File size: 11,628 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
0616341
5145d77
4000d20
3127c31
11398e5
10e9b7d
5145d77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f015
e80aab9
3db6293
e80aab9
3127c31
 
31243f4
d59f015
9420d94
 
 
 
 
 
 
 
4021bf3
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
ad021fc
e80aab9
c1d0e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0616341
 
 
 
 
 
 
ad1ff94
0616341
 
ad021fc
66a013c
0616341
 
 
 
 
 
66a013c
 
0616341
 
 
 
11398e5
 
9420d94
11398e5
b395607
 
 
11398e5
 
 
 
 
 
 
 
fe1bd6e
226f55a
9e30ca3
11398e5
 
 
 
31243f4
 
3c4371f
31243f4
b395607
 
 
 
31243f4
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
2260dcd
 
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
2260dcd
e80aab9
 
 
7979b63
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
8ee8f69
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import traceback
import re
import pandas as pd
from huggingface_hub import login
from tools import create_memory_safe_workflow, get_file_type, write_bytes_to_temp_dir, AgentState, extract_final_answer, run_agent

import re

def strip_final_answer(text):
    """
    Removes 'FINAL ANSWER:' (case-insensitive) and all following whitespace from the start of the string.
    Returns the remainder of the string.
    """
    # The regex matches 'FINAL ANSWER:', optional colon, and all whitespace after it
    return re.sub(r'^\s*FINAL ANSWER:\s*', '', text, flags=re.IGNORECASE)

# Example usage:
s = "FINAL ANSWER: Joe Torre"
print(strip_final_answer(s))  # Output: Joe Torre

s2 = "  FINAL ANSWER:   Jane Doe"
print(strip_final_answer(s2))  # Output: Jane Doe


def print_answers_dataframe(answers_payload):
    # Create a list of question numbers from 1 to length of answers_payload
    question_numbers = list(range(1, len(answers_payload) + 1))
    
    # Extract task_id and submitted_answer from the list of dictionaries
    task_ids = [item["task_id"] for item in answers_payload]
    submitted_answers = [item["submitted_answer"] for item in answers_payload]
    
    # Create the DataFrame
    df = pd.DataFrame({
        "question_number": question_numbers,
        "task_id": task_ids,
        "submitted_answer": submitted_answers
    })
    
    # Print the DataFrame
    print(df)

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# login(token=os.environ["HF_TOKEN"])

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#class BasicAgent:
#    def __init__(self):
#        print("BasicAgent initialized.")
#    def __call__(self, question: str) -> str:
#        print(f"Agent received question (first 50 chars): {question[:50]}...")
#        fixed_answer = "This is a default answer."
#        print(f"Agent returning fixed answer: {fixed_answer}")
#        return fixed_answer

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    files_url = f"{api_url}/files"

    # 1. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        hf_questions = response.json()
        if not hf_questions:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(hf_questions)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None
    
    # 2. Create states
    try:
        for item in hf_questions:
            file_name = item.get('file_name', '')
            if file_name == '':
                item['input_file'] = None
                item['file_type'] = None
                item['file_path'] = None
            else:
                # Call the API to retrieve the file; adjust params as needed
                task_id = item['task_id']
                api_response = requests.get(f"{files_url}/{task_id}")
                print(f"api_response = {api_response.status_code}")
                if api_response.status_code == 200:
                    item['input_file'] = api_response.content  # Store file as bytes
                    item['file_type'] = get_file_type(file_name)
                    item['file_path'] = write_bytes_to_temp_dir(item['input_file'], file_name)
                else:
                    item['input_file'] = None  # Or handle error as needed
                    item['file_type'] = None
                    item['file_path'] = None
    except Exception as e:
        tb_str = traceback.format_exc()
        print(f"Error creating new states: {tb_str}")
        return f"Error creating new states: {tb_str}", None
    
    agent = create_memory_safe_workflow()    

    # Setup states for questions and run agent
    answers_payload = []
    results_log = []
    for r in range(len(hf_questions)):
        s = AgentState(question = hf_questions[r]['question'],
                    input_file = hf_questions[r]['input_file'],
                    file_type = hf_questions[r]['file_type'],
                    file_path = hf_questions[r]['file_path'])
        try:
            task_id = hf_questions[r]['task_id']
            question_text = hf_questions[r]['question']
            full_answer = run_agent(agent, s)
            submitted_answer = extract_final_answer(full_answer[-1].content)
            print(f"\n\nQuestion {r+1} Answer: {submitted_answer}\n\n")
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
            
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.\n\n")
        print("Full answer list\n")
        print_answers_dataframe(answers_payload=answers_payload)
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# HF Course Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for HF Intelligent Agent Evaluation...")
    demo.launch(debug=True, share=False)