rubensmau commited on
Commit
295dc12
1 Parent(s): 91bd803

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  from fastai.vision.all import *
3
- #import skimage
4
 
5
  learn = load_learner('export.pkl')
6
 
@@ -10,11 +10,11 @@ def predict(img):
10
  pred,pred_idx,probs = learn.predict(img)
11
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
 
13
- title = "Pet Breed Classifier"
14
- description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
  article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
  examples = ['modelo_cropped1.jpg']
17
- interpretation='default'
18
  enable_queue=True
19
 
20
  gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
 
1
  import gradio as gr
2
  from fastai.vision.all import *
3
+ import skimage
4
 
5
  learn = load_learner('export.pkl')
6
 
 
10
  pred,pred_idx,probs = learn.predict(img)
11
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
 
13
+ title = "Liveness Classification"
14
+ description = "Liveness classification using Adobe Antialiased model with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
  article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
  examples = ['modelo_cropped1.jpg']
17
+ interpretation=None #'default'
18
  enable_queue=True
19
 
20
  gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()