Spaces:
Sleeping
Sleeping
File size: 3,221 Bytes
9ea509f ed6e1cd 511c265 ed6e1cd 9cf8880 ed6e1cd 9cf8880 7ee0732 9cf8880 7ee0732 9cf8880 7acd6f4 7ee0732 9cf8880 ed6e1cd 9cf8880 7ee0732 9cf8880 ed6e1cd 9cf8880 8eed272 093c540 ed6e1cd 8eed272 ed6e1cd 9cf8880 7ee0732 4905e93 ed6e1cd 4905e93 5d4e526 7acd6f4 9ea509f 511c265 71de5b2 511c265 9ea509f a664b76 511c265 71de5b2 d7a52b1 c0d2fc9 9531638 a664b76 9b4ed54 96f718e c0d2fc9 7acd6f4 d57f416 7acd6f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from datasets import load_dataset
dataset = load_dataset("rwcuffney/pick_a_card_test")
#tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
#tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
'''
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221")
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099221")
st.write(model.__class__.__name__)
st.code(type(model))
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222")
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099222")
st.write(model.__class__.__name__)
st.code(type(model))
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223")
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099223")
st.write(model.__class__.__name__)
st.code(type(model))
'''
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224")
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224")
st.write(model.__class__.__name__)
st.code(type(model))
from transformers import AutoImageProcessor
import torch
image = dataset["test"][0]
st.image(image)
image_processor = AutoImageProcessor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099224")
inputs = image_processor(image, return_tensors="pt")
'''
extractor = AutoFeatureExtractor.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225")
model = AutoModelForImageClassification.from_pretrained("rwcuffney/autotrain-pick_a_card-3726099225")
st.write(model.__class__.__name__)
st.code(type(model))
'''
'''
x = st.slider('Select a value')
st.write(x, 'squared is', x * x)
import pandas as pd
#df = pd.read_csv('https://rwcuffney/autotrain-data-pick_a_card/cards.csv').sort_values('class index')
#st.dataframe(df.head(3))
# from datasets import load_dataset
dataset = load_dataset("https://rwcuffney/autotrain-data-pick_a_card")
# st.write(type(dataset))
# st.write('Hello World')
from datasets import load_dataset
#dataset = load_dataset("rwcuffney/autotrain-data-pick_a_card")
#st.write(dataset)
import pandas as pd
import requests
import io
# Downloading the csv file from your GitHub account
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv" # Make sure the url is the raw version of the file on GitHub
download = requests.get(url).content
# Reading the downloaded content and turning it into a pandas dataframe
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
df_test = df[df['data set']=='test']
df_train = df[df['data set']=='train']
df_validate = df[df['data set']=='validate']
from datasets import load_dataset #this isn't working
dataset = load_dataset("rwcuffney/pick_a_card_test") #rwcuffney/pick_a_card_test
st.write(df.head(20))
###
''' |