Spaces:
Running
Running
File size: 7,745 Bytes
a4bbc06 8313f09 77b8357 6b31d07 affac96 a1e8d8f bae5b02 73a141a 37c02da 1cdc167 0039926 5320c7c 73a141a e18b966 667b2dc 73a141a 44ab821 a1e8d8f 1cdc167 7c45b28 6c42480 5320c7c c82e3c7 39add81 5320c7c bc4c76e 56c10d2 bc4c76e 56c10d2 bf150e6 bc4c76e 6b31d07 62842f4 6b31d07 2da8950 6b31d07 11b16f9 6b31d07 11b16f9 90e81fe 9546f1b 90e81fe 9546f1b 6b31d07 b982841 6b31d07 d9be7b0 6b31d07 33dddeb 0e71847 d9be7b0 9546f1b 5941228 6b31d07 2da8950 6c42480 5320c7c 6a04a92 f478057 6b31d07 62842f4 6b31d07 b0189a2 bc4c76e 56c10d2 b0189a2 6b31d07 a874e7a 6b31d07 acae979 96637c9 d9be7b0 96637c9 d9be7b0 f5d4c8d 96637c9 b890649 62603a5 96637c9 45f4b02 b890649 62842f4 f9c7c43 62603a5 6b31d07 96637c9 6b31d07 62842f4 25279a1 62603a5 62842f4 d9be7b0 6b31d07 d9be7b0 6b31d07 bce19a7 6b31d07 d9be7b0 0831a35 bce19a7 eeba367 b77d45c 6b31d07 4459ac3 6b31d07 d9be7b0 aa18bf6 6b31d07 62842f4 6f08e8f 6b31d07 d9be7b0 b982841 6b31d07 d9be7b0 6b31d07 119f6c6 62842f4 51b7af6 6b31d07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob
import pickle
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
from PyPDF2 import PdfReader
from PyPDF2 import PdfWriter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
openai.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."}
prompts_archive_url = "https://huggingface.co/datasets/ryanrwatkins/na_prompts_archive"
prompts_archive_file_name = "prompts_archives.csv"
prompts_archive_file = os.path.join("prompts_archive", prompts_archive_file_name)
print(prompts_archive_file)
HF_TOKEN = os.environ.get("HF_token_write")
repo = Repository(
local_dir="prompts_archive", clone_from=prompts_archive_url, use_auth_token=HF_TOKEN, git_user="ryanrwatkins", git_email="rwatkins@gwu.edu"
)
def get_empty_state():
return { "messages": []}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
description = row[2].strip('"')
prompt_templates[act] = prompt
actor_description[act] = description
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def on_prompt_template_change_description(prompt_template):
if not isinstance(prompt_template, str): return
return actor_description[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_template = prompt_templates[prompt_template]
with open(prompts_archive_file, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
writer.writerow(
{"prompt": str(prompt), "time": str(datetime.now())}
)
commit_url = repo.push_to_hub()
print(commit_url)
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
#try:
with open("embeddings.pkl", 'rb') as f:
new_docsearch = pickle.load(f)
query = str(system_prompt + history + [prompt_msg])
docs = new_docsearch.similarity_search(query)
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
completion = chain.run(input_documents=docs, question=query)
get_empty_state()
state['content'] = completion
#state.append(completion.copy())
completion = { "content": completion }
#state['total_tokens'] += completion['usage']['total_tokens']
#except Exception as e:
# history.append(prompt_msg.copy())
# error = {
# "role": "system",
# "content": f"Error: {e}"
# }
# history.append(error.copy())
#total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(prompt_msg['content'], completion['content'])]
return '', chat_messages, state # total_tokens_used_msg,
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## Ask questions of *needs assessment* experts,
## get responses from a *needs assessment experts* version of ChatGPT.
Ask questions of all of them, or pick your expert below.""" ,
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
#total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, state])
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|