Spaces:
Running
Running
File size: 1,074 Bytes
661e701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "meta-llama/Llama-3.2-1B" # Replace with your model's name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define the refined prompt
prompt = (
"You are a professional tour guide specializing in Saudi Arabia. Respond to questions about tourism with accurate, "
"structured, and concise answers. Avoid unnecessary details and maintain a professional tone.\n\n"
"Question: List the top tourist destinations in Saudi Arabia with a brief description.\nAnswer:\n"
)
# Tokenize the input
inputs = tokenizer(prompt, return_tensors="pt")
# Generate response with optimized parameters
outputs = model.generate(
**inputs,
max_new_tokens=120,
temperature=0.5,
top_k=30,
top_p=0.85,
repetition_penalty=1.5,
)
# Decode and display the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("LLaMA Response:", response)
|