Spaces:
Running
Running
File size: 10,568 Bytes
a4bbc06 8313f09 77b8357 eff14c0 6b31d07 affac96 a1e8d8f 6f91104 37c02da 1cdc167 0039926 6f91104 5320c7c 6f91104 44ab821 a1e8d8f 57ff103 1b5198d 66200fa eff14c0 c6f7e29 6c42480 91c0706 a4b6d44 1b5198d 5320c7c 3e73f6a 5320c7c 2e5edad bf150e6 bc4c76e 6b31d07 62842f4 6b31d07 2da8950 6b31d07 11b16f9 6b31d07 11b16f9 90e81fe 9546f1b 90e81fe 9546f1b 6b31d07 b982841 6b31d07 d9be7b0 6b31d07 33dddeb 0e71847 d9be7b0 9546f1b 5941228 6b31d07 2da8950 1b5198d 6c42480 5320c7c 6a04a92 1b5198d 92140e0 1b5198d 92140e0 1b5198d 4fb01e9 1b5198d 4fb01e9 1b5198d 92140e0 1b5198d 4fb01e9 1b5198d 92140e0 91c0706 6720156 4eddc47 1b5198d 91c0706 1b5198d f478057 6b31d07 62842f4 6b31d07 0da7b86 56c10d2 2e5edad b0189a2 6b31d07 a874e7a 6b31d07 acae979 96637c9 d9be7b0 96637c9 d9be7b0 f5d4c8d 96637c9 32404f9 b890649 62603a5 96637c9 45f4b02 b890649 62842f4 f9c7c43 62603a5 6b31d07 96637c9 6b31d07 62842f4 25279a1 62603a5 62842f4 d9be7b0 6b31d07 d9be7b0 6b31d07 bce19a7 6b31d07 d9be7b0 0831a35 bce19a7 eeba367 02185a7 b9ada4c 6b31d07 4459ac3 6b31d07 d9be7b0 aa18bf6 6b31d07 62842f4 6f08e8f 6b31d07 d9be7b0 b982841 6b31d07 d9be7b0 6b31d07 119f6c6 62842f4 51b7af6 6b31d07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
from openai import OpenAI
import requests
import csv
import os
import langchain
#import chromadb
#import glob
import pickle
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
#from PyPDF2 import PdfReader
#from PyPDF2 import PdfWriter
#from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
#from langchain.llms import OpenAI
#from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain import OpenAI
#from langchain.chat_models import ChatOpenAI
#from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
from langchain_google_genai import ChatGoogleGenerativeAI
# turned off due to people using it unethical ways
OpenAI.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
os.environ["GOOGLE_API_KEY"] = os.environ['gemini_key']
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."}
#repo_url = create_repo(repo_id="prompts_archive")
#prompts_archive_url = "https://huggingface.co/datasets/ryanrwatkins/prompts_archive"
#prompts_archive_file_name = "prompts_archive.csv"
#prompts_archive_file = os.path.join("prompts_archive", prompts_archive_file_name)
#print(prompts_archive_file)
#HF_TOKEN = os.environ.get("HF_token_write")
#repo = Repository(
# local_dir="prompts_archive", clone_from=repo_url, use_auth_token=HF_TOKEN, git_user="ryanrwatkins", git_email="rwatkins@gwu.edu"
#)
def get_empty_state():
return { "messages": []}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
description = row[2].strip('"')
prompt_templates[act] = prompt
actor_description[act] = description
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def on_prompt_template_change_description(prompt_template):
if not isinstance(prompt_template, str): return
return actor_description[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_template = prompt_templates[prompt_template]
with open("prompts_archive.csv", "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
writer.writerow(
{"prompt": str(prompt), "time": str(datetime.now())}
)
# system_prompt = []
#if prompt_template:
# system_prompt = [{ "role": "system", "content": prompt_template }]
# prompt_msg = { "role": "user", "content": prompt }
# The embeddings file has to be remade since the serialization is no long compatible
# with open("embeddings.pkl", 'rb') as f:
# new_docsearch = pickle.load(f)
#query = str(system_prompt + history + [prompt_msg])
# docs = new_docsearch.similarity_search(query)
gen_ai = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.7, top_p=0.85)
response = gen_ai.invoke(
input=history + prompt,
#context=history,
#max_tokens=max_tokens, # for open ai only
#temperature=temperature # for open ai only
)
completion = response.content # Extract the completion message
get_empty_state()
state['content'] = completion
#state.append(completion.copy())
completion = { "content": completion }
#state['total_tokens'] += completion['usage']['total_tokens']
#except Exception as e:
# history.append(prompt_msg.copy())
# error = {
# "role": "system",
# "content": f"Error: {e}"
# }
# history.append(error.copy())
#total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(prompt_msg['content'], completion['content'])]
return '', chat_messages, state # total_tokens_used_msg,
def submit_message_OLD(prompt, prompt_template, temperature, max_tokens, context_length, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_template = prompt_templates[prompt_template]
with open("prompts_archive.csv", "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
writer.writerow(
{"prompt": str(prompt), "time": str(datetime.now())}
)
# with open(prompts_archive_file, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"])
# writer.writerow(
# {"prompt": str(prompt), "time": str(datetime.now())}
# )
# commit_url = repo.push_to_hub()
# print(commit_url)
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
#try:
with open("embeddings.pkl", 'rb') as f:
new_docsearch = pickle.load(f)
query = str(system_prompt + history + [prompt_msg])
docs = new_docsearch.similarity_search(query)
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
#completion = chain.run(input_documents=docs, question=query)
get_empty_state()
state['content'] = completion
#state.append(completion.copy())
completion = { "content": completion }
#state['total_tokens'] += completion['usage']['total_tokens']
#except Exception as e:
# history.append(prompt_msg.copy())
# error = {
# "role": "system",
# "content": f"Error: {e}"
# }
# history.append(error.copy())
#total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(prompt_msg['content'], completion['content'])]
return '', chat_messages, state # total_tokens_used_msg,
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## Ask questions of *needs assessment* experts,
## get responses from a *needs assessment experts* version of ChatGPT.
Ask questions of all of them, or pick your expert below.
This is a free resource but it does cost us money to run. Unfortunately someone has been abusing this approach.
In response, we have had to temporarily turn it off until we can put improve the monitoring. Sorry for the inconvenience.""" ,
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
#total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, state])
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|