File size: 10,568 Bytes
a4bbc06
8313f09
77b8357
eff14c0
6b31d07
 
affac96
a1e8d8f
6f91104
 
37c02da
1cdc167
0039926
 
 
 
6f91104
 
 
 
5320c7c
6f91104
 
 
 
 
44ab821
a1e8d8f
57ff103
1b5198d
 
 
 
66200fa
eff14c0
c6f7e29
6c42480
91c0706
a4b6d44
1b5198d
5320c7c
3e73f6a
 
5320c7c
2e5edad
 
 
 
 
 
 
 
 
bf150e6
bc4c76e
 
6b31d07
62842f4
6b31d07
2da8950
6b31d07
11b16f9
6b31d07
11b16f9
 
90e81fe
 
 
 
 
9546f1b
90e81fe
9546f1b
6b31d07
 
 
 
 
 
 
b982841
6b31d07
d9be7b0
 
6b31d07
 
33dddeb
0e71847
d9be7b0
 
9546f1b
 
 
5941228
6b31d07
2da8950
1b5198d
6c42480
5320c7c
6a04a92
1b5198d
 
 
 
 
 
 
 
 
 
 
 
 
 
92140e0
 
 
1b5198d
92140e0
1b5198d
 
4fb01e9
1b5198d
4fb01e9
 
 
1b5198d
 
92140e0
1b5198d
4fb01e9
1b5198d
92140e0
91c0706
6720156
 
4eddc47
 
1b5198d
 
91c0706
1b5198d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f478057
6b31d07
 
62842f4
6b31d07
 
 
0da7b86
56c10d2
 
 
 
2e5edad
 
 
 
 
 
 
 
b0189a2
6b31d07
 
 
 
a874e7a
6b31d07
acae979
96637c9
d9be7b0
96637c9
 
d9be7b0
f5d4c8d
96637c9
 
 
 
 
32404f9
b890649
62603a5
96637c9
 
45f4b02
 
b890649
 
62842f4
 
 
f9c7c43
62603a5
6b31d07
96637c9
 
 
 
 
 
 
6b31d07
62842f4
25279a1
62603a5
62842f4
d9be7b0
 
6b31d07
 
 
 
d9be7b0
6b31d07
 
 
 
bce19a7
6b31d07
 
 
 
 
 
 
 
 
 
 
d9be7b0
0831a35
bce19a7
eeba367
02185a7
b9ada4c
 
6b31d07
4459ac3
 
6b31d07
 
 
d9be7b0
aa18bf6
6b31d07
62842f4
6f08e8f
6b31d07
d9be7b0
b982841
6b31d07
d9be7b0
 
 
6b31d07
119f6c6
62842f4
 
 
51b7af6
6b31d07
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303


import gradio as gr
from openai import OpenAI
import requests
import csv
import os
import langchain
#import chromadb
#import glob
import pickle

import huggingface_hub
from huggingface_hub import Repository

from datetime import datetime
#from PyPDF2 import PdfReader
#from PyPDF2 import PdfWriter
#from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
#from langchain.llms import OpenAI
#from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain import OpenAI
#from langchain.chat_models import ChatOpenAI
#from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain

from langchain_google_genai import ChatGoogleGenerativeAI




# turned off due to people using it unethical ways
OpenAI.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']


os.environ["GOOGLE_API_KEY"] = os.environ['gemini_key']


prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."}

#repo_url = create_repo(repo_id="prompts_archive")
#prompts_archive_url = "https://huggingface.co/datasets/ryanrwatkins/prompts_archive"
#prompts_archive_file_name = "prompts_archive.csv"
#prompts_archive_file = os.path.join("prompts_archive", prompts_archive_file_name)
#print(prompts_archive_file)
#HF_TOKEN = os.environ.get("HF_token_write")
#repo = Repository(
#    local_dir="prompts_archive", clone_from=repo_url, use_auth_token=HF_TOKEN, git_user="ryanrwatkins", git_email="rwatkins@gwu.edu"
#)



def get_empty_state():
    return { "messages": []}


def download_prompt_templates():
    url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
    try:
        response = requests.get(url)
        reader = csv.reader(response.text.splitlines())
        next(reader)  # skip the header row
        for row in reader:
            if len(row) >= 2:
                act = row[0].strip('"')
                prompt = row[1].strip('"')
                description = row[2].strip('"')
                prompt_templates[act] = prompt
                actor_description[act] = description

    except requests.exceptions.RequestException as e:
        print(f"An error occurred while downloading prompt templates: {e}")
        return

    choices = list(prompt_templates.keys())
    choices = choices[:1] + sorted(choices[1:])
    return gr.update(value=choices[0], choices=choices)



def on_prompt_template_change(prompt_template):
    if not isinstance(prompt_template, str): return
    return prompt_templates[prompt_template]



def on_prompt_template_change_description(prompt_template):
    if not isinstance(prompt_template, str): return
    return actor_description[prompt_template]




def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
    
    
    history = state['messages']

    if not prompt:
        return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
    
    prompt_template = prompt_templates[prompt_template]

    with open("prompts_archive.csv", "a") as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
        writer.writerow(
            {"prompt": str(prompt), "time": str(datetime.now())}
        )
    

   # system_prompt = []
    #if prompt_template:
     #   system_prompt = [{ "role": "system", "content": prompt_template }]

   # prompt_msg = { "role": "user", "content": prompt }


# The embeddings file has to be remade since the serialization is no long compatible

    
#    with open("embeddings.pkl", 'rb') as f: 
#        new_docsearch = pickle.load(f)
        

    #query = str(system_prompt + history +  [prompt_msg])
    
#    docs = new_docsearch.similarity_search(query)

    gen_ai = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.7, top_p=0.85)
    response = gen_ai.invoke(
        input=history + prompt, 
        #context=history,
        #max_tokens=max_tokens,  # for open ai only
        #temperature=temperature  # for open ai only
    )

    completion = response.content  # Extract the completion message

    
    get_empty_state()
    state['content'] = completion
    #state.append(completion.copy())
    
    completion = { "content": completion }
    
    
    #state['total_tokens'] += completion['usage']['total_tokens']


    
    #except Exception as e:
    #    history.append(prompt_msg.copy())
    #    error  = {
    #        "role": "system",
    #        "content": f"Error: {e}"
    #    }
    #    history.append(error.copy())

    #total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"

    chat_messages = [(prompt_msg['content'], completion['content'])]    
    return '', chat_messages,  state    # total_tokens_used_msg,






def submit_message_OLD(prompt, prompt_template, temperature, max_tokens, context_length, state):
    
    
    history = state['messages']

    if not prompt:
        return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
    
    prompt_template = prompt_templates[prompt_template]

    with open("prompts_archive.csv", "a") as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
        writer.writerow(
            {"prompt": str(prompt), "time": str(datetime.now())}
        )
    
   # with open(prompts_archive_file, "a") as csvfile:
   #     writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
   #     writer.writerow(
   #         {"prompt": str(prompt), "time": str(datetime.now())}
   #     )
   # commit_url = repo.push_to_hub()
   # print(commit_url)

    system_prompt = []
    if prompt_template:
        system_prompt = [{ "role": "system", "content": prompt_template }]

    prompt_msg = { "role": "user", "content": prompt }


    #try:

    with open("embeddings.pkl", 'rb') as f: 
        new_docsearch = pickle.load(f)
        

    query = str(system_prompt + history +  [prompt_msg])
    
    docs = new_docsearch.similarity_search(query)

    chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
    #completion = chain.run(input_documents=docs, question=query)
    

    
    get_empty_state()
    state['content'] = completion
    #state.append(completion.copy())
    
    completion = { "content": completion }
    
    
    #state['total_tokens'] += completion['usage']['total_tokens']


    
    #except Exception as e:
    #    history.append(prompt_msg.copy())
    #    error  = {
    #        "role": "system",
    #        "content": f"Error: {e}"
    #    }
    #    history.append(error.copy())

    #total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"

    chat_messages = [(prompt_msg['content'], completion['content'])]    
    return '', chat_messages,  state    # total_tokens_used_msg,


def clear_conversation():
    return gr.update(value=None, visible=True), None, "", get_empty_state()



css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #chatbox {min-height: 400px;}
      #header {text-align: center;}
      #prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
      #total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
      #label {font-size: 0.8em; padding: 0.5em; margin: 0;}
      .message { font-size: 1.2em; }
      """

with gr.Blocks(css=css) as demo:
    
    state = gr.State(get_empty_state())


    with gr.Column(elem_id="col-container"):

           
        gr.Markdown("""## Ask questions of *needs assessment* experts,  
                    ## get responses from a *needs assessment experts* version of ChatGPT.  
                    Ask questions of all of them, or pick your expert below.
                    This is a free resource but it does cost us money to run. Unfortunately someone has been abusing this approach.
                    In response, we have had to temporarily turn it off until we can put improve the monitoring. Sorry for the inconvenience.""" ,
                    elem_id="header")
        
        
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot(elem_id="chatbox")
                input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)

                btn_submit = gr.Button("Submit")
                #total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
                btn_clear_conversation = gr.Button("Start New Conversation")
            with gr.Column():
                prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
                prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
                with gr.Accordion("Advanced parameters", open=False):
                    temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
                    max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
                    context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")

   
    btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot,  state])
    input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot,  state])
    btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot,  state])
    prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])

    
    demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)


demo.queue(concurrency_count=10)
demo.launch(height='800px')