Spaces:
Running
Running
ryanrwatkins
commited on
Commit
•
d9be7b0
1
Parent(s):
b77d45c
Update app.py
Browse files
app.py
CHANGED
@@ -12,42 +12,25 @@ from PyPDF2 import PdfReader
|
|
12 |
from PyPDF2 import PdfWriter
|
13 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
14 |
from langchain.text_splitter import CharacterTextSplitter
|
15 |
-
#from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
|
16 |
from langchain.chains.question_answering import load_qa_chain
|
17 |
from langchain.llms import OpenAI
|
18 |
-
|
19 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
20 |
-
#from langchain.vectorstores import Chroma
|
21 |
-
#from langchain.text_splitter import TokenTextSplitter
|
22 |
-
#from langchain.llms import OpenAI
|
23 |
from langchain import OpenAI
|
24 |
from langchain.chat_models import ChatOpenAI
|
25 |
-
#from langchain.chains import ChatVectorDBChain
|
26 |
-
#from langchain.chains import RetrievalQA
|
27 |
from langchain.document_loaders import PyPDFLoader
|
28 |
from langchain.chains.question_answering import load_qa_chain
|
29 |
|
30 |
-
# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here.
|
31 |
-
#from chromadb.config import Settings
|
32 |
-
#client = chromadb.Client(Settings(
|
33 |
-
## chroma_db_impl="duckdb+parquet",
|
34 |
-
# persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory
|
35 |
-
#))
|
36 |
-
|
37 |
|
38 |
openai.api_key = os.environ['openai_key']
|
39 |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
|
40 |
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
def get_empty_state():
|
45 |
return {"total_tokens": 0, "messages": []}
|
46 |
|
47 |
-
|
48 |
-
#Initial prompt template, others added below from TXT file
|
49 |
-
prompt_templates = {"All Needs Experts": "Respond as if you are combiation of all needs assessment experts."}
|
50 |
-
actor_description = {"All Needs Experts": "A combiation of all needs assessment experts."}
|
51 |
|
52 |
def download_prompt_templates():
|
53 |
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
|
@@ -62,8 +45,6 @@ def download_prompt_templates():
|
|
62 |
description = row[2].strip('"')
|
63 |
prompt_templates[act] = prompt
|
64 |
actor_description[act] = description
|
65 |
-
|
66 |
-
|
67 |
|
68 |
except requests.exceptions.RequestException as e:
|
69 |
print(f"An error occurred while downloading prompt templates: {e}")
|
@@ -73,64 +54,22 @@ def download_prompt_templates():
|
|
73 |
choices = choices[:1] + sorted(choices[1:])
|
74 |
return gr.update(value=choices[0], choices=choices)
|
75 |
|
|
|
|
|
76 |
def on_prompt_template_change(prompt_template):
|
77 |
if not isinstance(prompt_template, str): return
|
78 |
return prompt_templates[prompt_template]
|
79 |
|
|
|
|
|
80 |
def on_prompt_template_change_description(prompt_template):
|
81 |
if not isinstance(prompt_template, str): return
|
82 |
return actor_description[prompt_template]
|
83 |
|
84 |
|
85 |
|
86 |
-
|
87 |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# load in all the files
|
92 |
-
#path = './files'
|
93 |
-
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
|
94 |
-
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
|
95 |
-
|
96 |
-
#for file in pdf_files:
|
97 |
-
# loader = PyPDFLoader(file)
|
98 |
-
# pages = loader.load_and_split()
|
99 |
-
# text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
|
100 |
-
# split_pages = text_splitter.split_documents(pages)
|
101 |
-
|
102 |
-
#persist_directory = "./embeddings"
|
103 |
-
#embeddings = OpenAIEmbeddings()
|
104 |
-
#vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory)
|
105 |
-
#vectordb.persist()
|
106 |
-
|
107 |
-
#path = './files'
|
108 |
-
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
|
109 |
|
110 |
-
#merger = PdfWriter()
|
111 |
-
|
112 |
-
# add all file in the list to the merger object
|
113 |
-
#for pdf in pdf_files:
|
114 |
-
# merger.append(pdf)
|
115 |
-
#merger.write("merged-pdf.pdf")
|
116 |
-
#merger.close()
|
117 |
-
|
118 |
-
#reader = PdfReader("merged-pdf.pdf")
|
119 |
-
#raw_text = ''
|
120 |
-
#for i, page in enumerate(reader.pages):
|
121 |
-
# text = page.extract_text()
|
122 |
-
# if text:
|
123 |
-
# raw_text += text
|
124 |
-
#text_splitter = CharacterTextSplitter(
|
125 |
-
# separator = "\n",
|
126 |
-
# chunk_size = 1000,
|
127 |
-
# chunk_overlap = 200,
|
128 |
-
# length_function = len,
|
129 |
-
#)
|
130 |
-
#texts = text_splitter.split_text(raw_text)
|
131 |
-
#len(texts)
|
132 |
-
#embeddings = OpenAIEmbeddings()
|
133 |
-
|
134 |
|
135 |
history = state['messages']
|
136 |
|
@@ -147,50 +86,21 @@ def submit_message(prompt, prompt_template, temperature, max_tokens, context_len
|
|
147 |
|
148 |
|
149 |
try:
|
150 |
-
|
151 |
-
|
152 |
-
# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
|
153 |
-
|
154 |
-
#completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
|
155 |
-
#completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever())
|
156 |
-
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
|
157 |
-
#completion = completion.run(query)
|
158 |
-
# from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8
|
159 |
-
#completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
|
160 |
-
#completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever(), return_source_documents=False)
|
161 |
-
#completion = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff", retriever=vectordb.as_retriever(), return_source_documents=True)
|
162 |
-
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
|
163 |
-
#completion = completion({"query": query})
|
164 |
-
#completion = completion.run(query)
|
165 |
-
|
166 |
-
# completion = completion({"question": query, "chat_history": history[-context_length*2:]})
|
167 |
-
|
168 |
-
#with open("foo.pkl", 'rb') as f:
|
169 |
-
# new_docsearch = pickle.load(f)
|
170 |
-
|
171 |
-
#docsearch = FAISS.from_texts(texts, embeddings)
|
172 |
with open("embeddings.pkl", 'rb') as f:
|
173 |
new_docsearch = pickle.load(f)
|
174 |
|
175 |
-
|
176 |
query = str(system_prompt + history + [prompt_msg])
|
|
|
177 |
docs = new_docsearch.similarity_search(query)
|
178 |
-
#print(docs[0].page_content)
|
179 |
|
180 |
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
|
181 |
completion = chain.run(input_documents=docs, question=query)
|
182 |
completion = { "content": completion }
|
183 |
|
184 |
-
# VectorDBQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=docsearch, return_source_documents=True)
|
185 |
-
# https://colab.research.google.com/drive/1dzdNDZyofRB0f2KIB4gHXmIza7ehMX30?usp=sharing#scrollTo=b-ejDn_JfpWW
|
186 |
-
|
187 |
get_empty_state()
|
188 |
state.append(completion.copy())
|
189 |
-
|
190 |
-
#history.append(prompt_msg.copy())
|
191 |
-
#history.append(completion.copy())
|
192 |
-
#history.append(completion.choices[0].message.to_dict())
|
193 |
-
#history.append(completion["result"].choices[0].message.to_dict())
|
194 |
|
195 |
state['total_tokens'] += completion['usage']['total_tokens']
|
196 |
|
@@ -207,15 +117,17 @@ def submit_message(prompt, prompt_template, temperature, max_tokens, context_len
|
|
207 |
|
208 |
|
209 |
chat_messages = [(prompt_msg['content'], completion['content'])]
|
210 |
-
#chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
|
211 |
-
#chat_messages = [(history[-2]['content'], history[-1]['content'])]
|
212 |
|
213 |
return '', chat_messages, total_tokens_used_msg, state
|
214 |
|
|
|
|
|
|
|
215 |
def clear_conversation():
|
216 |
return gr.update(value=None, visible=True), None, "", get_empty_state()
|
217 |
|
218 |
|
|
|
219 |
css = """
|
220 |
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
|
221 |
#chatbox {min-height: 400px;}
|
@@ -232,41 +144,33 @@ with gr.Blocks(css=css) as demo:
|
|
232 |
|
233 |
|
234 |
with gr.Column(elem_id="col-container"):
|
235 |
-
|
236 |
-
# new_docsearch = pickle.load(f)
|
237 |
-
|
238 |
-
#query = str("performance")
|
239 |
-
#docs = new_docsearch.similarity_search(query)
|
240 |
|
241 |
-
gr.Markdown("""## Ask questions of
|
242 |
Ask questions of all of them, or pick your expert below.""" ,
|
243 |
elem_id="header")
|
244 |
|
245 |
-
|
246 |
-
|
247 |
|
248 |
with gr.Row():
|
249 |
with gr.Column():
|
250 |
chatbot = gr.Chatbot(elem_id="chatbox")
|
251 |
-
|
252 |
-
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False)
|
253 |
|
254 |
btn_submit = gr.Button("Submit")
|
255 |
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
|
256 |
btn_clear_conversation = gr.Button("Start New Conversation")
|
257 |
with gr.Column():
|
258 |
-
prompt_template = gr.Dropdown(label="Choose
|
259 |
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
|
260 |
with gr.Accordion("Advanced parameters", open=False):
|
261 |
-
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher =
|
262 |
-
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="
|
263 |
-
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context
|
264 |
|
265 |
|
266 |
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
|
267 |
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
|
268 |
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
|
269 |
-
#prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
|
270 |
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
|
271 |
|
272 |
|
|
|
12 |
from PyPDF2 import PdfWriter
|
13 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
14 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
15 |
from langchain.chains.question_answering import load_qa_chain
|
16 |
from langchain.llms import OpenAI
|
|
|
17 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
|
|
|
18 |
from langchain import OpenAI
|
19 |
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
20 |
from langchain.document_loaders import PyPDFLoader
|
21 |
from langchain.chains.question_answering import load_qa_chain
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
openai.api_key = os.environ['openai_key']
|
25 |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
|
26 |
|
27 |
|
28 |
+
prompt_templates = {"All Needs Experts": "Respond as if you are combiation of all needs assessment experts."}
|
29 |
+
actor_description = {"All Needs Experts": "A combiation of all needs assessment experts."}
|
30 |
|
31 |
def get_empty_state():
|
32 |
return {"total_tokens": 0, "messages": []}
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def download_prompt_templates():
|
36 |
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
|
|
|
45 |
description = row[2].strip('"')
|
46 |
prompt_templates[act] = prompt
|
47 |
actor_description[act] = description
|
|
|
|
|
48 |
|
49 |
except requests.exceptions.RequestException as e:
|
50 |
print(f"An error occurred while downloading prompt templates: {e}")
|
|
|
54 |
choices = choices[:1] + sorted(choices[1:])
|
55 |
return gr.update(value=choices[0], choices=choices)
|
56 |
|
57 |
+
|
58 |
+
|
59 |
def on_prompt_template_change(prompt_template):
|
60 |
if not isinstance(prompt_template, str): return
|
61 |
return prompt_templates[prompt_template]
|
62 |
|
63 |
+
|
64 |
+
|
65 |
def on_prompt_template_change_description(prompt_template):
|
66 |
if not isinstance(prompt_template, str): return
|
67 |
return actor_description[prompt_template]
|
68 |
|
69 |
|
70 |
|
|
|
71 |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
history = state['messages']
|
75 |
|
|
|
86 |
|
87 |
|
88 |
try:
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with open("embeddings.pkl", 'rb') as f:
|
91 |
new_docsearch = pickle.load(f)
|
92 |
|
93 |
+
|
94 |
query = str(system_prompt + history + [prompt_msg])
|
95 |
+
|
96 |
docs = new_docsearch.similarity_search(query)
|
|
|
97 |
|
98 |
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
|
99 |
completion = chain.run(input_documents=docs, question=query)
|
100 |
completion = { "content": completion }
|
101 |
|
|
|
|
|
|
|
102 |
get_empty_state()
|
103 |
state.append(completion.copy())
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
state['total_tokens'] += completion['usage']['total_tokens']
|
106 |
|
|
|
117 |
|
118 |
|
119 |
chat_messages = [(prompt_msg['content'], completion['content'])]
|
|
|
|
|
120 |
|
121 |
return '', chat_messages, total_tokens_used_msg, state
|
122 |
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
def clear_conversation():
|
127 |
return gr.update(value=None, visible=True), None, "", get_empty_state()
|
128 |
|
129 |
|
130 |
+
|
131 |
css = """
|
132 |
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
|
133 |
#chatbox {min-height: 400px;}
|
|
|
144 |
|
145 |
|
146 |
with gr.Column(elem_id="col-container"):
|
147 |
+
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
gr.Markdown("""## Ask questions of *needs assessment* experts,\get responses from a *needs assessment* version of ChatGPT.
|
150 |
Ask questions of all of them, or pick your expert below.""" ,
|
151 |
elem_id="header")
|
152 |
|
|
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
chatbot = gr.Chatbot(elem_id="chatbox")
|
157 |
+
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
|
|
|
158 |
|
159 |
btn_submit = gr.Button("Submit")
|
160 |
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
|
161 |
btn_clear_conversation = gr.Button("Start New Conversation")
|
162 |
with gr.Column():
|
163 |
+
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
|
164 |
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
|
165 |
with gr.Accordion("Advanced parameters", open=False):
|
166 |
+
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
|
167 |
+
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
|
168 |
+
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
|
169 |
|
170 |
|
171 |
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
|
172 |
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
|
173 |
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
|
|
|
174 |
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
|
175 |
|
176 |
|