File size: 4,890 Bytes
ae1ea8a
 
 
 
82fdb01
ae1ea8a
 
 
 
 
 
 
0e42d3f
 
 
 
82fdb01
 
 
0e42d3f
 
 
 
82fdb01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e42d3f
 
82fdb01
 
0e42d3f
 
 
 
 
 
 
82fdb01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1ea8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": true,
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import random\n",
    "\n",
    "import numpy as np\n",
    "from src.functional import sigmoid\n",
    "\n",
    "from jax import grad\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "outputs": [],
   "source": [
    "class DenseLayer:\n",
    "    def __init__(self, total_nodes, input_size, activation=sigmoid):\n",
    "        self.total_nodes = total_nodes\n",
    "        self.input_size = input_size\n",
    "        self.weights = np.random.rand(total_nodes, self.input_size + 1)\n",
    "        self.activation = activation\n",
    "\n",
    "    def forward(self, x):\n",
    "        x_biased = np.concatenate((x, np.ones((len(x), 1))), axis=1)\n",
    "        y = self.weights @ x_biased.T\n",
    "        return self.activation(y)\n",
    "\n",
    "    def backprop(self, gradient):\n",
    "        "
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "outputs": [],
   "source": [
    "l = DenseLayer(5, 5)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "outputs": [
    {
     "data": {
      "text/plain": "Array([[0.7291562 ],\n       [0.84321564],\n       [0.8657799 ],\n       [0.8525716 ],\n       [0.89164424]], dtype=float32)"
     },
     "execution_count": 108,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "l.forward(np.random.rand(1, 5))"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "outputs": [],
   "source": [
    "import torch\n",
    "from torch import nn"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "outputs": [],
   "source": [
    "class CNN(nn.Module):\n",
    "    def __init__(self, input_channels, num_classes):\n",
    "        super().__init__()\n",
    "\n",
    "        self.feature_layers = [input_channels, 6, 16, 120]\n",
    "        self.kernels = [5, 5, 5]\n",
    "        self.pools = [2, 2]\n",
    "        self.feature_activations = [nn.Tanh for _ in range(len(self.channels) - 1)]\n",
    "\n",
    "        self.classifier_layers = [120, num_classes]\n",
    "        self.classifier_activations = [nn.Tanh for _ in range(len(self.classifier_layers))]\n",
    "\n",
    "        feature_layers = []\n",
    "        for idx, layer in enumerate(list(zip(self.feature_layers[:-1], self.feature_layers[1:]))):\n",
    "            feature_layers.append(\n",
    "                nn.Conv2d(in_channels=layer[0], out_channels=layer[1], kernel_size=self.kernels[idx])\n",
    "            )\n",
    "            feature_layers.append(self.feature_activations[idx])\n",
    "\n",
    "            if idx != len(self.feature_activations):\n",
    "                feature_layers.append(nn.MaxPool2d(kernel_size=self.pools[2]))\n",
    "\n",
    "\n",
    "        classifier_layers = []\n",
    "        for idx, layer in enumerate(list(zip(self.classifier_layers[:-1], self.classifier_layers[1:]))):\n",
    "            classifier_layers.append(\n",
    "                nn.Linear(in_features=layer[0], out_features=layer[1])\n",
    "            )\n",
    "\n",
    "            if idx != len(self.classifier_activations):\n",
    "                classifier_layers.append(self.classifier_activations[idx])\n",
    "\n",
    "\n",
    "        self.feature_extractor = nn.Sequential(*feature_layers)\n",
    "        self.classifier = nn.Sequential(*classifier_layers)\n",
    "\n",
    "    def forward(self, x):\n",
    "        x = self.feature_extractor(x)\n",
    "        y = self.classifier_layers(torch.flatten(x, 1))\n",
    "        p = nn.functional.softmax(y, dim=1)\n",
    "        return y, p"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}