Spaces:
Sleeping
Sleeping
rynmurdock
commited on
Commit
·
e819e80
1
Parent(s):
6c39b55
Update app.py
Browse files
app.py
CHANGED
@@ -116,13 +116,13 @@ pipe.to(device=DEVICE)
|
|
116 |
#pipe.vae = torch.compile(pipe.vae)
|
117 |
|
118 |
|
119 |
-
im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
|
120 |
-
output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
|
121 |
-
leave_im_emb, _ = pipe.encode_image(
|
122 |
-
output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
|
123 |
-
)
|
124 |
-
assert len(output.frames[0]) == 16
|
125 |
-
leave_im_emb.detach().to('cpu')
|
126 |
|
127 |
|
128 |
@spaces.GPU()
|
@@ -191,10 +191,10 @@ def get_user_emb(embs, ys):
|
|
191 |
print('ys are longer than embs; popping latest rating')
|
192 |
ys.pop(-1)
|
193 |
|
194 |
-
feature_embs = np.array(torch.stack([embs[i].squeeze().to('cpu') for i in indices]
|
195 |
#scaler = preprocessing.StandardScaler().fit(feature_embs)
|
196 |
#feature_embs = scaler.transform(feature_embs)
|
197 |
-
chosen_y = np.array([ys[i] for i in indices]
|
198 |
|
199 |
print('Gathering coefficients')
|
200 |
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
|
|
|
116 |
#pipe.vae = torch.compile(pipe.vae)
|
117 |
|
118 |
|
119 |
+
#im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
|
120 |
+
#output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
|
121 |
+
#leave_im_emb, _ = pipe.encode_image(
|
122 |
+
# output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
|
123 |
+
#)
|
124 |
+
#assert len(output.frames[0]) == 16
|
125 |
+
#leave_im_emb.detach().to('cpu')
|
126 |
|
127 |
|
128 |
@spaces.GPU()
|
|
|
191 |
print('ys are longer than embs; popping latest rating')
|
192 |
ys.pop(-1)
|
193 |
|
194 |
+
feature_embs = np.array(torch.stack([embs[i].squeeze().to('cpu') for i in indices]]).to('cpu'))
|
195 |
#scaler = preprocessing.StandardScaler().fit(feature_embs)
|
196 |
#feature_embs = scaler.transform(feature_embs)
|
197 |
+
chosen_y = np.array([ys[i] for i in indices])
|
198 |
|
199 |
print('Gathering coefficients')
|
200 |
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
|