Spaces:
Running
Running
rzimmerdev
commited on
Commit
•
82fdb01
1
Parent(s):
bfbda3e
Added LeNet model implemented with PyTorch modules
Browse files- .github/workflows/learn-github-actions.yml +1 -1
- notebooks/functional.ipynb +105 -0
- notebooks/model.ipynb +137 -4
- src/models.py +41 -0
.github/workflows/learn-github-actions.yml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
name: learn-github-actions
|
2 |
-
run-name: ${{ github.actor }}
|
3 |
on: [push]
|
4 |
jobs:
|
5 |
check-bats-version:
|
|
|
1 |
name: learn-github-actions
|
2 |
+
run-name: ${{ github.actor }} has made changes
|
3 |
on: [push]
|
4 |
jobs:
|
5 |
check-bats-version:
|
notebooks/functional.ipynb
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 79,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true,
|
8 |
+
"pycharm": {
|
9 |
+
"name": "#%%\n"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"outputs": [],
|
13 |
+
"source": [
|
14 |
+
"from jax import numpy as jnp\n",
|
15 |
+
"from jax import jit, vmap"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 22,
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"@jit\n",
|
24 |
+
"def sigmoid(x):\n",
|
25 |
+
" return 1 / (1 + jnp.exp(-1 * x))"
|
26 |
+
],
|
27 |
+
"metadata": {
|
28 |
+
"collapsed": false,
|
29 |
+
"pycharm": {
|
30 |
+
"name": "#%%\n"
|
31 |
+
}
|
32 |
+
}
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 75,
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"@jit\n",
|
40 |
+
"def relu(x):\n",
|
41 |
+
" return x * (x > 0)"
|
42 |
+
],
|
43 |
+
"metadata": {
|
44 |
+
"collapsed": false,
|
45 |
+
"pycharm": {
|
46 |
+
"name": "#%%\n"
|
47 |
+
}
|
48 |
+
}
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 98,
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"@jit\n",
|
56 |
+
"@vmap\n",
|
57 |
+
"def softmax(x):\n",
|
58 |
+
" \"\"\"\n",
|
59 |
+
" >>> jnp.sum(softmax(jnp.array([[1, 2, 4], [1, 2, 3], [1, 2, 3]])), axis=1)\n",
|
60 |
+
" DeviceArray([1., 1., 1.], dtype=float32)\n",
|
61 |
+
" \"\"\"\n",
|
62 |
+
" return jnp.exp(x) / jnp.sum(jnp.exp(x))"
|
63 |
+
],
|
64 |
+
"metadata": {
|
65 |
+
"collapsed": false,
|
66 |
+
"pycharm": {
|
67 |
+
"name": "#%%\n"
|
68 |
+
}
|
69 |
+
}
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"outputs": [],
|
75 |
+
"source": [],
|
76 |
+
"metadata": {
|
77 |
+
"collapsed": false,
|
78 |
+
"pycharm": {
|
79 |
+
"name": "#%%\n"
|
80 |
+
}
|
81 |
+
}
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"metadata": {
|
85 |
+
"kernelspec": {
|
86 |
+
"display_name": "Python 3",
|
87 |
+
"language": "python",
|
88 |
+
"name": "python3"
|
89 |
+
},
|
90 |
+
"language_info": {
|
91 |
+
"codemirror_mode": {
|
92 |
+
"name": "ipython",
|
93 |
+
"version": 2
|
94 |
+
},
|
95 |
+
"file_extension": ".py",
|
96 |
+
"mimetype": "text/x-python",
|
97 |
+
"name": "python",
|
98 |
+
"nbconvert_exporter": "python",
|
99 |
+
"pygments_lexer": "ipython2",
|
100 |
+
"version": "2.7.6"
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"nbformat": 4,
|
104 |
+
"nbformat_minor": 0
|
105 |
+
}
|
notebooks/model.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {
|
7 |
"collapsed": true,
|
8 |
"pycharm": {
|
@@ -14,15 +14,82 @@
|
|
14 |
"import random\n",
|
15 |
"\n",
|
16 |
"import numpy as np\n",
|
17 |
-
"from
|
|
|
|
|
18 |
]
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"outputs": [],
|
24 |
"source": [
|
25 |
-
"
|
|
|
26 |
],
|
27 |
"metadata": {
|
28 |
"collapsed": false,
|
@@ -30,6 +97,72 @@
|
|
30 |
"name": "#%%\n"
|
31 |
}
|
32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
],
|
35 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
"metadata": {
|
7 |
"collapsed": true,
|
8 |
"pycharm": {
|
|
|
14 |
"import random\n",
|
15 |
"\n",
|
16 |
"import numpy as np\n",
|
17 |
+
"from src.functional import sigmoid\n",
|
18 |
+
"\n",
|
19 |
+
"from jax import grad\n"
|
20 |
]
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 106,
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"class DenseLayer:\n",
|
28 |
+
" def __init__(self, total_nodes, input_size, activation=sigmoid):\n",
|
29 |
+
" self.total_nodes = total_nodes\n",
|
30 |
+
" self.input_size = input_size\n",
|
31 |
+
" self.weights = np.random.rand(total_nodes, self.input_size + 1)\n",
|
32 |
+
" self.activation = activation\n",
|
33 |
+
"\n",
|
34 |
+
" def forward(self, x):\n",
|
35 |
+
" x_biased = np.concatenate((x, np.ones((len(x), 1))), axis=1)\n",
|
36 |
+
" y = self.weights @ x_biased.T\n",
|
37 |
+
" return self.activation(y)\n",
|
38 |
+
"\n",
|
39 |
+
" def backprop(self, gradient):\n",
|
40 |
+
" "
|
41 |
+
],
|
42 |
+
"metadata": {
|
43 |
+
"collapsed": false,
|
44 |
+
"pycharm": {
|
45 |
+
"name": "#%%\n"
|
46 |
+
}
|
47 |
+
}
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 107,
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"l = DenseLayer(5, 5)"
|
55 |
+
],
|
56 |
+
"metadata": {
|
57 |
+
"collapsed": false,
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 108,
|
66 |
+
"outputs": [
|
67 |
+
{
|
68 |
+
"data": {
|
69 |
+
"text/plain": "Array([[0.7291562 ],\n [0.84321564],\n [0.8657799 ],\n [0.8525716 ],\n [0.89164424]], dtype=float32)"
|
70 |
+
},
|
71 |
+
"execution_count": 108,
|
72 |
+
"metadata": {},
|
73 |
+
"output_type": "execute_result"
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"l.forward(np.random.rand(1, 5))"
|
78 |
+
],
|
79 |
+
"metadata": {
|
80 |
+
"collapsed": false,
|
81 |
+
"pycharm": {
|
82 |
+
"name": "#%%\n"
|
83 |
+
}
|
84 |
+
}
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 2,
|
89 |
"outputs": [],
|
90 |
"source": [
|
91 |
+
"import torch\n",
|
92 |
+
"from torch import nn"
|
93 |
],
|
94 |
"metadata": {
|
95 |
"collapsed": false,
|
|
|
97 |
"name": "#%%\n"
|
98 |
}
|
99 |
}
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": 4,
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"class CNN(nn.Module):\n",
|
107 |
+
" def __init__(self, input_channels, num_classes):\n",
|
108 |
+
" super().__init__()\n",
|
109 |
+
"\n",
|
110 |
+
" self.feature_layers = [input_channels, 6, 16, 120]\n",
|
111 |
+
" self.kernels = [5, 5, 5]\n",
|
112 |
+
" self.pools = [2, 2]\n",
|
113 |
+
" self.feature_activations = [nn.Tanh for _ in range(len(self.channels) - 1)]\n",
|
114 |
+
"\n",
|
115 |
+
" self.classifier_layers = [120, num_classes]\n",
|
116 |
+
" self.classifier_activations = [nn.Tanh for _ in range(len(self.classifier_layers))]\n",
|
117 |
+
"\n",
|
118 |
+
" feature_layers = []\n",
|
119 |
+
" for idx, layer in enumerate(list(zip(self.feature_layers[:-1], self.feature_layers[1:]))):\n",
|
120 |
+
" feature_layers.append(\n",
|
121 |
+
" nn.Conv2d(in_channels=layer[0], out_channels=layer[1], kernel_size=self.kernels[idx])\n",
|
122 |
+
" )\n",
|
123 |
+
" feature_layers.append(self.feature_activations[idx])\n",
|
124 |
+
"\n",
|
125 |
+
" if idx != len(self.feature_activations):\n",
|
126 |
+
" feature_layers.append(nn.MaxPool2d(kernel_size=self.pools[2]))\n",
|
127 |
+
"\n",
|
128 |
+
"\n",
|
129 |
+
" classifier_layers = []\n",
|
130 |
+
" for idx, layer in enumerate(list(zip(self.classifier_layers[:-1], self.classifier_layers[1:]))):\n",
|
131 |
+
" classifier_layers.append(\n",
|
132 |
+
" nn.Linear(in_features=layer[0], out_features=layer[1])\n",
|
133 |
+
" )\n",
|
134 |
+
"\n",
|
135 |
+
" if idx != len(self.classifier_activations):\n",
|
136 |
+
" classifier_layers.append(self.classifier_activations[idx])\n",
|
137 |
+
"\n",
|
138 |
+
"\n",
|
139 |
+
" self.feature_extractor = nn.Sequential(*feature_layers)\n",
|
140 |
+
" self.classifier = nn.Sequential(*classifier_layers)\n",
|
141 |
+
"\n",
|
142 |
+
" def forward(self, x):\n",
|
143 |
+
" x = self.feature_extractor(x)\n",
|
144 |
+
" y = self.classifier_layers(torch.flatten(x, 1))\n",
|
145 |
+
" p = nn.functional.softmax(y, dim=1)\n",
|
146 |
+
" return y, p"
|
147 |
+
],
|
148 |
+
"metadata": {
|
149 |
+
"collapsed": false,
|
150 |
+
"pycharm": {
|
151 |
+
"name": "#%%\n"
|
152 |
+
}
|
153 |
+
}
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
158 |
+
"outputs": [],
|
159 |
+
"source": [],
|
160 |
+
"metadata": {
|
161 |
+
"collapsed": false,
|
162 |
+
"pycharm": {
|
163 |
+
"name": "#%%\n"
|
164 |
+
}
|
165 |
+
}
|
166 |
}
|
167 |
],
|
168 |
"metadata": {
|
src/models.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
class CNN(nn.Module):
|
8 |
+
def __init__(self, input_channels, num_classes):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.feature_layers = [input_channels, 6, 16]
|
12 |
+
self.kernels = [5, 5]
|
13 |
+
self.pools = [2, 2]
|
14 |
+
self.feature_activations = [nn.ReLU for _ in range(len(self.feature_layers) - 1)]
|
15 |
+
|
16 |
+
self.classifier_layers = [400, 120, 84, num_classes]
|
17 |
+
self.classifier_activations = [nn.ReLU for _ in range(len(self.classifier_layers) - 1)]
|
18 |
+
|
19 |
+
feature_layers = []
|
20 |
+
for idx, layer in enumerate(list(zip(self.feature_layers[:-1], self.feature_layers[1:]))):
|
21 |
+
feature_layers.append(
|
22 |
+
nn.Conv2d(in_channels=layer[0], out_channels=layer[1],
|
23 |
+
kernel_size=self.kernels[idx], padding=2 if idx == 0 else 0)
|
24 |
+
)
|
25 |
+
feature_layers.append(self.feature_activations[idx]())
|
26 |
+
feature_layers.append(nn.MaxPool2d(kernel_size=self.pools[idx]))
|
27 |
+
|
28 |
+
classifier_layers = []
|
29 |
+
for idx, layer in enumerate(list(zip(self.classifier_layers[:-1], self.classifier_layers[1:]))):
|
30 |
+
classifier_layers.append(
|
31 |
+
nn.Linear(in_features=layer[0], out_features=layer[1])
|
32 |
+
)
|
33 |
+
classifier_layers.append(self.classifier_activations[idx]())
|
34 |
+
|
35 |
+
self.feature_extractor = nn.Sequential(*feature_layers)
|
36 |
+
self.classifier = nn.Sequential(*classifier_layers)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
x = self.feature_extractor(x)
|
40 |
+
y = self.classifier(torch.flatten(x))
|
41 |
+
return y
|