc.item() * inputs.size(0)
|
168 |
+
|
169 |
+
# print("Batch number: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}".format(i, loss.item(), acc.item()))
|
170 |
+
|
171 |
+
# Validation - No gradient tracking needed
|
172 |
+
with torch.no_grad():
|
173 |
+
|
174 |
+
# Set to evaluation mode
|
175 |
+
model.eval()
|
176 |
+
|
177 |
+
# Validation loop
|
178 |
+
for j, (inputs, labels) in enumerate(valid_data_loader):
|
179 |
+
inputs = inputs.to(device)
|
180 |
+
labels = labels.to(device)
|
181 |
+
|
182 |
+
# Forward pass - compute outputs on input data using the model
|
183 |
+
outputs = model(inputs)
|
184 |
+
|
185 |
+
# Compute loss
|
186 |
+
loss = loss_criterion(outputs, labels)
|
187 |
+
|
188 |
+
# Compute the total loss for the batch and add it to valid_loss
|
189 |
+
valid_loss += loss.item() * inputs.size(0)
|
190 |
+
|
191 |
+
# Calculate validation accuracy
|
192 |
+
ret, predictions = torch.max(outputs.data, 1)
|
193 |
+
correct_counts = predictions.eq(labels.data.view_as(predictions))
|
194 |
+
|
195 |
+
# Convert correct_counts to float and then compute the mean
|
196 |
+
acc = torch.mean(correct_counts.type(torch.FloatTensor))
|
197 |
+
|
198 |
+
# Compute total accuracy in the whole batch and add to valid_acc
|
199 |
+
valid_acc += acc.item() * inputs.size(0)
|
200 |
+
|
201 |
+
# print("Validation Batch number: {:03d}, Validation: Loss: {:.4f}, Accuracy: {:.4f}".format(j, loss.item(), acc.item()))
|
202 |
+
|
203 |
+
# Find average training loss and training accuracy
|
204 |
+
avg_train_loss = train_loss / train_data_size
|
205 |
+
avg_train_acc = train_acc / train_data_size
|
206 |
+
|
207 |
+
# Find average training loss and training accuracy
|
208 |
+
avg_valid_loss = valid_loss / valid_data_size
|
209 |
+
avg_valid_acc = valid_acc / valid_data_size
|
210 |
+
|
211 |
+
history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])
|
212 |
+
|
213 |
+
epoch_end = time.time()
|
214 |
+
|
215 |
+
print(
|
216 |
+
"Epoch : {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(
|
217 |
+
epoch + 1,
|
218 |
+
avg_train_loss,
|
219 |
+
avg_train_acc * 100,
|
220 |
+
avg_valid_loss,
|
221 |
+
avg_valid_acc * 100,
|
222 |
+
epoch_end - epoch_start,
|
223 |
+
)
|
224 |
+
)
|
225 |
+
|
226 |
+
# Save if the model has best accuracy till now
|
227 |
+
torch.save(model, "TrainLoopImproveCatsDogs.pth")
|
228 |
+
|
229 |
+
return model, history
|
230 |
+
|
231 |
+
|
232 |
+
if TRAIN:
|
233 |
+
trained_model, history = train_and_validate(alexnet, criterion, optimizer, EPOCHS)
|
234 |
+
plt.plot(losses)
|
235 |
+
plt.show()
|
236 |
+
history = np.array(history)
|
237 |
+
plt.plot(history[:, 0:2])
|
238 |
+
plt.legend(["Tr Loss", "Val Loss"])
|
239 |
+
plt.xlabel("Epoch Number")
|
240 |
+
plt.ylabel("Loss")
|
241 |
+
plt.ylim(0, 1)
|
242 |
+
plt.savefig(dataset + "_loss_curve.png")
|
243 |
+
plt.show()
|
244 |
+
plt.plot(history[:, 2:4])
|
245 |
+
plt.legend(["Tr Accuracy", "Val Accuracy"])
|
246 |
+
plt.xlabel("Epoch Number")
|
247 |
+
plt.ylabel("Accuracy")
|
248 |
+
plt.ylim(0, 1)
|
249 |
+
plt.savefig(dataset + "_accuracy_curve.png")
|
250 |
+
plt.show()
|
251 |
+
|
252 |
+
|
253 |
+
TEST = False
|
254 |
+
|
255 |
+
history = []
|
256 |
+
|
257 |
+
|
258 |
+
def test():
|
259 |
+
test = datasets.ImageFolder(root="PetTest/", transform=convert)
|
260 |
+
testLoader = DataLoader(test, batch_size=16, shuffle=False)
|
261 |
+
checkpoint = torch.load("catsvdogs.pth")
|
262 |
+
alexnet.load_state_dict(checkpoint["state_dict"])
|
263 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
264 |
+
for params in alexnet.parameters():
|
265 |
+
params.requires_grad == False
|
266 |
+
print(alexnet)
|
267 |
+
|
268 |
+
with torch.no_grad():
|
269 |
+
|
270 |
+
# Set to evaluation mode
|
271 |
+
alexnet.eval()
|
272 |
+
train_data_size = 101
|
273 |
+
valid_data_size = 101
|
274 |
+
# Validation loop
|
275 |
+
# Loss and Accuracy within the epoch
|
276 |
+
valid_loss = 0.0
|
277 |
+
valid_acc = 0.0
|
278 |
+
for j, (inputs, labels) in enumerate(testLoader):
|
279 |
+
inputs = inputs.to(device)
|
280 |
+
labels = labels.to(device)
|
281 |
+
|
282 |
+
# Forward pass - compute outputs on input data using the model
|
283 |
+
x = alexnet.features(inputs)
|
284 |
+
x = avgpool(x)
|
285 |
+
x = x.view(-1, 256 * 7 * 7)
|
286 |
+
outputs = alexnet.classifier(x)
|
287 |
+
|
288 |
+
# Compute loss
|
289 |
+
loss = criterion(outputs, labels)
|
290 |
+
|
291 |
+
# Compute the total loss for the batch and add it to valid_loss
|
292 |
+
valid_loss += loss.item() * inputs.size(0)
|
293 |
+
|
294 |
+
# Calculate validation accuracy
|
295 |
+
ret, predictions = torch.max(outputs.data, 1)
|
296 |
+
correct_counts = predictions.eq(labels.data.view_as(predictions))
|
297 |
+
|
298 |
+
# Convert correct_counts to float and then compute the mean
|
299 |
+
acc = torch.mean(correct_counts.type(torch.FloatTensor))
|
300 |
+
|
301 |
+
# Compute total accuracy in the whole batch and add to valid_acc
|
302 |
+
valid_acc += acc.item() * inputs.size(0)
|
303 |
+
|
304 |
+
print(
|
305 |
+
"""Validation Batch number: {:03d},
|
306 |
+
Validation: Loss: {:.4f},
|
307 |
+
Accuracy: {:.4f}""".format(
|
308 |
+
j, loss.item(), acc.item()
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
# Find average training loss and training accuracy
|
313 |
+
avg_valid_loss = valid_loss / valid_data_size
|
314 |
+
avg_valid_acc = valid_acc / valid_data_size
|
315 |
+
|
316 |
+
history.append([avg_valid_loss, avg_valid_acc])
|
317 |
+
print(
|
318 |
+
" Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%".format(
|
319 |
+
avg_train_loss,
|
320 |
+
avg_train_acc * 100,
|
321 |
+
avg_valid_loss,
|
322 |
+
avg_valid_acc * 100,
|
323 |
+
)
|
324 |
+
)
|
325 |
+
plt.plot(valid_acc)
|
326 |
+
plt.plot(valid_loss)
|
327 |
+
plt.show()
|
328 |
+
|
329 |
+
|
330 |
+
if TEST:
|
331 |
+
test()
|
332 |
+
print("Validation Complete")
|
333 |
+
with open("ModelHistory.txt", "w") as f:
|
334 |
+
for i in history:
|
335 |
+
f.writelines(f"{i}")
|
336 |
+
print("Validation Complete")
|
337 |
+
|
338 |
+
## This model reported a accuracy of 97%(on DOGS ONLY) using AlexNet
|
339 |
+
## the Pros of using a pretrained model is clearly seen here
|
340 |
+
## date -- 13th April 2021 (thursday)
|
341 |
+
####ACCURACY AND OTHER THINGS TOO TO BE APPENDED SOON ######
|
342 |
+
|
343 |
+
|
344 |
+
PREDICT = True
|
345 |
+
|
346 |
+
|
347 |
+
def predict(model, test_image_name):
|
348 |
+
"""
|
349 |
+
Function to predict the class of a single test image
|
350 |
+
Parameters
|
351 |
+
:param model: Model to test
|
352 |
+
:param test_image_name: Test image
|
353 |
+
|
354 |
+
"""
|
355 |
+
# try:
|
356 |
+
transform = transforms.Compose(
|
357 |
+
[transforms.Resize((128, 128)), transforms.ToTensor()]
|
358 |
+
)
|
359 |
+
test_image = Image.open(test_image_name)
|
360 |
+
test_image_tensor = transform(test_image).to(device)
|
361 |
+
plt.imshow(test_image)
|
362 |
+
plt.axis("off")
|
363 |
+
plt.imshow(test_image_tensor.cpu().squeeze().permute(1, 2, 0))
|
364 |
+
plt.show()
|
365 |
+
|
366 |
+
with torch.no_grad():
|
367 |
+
model.eval()
|
368 |
+
test_image_tensor = test_image_tensor.unsqueeze(0)
|
369 |
+
print(test_image_tensor.shape)
|
370 |
+
x = alexnet.features(test_image_tensor)
|
371 |
+
x = avgpool(x)
|
372 |
+
x = x.view(-1, 256 * 7 * 7)
|
373 |
+
out = alexnet.classifier(x)
|
374 |
+
###THESE ARE SCORES OF THE ACC. ###
|
375 |
+
### UNCOMMENT TO SEE THE SCORES OF EACH CLASS ###
|
376 |
+
# ps = torch.exp(out)
|
377 |
+
# print(f'ps: {ps}')
|
378 |
+
# topk, topclass = ps.topk(2, dim=1)
|
379 |
+
# print(f'ps.topk: {ps.topk(2, dim=1)}')
|
380 |
+
# print(f'topclass: {topclass}')
|
381 |
+
print("Predcition", MAP[out.numpy().argmax()])
|
382 |
+
|
383 |
+
# print(f"out: {out.numpy().argmax()}")
|
384 |
+
|
385 |
+
|
386 |
+
# except Exception as e:
|
387 |
+
# print(e)
|
388 |
+
|
389 |
+
if PREDICT:
|
390 |
+
checkpoint = torch.load(
|
391 |
+
"ImprovedCatVsDogsModel.pth", map_location=torch.device("cpu")
|
392 |
+
)
|
393 |
+
alexnet.load_state_dict(checkpoint["state_dict"])
|
394 |
+
alexnet = alexnet.to(device)
|
395 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
396 |
+
for params in alexnet.parameters():
|
397 |
+
params.requires_grad == False
|
398 |
+
print(predict(alexnet, "PetTest/Cat/12401.jpg"))
|
CatVsDogsModel.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37c1a19e5a1bb9f90fc1afd7f970143a0df3ff0f06c8b6917630fc40aa423398
|
3 |
+
size 167196523
|
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from timm.data import resolve_data_config
|
5 |
+
from timm.data.transforms_factory import create_transform
|
6 |
+
|
7 |
+
LABELS = [0:'Cat', 1:'Dog']
|
8 |
+
model = torch.load('CatVsDogModel.py')
|
9 |
+
model.eval()
|
10 |
+
transform = create_transform(**resolve_data_config({},model=model))
|
11 |
+
|
12 |
+
|
13 |
+
def predict(img):
|
14 |
+
img = img.convert('RGB')
|
15 |
+
img = transform(img).unsqueeze(0)
|
16 |
+
with torch.no_grad():
|
17 |
+
out= model(img)
|
18 |
+
probability = torch.nn.functional.softmax(out[0],dim=0)
|
19 |
+
|
20 |
+
values, indices = torch.topk(probability,k=2)
|
21 |
+
return {LABELS[i]: v.item() for i,v in zip(indices,values)}
|
22 |
+
|
23 |
+
|
24 |
+
transform = create_transform(**resolve_data_config({},model=model))
|
25 |
+
# we do not need to train model , hence using model.eval() to use it only for inference
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs="label").launch()
|
29 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timm
|
2 |
+
gradio
|