File size: 955 Bytes
0fe0d31
 
ec398d5
0fe0d31
 
 
 
 
 
 
 
 
295dc12
 
a38c545
a99a398
c3fd3c6
0fe0d31
 
a38c545
0fe0d31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
from fastai.vision.all import *
#import skimage

learn = load_learner('export.pkl')

labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
title = "Liveness Classification"
description = "Liveness classification using Adobe Antialiased model with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article= " " #" <p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['modelo_cropped1.jpg']
interpretation='default'
enable_queue=True

gr.Interface(fn=predict,inputs=gr.inputs.Image(source="webcam",shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()