Spaces:
Sleeping
Sleeping
File size: 11,628 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 0616341 5145d77 4000d20 3127c31 11398e5 10e9b7d 5145d77 2260dcd d59f015 e80aab9 3db6293 e80aab9 3127c31 31243f4 d59f015 9420d94 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 ad021fc e80aab9 c1d0e30 0616341 ad1ff94 0616341 ad021fc 66a013c 0616341 66a013c 0616341 11398e5 9420d94 11398e5 b395607 11398e5 fe1bd6e 226f55a 9e30ca3 11398e5 31243f4 3c4371f 31243f4 b395607 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 2260dcd 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 2260dcd e80aab9 7979b63 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 8ee8f69 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import traceback
import re
import pandas as pd
from huggingface_hub import login
from tools import create_memory_safe_workflow, get_file_type, write_bytes_to_temp_dir, AgentState, extract_final_answer, run_agent
import re
def strip_final_answer(text):
"""
Removes 'FINAL ANSWER:' (case-insensitive) and all following whitespace from the start of the string.
Returns the remainder of the string.
"""
# The regex matches 'FINAL ANSWER:', optional colon, and all whitespace after it
return re.sub(r'^\s*FINAL ANSWER:\s*', '', text, flags=re.IGNORECASE)
# Example usage:
s = "FINAL ANSWER: Joe Torre"
print(strip_final_answer(s)) # Output: Joe Torre
s2 = " FINAL ANSWER: Jane Doe"
print(strip_final_answer(s2)) # Output: Jane Doe
def print_answers_dataframe(answers_payload):
# Create a list of question numbers from 1 to length of answers_payload
question_numbers = list(range(1, len(answers_payload) + 1))
# Extract task_id and submitted_answer from the list of dictionaries
task_ids = [item["task_id"] for item in answers_payload]
submitted_answers = [item["submitted_answer"] for item in answers_payload]
# Create the DataFrame
df = pd.DataFrame({
"question_number": question_numbers,
"task_id": task_ids,
"submitted_answer": submitted_answers
})
# Print the DataFrame
print(df)
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# login(token=os.environ["HF_TOKEN"])
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
files_url = f"{api_url}/files"
# 1. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
hf_questions = response.json()
if not hf_questions:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(hf_questions)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 2. Create states
try:
for item in hf_questions:
file_name = item.get('file_name', '')
if file_name == '':
item['input_file'] = None
item['file_type'] = None
item['file_path'] = None
else:
# Call the API to retrieve the file; adjust params as needed
task_id = item['task_id']
api_response = requests.get(f"{files_url}/{task_id}")
print(f"api_response = {api_response.status_code}")
if api_response.status_code == 200:
item['input_file'] = api_response.content # Store file as bytes
item['file_type'] = get_file_type(file_name)
item['file_path'] = write_bytes_to_temp_dir(item['input_file'], file_name)
else:
item['input_file'] = None # Or handle error as needed
item['file_type'] = None
item['file_path'] = None
except Exception as e:
tb_str = traceback.format_exc()
print(f"Error creating new states: {tb_str}")
return f"Error creating new states: {tb_str}", None
agent = create_memory_safe_workflow()
# Setup states for questions and run agent
answers_payload = []
results_log = []
for r in range(len(hf_questions)):
s = AgentState(question = hf_questions[r]['question'],
input_file = hf_questions[r]['input_file'],
file_type = hf_questions[r]['file_type'],
file_path = hf_questions[r]['file_path'])
try:
task_id = hf_questions[r]['task_id']
question_text = hf_questions[r]['question']
full_answer = run_agent(agent, s)
submitted_answer = extract_final_answer(full_answer[-1].content)
print(f"\n\nQuestion {r+1} Answer: {submitted_answer}\n\n")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.\n\n")
print("Full answer list\n")
print_answers_dataframe(answers_payload=answers_payload)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# HF Course Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for HF Intelligent Agent Evaluation...")
demo.launch(debug=True, share=False) |