Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
x = st.slider('Select a value')
|
6 |
+
st.write(x, 'squared is', x * x)
|
7 |
+
|
8 |
+
|
9 |
+
df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
|
10 |
+
df_test = df[df['data set']=='test']
|
11 |
+
df_train = df[df['data set']=='train']
|
12 |
+
df_validate = df[df['data set']=='validate']
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
### HORIZONTAL BAR ###
|
17 |
+
|
18 |
+
|
19 |
+
# Get the value counts of the 'labels' column
|
20 |
+
value_counts = df.groupby('labels')['class index'].count().iloc[::-1]
|
21 |
+
|
22 |
+
|
23 |
+
fig, ax = plt.subplots(figsize=(10,10))
|
24 |
+
|
25 |
+
# Create a bar chart of the value counts
|
26 |
+
ax = value_counts.plot.barh()
|
27 |
+
# Set the chart title and axis labels
|
28 |
+
ax.set_title('Value Counts of Labels')
|
29 |
+
ax.set_xlabel('Label')
|
30 |
+
ax.set_ylabel('Count')
|
31 |
+
|
32 |
+
# Show the chart
|
33 |
+
st.pyplot(fig)
|
34 |
+
|
35 |
+
|
36 |
+
### PIE CHART ###
|
37 |
+
|
38 |
+
# Get the value counts of the 'labels' column
|
39 |
+
value_counts = df.groupby('data set')['class index'].count().iloc[::-1]
|
40 |
+
|
41 |
+
value_counts =df['data set'].value_counts()
|
42 |
+
|
43 |
+
fig, ax = plt.subplots(figsize=(5,5)
|
44 |
+
)
|
45 |
+
# Create a bar chart of the value counts
|
46 |
+
ax = value_counts.plot.pie(autopct='%1.1f%%')
|
47 |
+
|
48 |
+
# Set the chart title and axis labels
|
49 |
+
ax.set_title('Train, Validate, Test Distribution')
|
50 |
+
# Show the chart
|
51 |
+
st.pyplot(fig)
|