Spaces:
Running
on
T4
Running
on
T4
File size: 4,188 Bytes
6c226f9 33ac9e4 6c226f9 33ac9e4 6c226f9 7097513 9d6fa91 66efbc3 6c226f9 0a7fcda 7097513 6c226f9 66efbc3 33ac9e4 66efbc3 6c226f9 7097513 0a7fcda 9d6fa91 6c226f9 33ac9e4 66efbc3 33ac9e4 7097513 33ac9e4 6c226f9 609dcbe 6c226f9 b95b5ca 6c226f9 b95b5ca 6c226f9 7097513 609dcbe 7097513 6c226f9 b95b5ca 6c226f9 b95b5ca 6c226f9 33ac9e4 6c226f9 33ac9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import torch
import gradio as gr
import yt_dlp
from transformers import pipeline
import os
MODEL_NAME = "openai/whisper-large-v2"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_ATTEMPT_LIMIT = 3
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def transcribe(microphone, file_upload, task):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
raise gr.Error("You have to either use the microphone or upload an audio file")
file_size_mb = os.stat(file_upload).st_size / (1024 * 1024)
if file_size_mb > FILE_LIMIT_MB:
raise gr.Error(
f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB."
)
file = microphone if microphone is not None else file_upload
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
text = pipe(file, batch_size=BATCH_SIZE)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url, task, max_filesize=FILE_LIMIT_MB):
with yt_dlp.YoutubeDL({'format': 'bestaudio/best'}) as ydl:
try:
info_dict = ydl.extract_info(yt_url, download=True)
a = ydl.prepare_filename(info_dict)
except Exception as e:
raise gr.Error(f"Error downloading YouTube video: {str(e)}")
html_embed_str = _return_yt_html_embed(yt_url)
if os.stat(a).st_size / (1024 * 1024) > max_filesize:
raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {os.stat(a).st_size / (1024 * 1024):.2f}MB.")
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
text = pipe(a, batch_size=BATCH_SIZE)["text"]
os.remove(a)
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True) |