Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,16 +10,8 @@ qa_pipeline = pipeline("question-answering", model=model_path, tokenizer=model_p
|
|
10 |
# Set the title for the Streamlit app
|
11 |
st.title("Movie Trivia Question Answering")
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
with open(context_file_path, 'r') as file:
|
16 |
-
context = file.read()
|
17 |
-
|
18 |
-
# Display the context to the user
|
19 |
-
st.subheader("Context (movie-related text)")
|
20 |
-
st.write(context)
|
21 |
-
|
22 |
-
# Text input for the user to enter the question
|
23 |
question = st.text_area("Enter your question:")
|
24 |
|
25 |
def generate_answer(question, context):
|
@@ -28,15 +20,15 @@ def generate_answer(question, context):
|
|
28 |
return result['answer']
|
29 |
|
30 |
if st.button("Get Answer"):
|
31 |
-
if question:
|
32 |
generated_answer = generate_answer(question, context)
|
33 |
# Display the generated answer
|
34 |
st.subheader("Answer")
|
35 |
st.write(generated_answer)
|
36 |
else:
|
37 |
-
st.warning("Please enter
|
38 |
|
39 |
# Optionally, add instructions or information about the app
|
40 |
st.write("""
|
41 |
-
Enter a question related to the
|
42 |
-
""")
|
|
|
10 |
# Set the title for the Streamlit app
|
11 |
st.title("Movie Trivia Question Answering")
|
12 |
|
13 |
+
# Text inputs for the user
|
14 |
+
context = st.text_area("Enter the context (movie-related text):")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
question = st.text_area("Enter your question:")
|
16 |
|
17 |
def generate_answer(question, context):
|
|
|
20 |
return result['answer']
|
21 |
|
22 |
if st.button("Get Answer"):
|
23 |
+
if context and question:
|
24 |
generated_answer = generate_answer(question, context)
|
25 |
# Display the generated answer
|
26 |
st.subheader("Answer")
|
27 |
st.write(generated_answer)
|
28 |
else:
|
29 |
+
st.warning("Please enter both context and question.")
|
30 |
|
31 |
# Optionally, add instructions or information about the app
|
32 |
st.write("""
|
33 |
+
Enter a movie-related context and a question related to the context above. The model will provide the answer based on the context provided.
|
34 |
+
""")
|