File size: 1,190 Bytes
1d70192
8678a4f
1d70192
50c7e7d
c2b0d11
50c7e7d
 
 
1d70192
 
50c7e7d
1d70192
c8b2231
 
50c7e7d
1d70192
50c7e7d
 
 
 
1d70192
 
c8b2231
c2b0d11
50c7e7d
416be73
50c7e7d
1d70192
c8b2231
1d70192
 
 
c8b2231
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import streamlit as st
from transformers import pipeline

# Define the path to the saved model
model_path = './QAModel'  # Path to your fine-tuned model

# Load the question-answering pipeline
qa_pipeline = pipeline("question-answering", model=model_path, tokenizer=model_path)

# Set the title for the Streamlit app
st.title("Movie Trivia Question Answering")

# Text inputs for the user
context = st.text_area("Enter the context (movie-related text):")
question = st.text_area("Enter your question:")

def generate_answer(question, context):
    # Perform question answering
    result = qa_pipeline(question=question, context=context)
    return result['answer']

if st.button("Get Answer"):
    if context and question:
        generated_answer = generate_answer(question, context)
        # Display the generated answer
        st.subheader("Answer")
        st.write(generated_answer)
    else:
        st.warning("Please enter both context and question.")

# Optionally, add instructions or information about the app
st.write("""
    Enter a movie-related context and a question related to the context above. The model will provide the answer based on the context provided.
    """)