Spaces:
Sleeping
Sleeping
File size: 18,566 Bytes
67e8481 6c39b55 67e8481 e819e80 67e8481 6928bd2 68afba5 67e8481 c173485 68afba5 67e8481 68afba5 67e8481 d23d2cd 67e8481 e819e80 67e8481 964ba9a 67e8481 4d8e560 67e8481 5a8bcb9 344f03f 5a8bcb9 344f03f c173485 344f03f 67e8481 344f03f 67e8481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# TODO save & restart from (if it exists) dataframe parquet
import torch
# lol
DEVICE = 'cuda'
STEPS = 6
output_hidden_state = False
device = "cuda"
dtype = torch.bfloat16
import matplotlib.pyplot as plt
import matplotlib
from sklearn.linear_model import Ridge
import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
import spaces
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL
from transformers import CLIPTextModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av
def write_video(file_name, images, fps=17):
print('Saving')
container = av.open(file_name, mode="w")
stream = container.add_stream("h264", rate=fps)
# stream.options = {'preset': 'faster'}
stream.thread_count = 0
stream.width = 512
stream.height = 512
stream.pix_fmt = "yuv420p"
for img in images:
img = np.array(img)
img = np.round(img).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
# Close the file
container.close()
print('Saved')
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=dtype).to(DEVICE)
#vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)
#finetune_path = '''/home/ryn_mote/Misc/finetune-sd1.5/dreambooth-model best'''''
#unet = UNet2DConditionModel.from_pretrained(finetune_path+'/unet/').to(dtype)
#text_encoder = CLIPTextModel.from_pretrained(finetune_path+'/text_encoder/').to(dtype)
unet = UNet2DConditionModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='unet').to(dtype)
text_encoder = CLIPTextModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='text_encoder').to(dtype)
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype, unet=unet, text_encoder=text_encoder)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
pipe.set_adapters(["lcm-lora"], [.9])
pipe.fuse_lora()
#pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder)
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_4step_diffusers.safetensors"
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15_vit-G.bin", map_location='cpu')
# This IP adapter improves outputs substantially.
pipe.set_ip_adapter_scale(.8)
pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
pipe.to(device=DEVICE)
#pipe.unet = torch.compile(pipe.unet)
#pipe.vae = torch.compile(pipe.vae)
#im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
#output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
#leave_im_emb, _ = pipe.encode_image(
# output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
#)
#assert len(output.frames[0]) == 16
#leave_im_emb.detach().to('cpu')
@spaces.GPU(duration=10)
def generate_gpu(in_im_embs):
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
#im_embs = torch.cat((torch.zeros(1, 1280, device=DEVICE, dtype=dtype), in_im_embs), 0)
output = pipe(prompt='a scene', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
im_emb, _ = pipe.encode_image(
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
)
im_emb = im_emb.detach().to('cpu').to(torch.float32)
return output, im_emb
def generate(in_im_embs):
output, im_emb = generate_gpu(in_im_embs)
nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
if nsfw:
gr.Warning("NSFW content detected.")
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
return None, im_emb
output.frames[0] = output.frames[0] + list(reversed(output.frames[0]))
write_video(path, output.frames[0])
return path, im_emb
#######################
# TODO add to state instead of shared across all
glob_idx = 0
# TODO
# We can keep a df of media paths, embeddings, and user ratings.
# We can drop by lowest user ratings to keep enough RAM available when we get too many rows.
# We can continuously update by who is most recently active in the background & server as we go, plucking using "has been seen" and similarity
# to user embeds
def get_user_emb(embs, ys):
# handle case where every instance of calibration videos is 'Neither' or 'Like' or 'Dislike'
if len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1280))
embs.append(.01*torch.randn(1280))
ys.append(0)
ys.append(1)
print('Fixing only one feedback class available.\n')
indices = list(range(len(embs)))
# sample only as many negatives as there are positives
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
#lower = min(len(pos_indices), len(neg_indices))
#neg_indices = random.sample(neg_indices, lower)
#pos_indices = random.sample(pos_indices, lower)
print(len(neg_indices), len(pos_indices))
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
feature_embs = np.array(torch.stack([embs[i].squeeze().to('cpu') for i in indices]).to('cpu'))
#scaler = preprocessing.StandardScaler().fit(feature_embs)
#feature_embs = scaler.transform(feature_embs)
chosen_y = np.array([ys[i] for i in indices])
print('Gathering coefficients')
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
lin_class = SVC(max_iter=50000, kernel='linear', C=.1, class_weight='balanced').fit(feature_embs, chosen_y)
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double).detach().to('cpu')
coef_ = coef_ / coef_.abs().max() * 3
print('Gathered')
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * coef_.to(dtype=dtype)
return im_emb
def pluck_img(user_id, user_emb):
print(user_id, 'user_id')
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
while len(not_rated_rows) == 0:
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
time.sleep(.01)
# TODO optimize this lol
best_sim = -100000
for i in not_rated_rows.iterrows():
# TODO sloppy .to but it is 3am.
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'))
if sim > best_sim:
best_sim = sim
best_row = i[1]
img = best_row['paths']
return img
def background_next_image():
global prevs_df
# only let it get N (maybe 3) ahead of the user
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
while len(not_rated_rows) > 8 or len(rated_rows) < 4:
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
time.sleep(.01)
print(rated_rows['latest_user_to_rate'])
latest_user_id = rated_rows.iloc[-1]['latest_user_to_rate']
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
print(latest_user_id)
embs, ys = pluck_embs_ys(latest_user_id)
user_emb = get_user_emb(embs, ys)
img, embs = generate(user_emb)
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
tmp_df['paths'] = [img]
tmp_df['embeddings'] = [embs]
tmp_df['user:rating'] = [{' ': ' '}]
prevs_df = pd.concat((prevs_df, tmp_df))
# we can free up storage by deleting the image
if len(prevs_df) > 50:
oldest_path = prevs_df.iloc[0]['paths']
if os.path.isfile(oldest_path):
os.remove(oldest_path)
else:
# If it fails, inform the user.
print("Error: %s file not found" % oldest_path)
# only keep 50 images & embeddings & ips, then remove oldest
prevs_df = prevs_df.iloc[1:]
def pluck_embs_ys(user_id):
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
while len(not_rated_rows) == 0:
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
time.sleep(.01)
embs = rated_rows['embeddings'].to_list()
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
print('embs', 'ys', embs, ys)
return embs, ys
def next_image(calibrate_prompts, user_id):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample media #########')
cal_video = calibrate_prompts.pop(0)
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0]
return image, calibrate_prompts
else:
print('######### Roaming #########')
embs, ys = pluck_embs_ys(user_id)
user_emb = get_user_emb(embs, ys)
image = pluck_img(user_id, user_emb)
return image, calibrate_prompts
def start(_, calibrate_prompts, user_id, request: gr.Request):
image, calibrate_prompts = next_image(calibrate_prompts, user_id)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
image,
calibrate_prompts
]
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
global prevs_df
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts
else:
choice = 0
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
# TODO skip allowing rating & just continue
if img == None:
print('NSFW -- choice is disliked')
choice = 0
# TODO clean up
old_d = prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'user:rating'][0]
old_d[user_id] = choice
prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'user:rating'][0] = old_d
prevs_df.loc[[p.split('/')[-1] in img for p in prevs_df['paths'].to_list()], 'latest_user_to_rate'] = [user_id]
print('full_df, prevs_df', prevs_df, prevs_df['latest_user_to_rate'])
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''# Blue Tigers
### Generative Recommenders for Exporation of Video
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
user_id = gr.State(int(torch.randint(2**6, (1,))[0]))
print('USER_ID: ',user_id)
calibrate_prompts = gr.State([
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
])
def l():
return None
with gr.Row(elem_id='output-image'):
img = gr.Video(
label='Lightning',
autoplay=True,
interactive=False,
height=512,
width=512,
include_audio=False,
elem_id="video_output"
)
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[img, b1, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
b2.click(
choose,
[img, b2, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
b3.click(
choose,
[img, b3, calibrate_prompts, user_id],
[img, calibrate_prompts],
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, calibrate_prompts, user_id],
[b1, b2, b3, b4, img, calibrate_prompts]
)
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several videos and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateLCM model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')
scheduler = BackgroundScheduler()
scheduler.add_job(func=background_next_image, trigger="interval", seconds=1)
scheduler.start()
def encode_space(x):
im_emb, _ = pipe.encode_image(
image, 'cpu', 1, output_hidden_state
)
return im_emb.detach().to('cpu').to(torch.float32)
# prep our calibration prompts
for im in [
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
]:
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating'])
tmp_df['paths'] = [im]
image = list(imageio.imiter(im))
image = image[len(image)//2]
im_emb = encode_space(image)
tmp_df['embeddings'] = [im_emb.detach().to('cpu')]
tmp_df['user:rating'] = [{' ': ' '}]
prevs_df = pd.concat((prevs_df, tmp_df))
demo.launch(share=True)
|