File size: 12,108 Bytes
1da48bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import pdb

import numpy as np
import torch as t
import torch.nn as nn
import torch.nn.functional as F
import utils.dist_adapter as dist
import sys
[sys.path.append(i) for i in ['.', '..']]
from utils.torch_utils import parse_args


args = parse_args()
mydevice = t.device('cuda:' + args.gpu)

class BottleneckBlock(nn.Module):
    def __init__(self, k_bins, emb_width, mu):
        super().__init__()
        self.k_bins = k_bins
        self.emb_width = emb_width
        self.mu = mu
        self.reset_k()
        self.threshold = 1.0

    def reset_k(self):
        self.init = False
        self.k_sum = None
        self.k_elem = None
        self.register_buffer('k', t.zeros(self.k_bins, self.emb_width).cuda())

    def _tile(self, x):
        d, ew = x.shape     # 960, 512
        if d < self.k_bins:
            n_repeats = (self.k_bins + d - 1) // d
            std = 0.01 / np.sqrt(ew)
            x = x.repeat(n_repeats, 1)
            x = x + t.randn_like(x) * std
        return x

    def init_k(self, x):
        mu, emb_width, k_bins = self.mu, self.emb_width, self.k_bins        # mu=0.99, emb_width=512, k_bins=512
        self.init = True
        # init k_w using random vectors from x
        y = self._tile(x)
        _k_rand = y[t.randperm(y.shape[0])][:k_bins]        # (512, 512), a random permutation of integers from 0 to n - 1
        # dist.broadcast(_k_rand, 0)
        self.k = _k_rand
        assert self.k.shape == (k_bins, emb_width)
        self.k_sum = self.k
        self.k_elem = t.ones(k_bins, device=self.k.device)

    def restore_k(self, num_tokens=None, threshold=1.0):
        mu, emb_width, k_bins = self.mu, self.emb_width, self.k_bins
        self.init = True
        assert self.k.shape == (k_bins, emb_width)
        self.k_sum = self.k.clone()
        self.k_elem = t.ones(k_bins, device=self.k.device)
        if num_tokens is not None:
            expected_usage = num_tokens / k_bins
            self.k_elem.data.mul_(expected_usage)
            self.k_sum.data.mul_(expected_usage)
        self.threshold = threshold

    def update_k(self, x, x_l):     # (960, 512), (960)
        mu, emb_width, k_bins = self.mu, self.emb_width, self.k_bins        # mu=0.99, emb_width=512, k_bins=512
        with t.no_grad():
            # Calculate new centres
            x_l_onehot = t.zeros(k_bins, x.shape[0], device=x.device)  # (512(k_bins), 960(N * L))
            x_l_onehot.scatter_(0, x_l.view(1, x.shape[0]), 1)      # (1, 190) -> (512, 960), find which axis

            _k_sum = t.matmul(x_l_onehot, x)  #(512(k_bins), 512(w))
            _k_elem = x_l_onehot.sum(dim=-1)  # (512(k_bins))
            y = self._tile(x)       # (960, 512)
            _k_rand = y[t.randperm(y.shape[0])][:k_bins]        # (512, 512)

            # dist.broadcast(_k_rand, 0)
            # dist.all_reduce(_k_sum)
            # dist.all_reduce(_k_elem)

            # Update centres
            old_k = self.k
            self.k_sum = mu * self.k_sum + (1. - mu) * _k_sum  # w, k_bins
            self.k_elem = mu * self.k_elem + (1. - mu) * _k_elem  # k_bins
            usage = (self.k_elem.view(k_bins, 1) >= self.threshold).float()
            self.k = usage * (self.k_sum.view(k_bins, emb_width) / self.k_elem.view(k_bins, 1)) \
                     + (1 - usage) * _k_rand
            _k_prob = _k_elem / t.sum(_k_elem)  # x_l_onehot.mean(dim=-1)  # prob of each bin
            entropy = -t.sum(_k_prob * t.log(_k_prob + 1e-8))  # entropy ie how diverse
            used_curr = (_k_elem >= self.threshold).sum()
            usage = t.sum(usage)
            dk = t.norm(self.k - old_k) / np.sqrt(np.prod(old_k.shape))
        return dict(entropy=entropy,
                    used_curr=used_curr,
                    usage=usage,
                    dk=dk)

    def preprocess(self, x):
        # NCT -> NTC -> [NT, C]
        x = x.permute(0, 2, 1).contiguous()
        x = x.view(-1, x.shape[-1])  # x_en = (N * L, w), k_j = (w, k_bins)

        if x.shape[-1] == self.emb_width:
            prenorm = t.norm(x - t.mean(x)) / np.sqrt(np.prod(x.shape))     # np.sqrt - product of array elements over a given axis
        elif x.shape[-1] == 2 * self.emb_width:
            x1, x2 = x[...,:self.emb_width], x[...,self.emb_width:]
            prenorm = (t.norm(x1 - t.mean(x1)) / np.sqrt(np.prod(x1.shape))) + (t.norm(x2 - t.mean(x2)) / np.sqrt(np.prod(x2.shape)))

            # Normalise
            x = x1 + x2
        else:
            assert False, f"Expected {x.shape[-1]} to be (1 or 2) * {self.emb_width}"
        return x, prenorm

    def postprocess(self, x_l, x_d, x_shape):
        # [NT, C] -> NTC -> NCT
        N, T = x_shape
        x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous()
        x_l = x_l.view(N, T)
        return x_l, x_d

    def quantise(self, x):
        # Calculate latent code x_l
        k_w = self.k.t()        # (512, 512)
        distance = t.sum(x ** 2, dim=-1, keepdim=True) - 2 * t.matmul(x, k_w) + t.sum(k_w ** 2, dim=0, keepdim=True)  # (960(N * L), 512(b))
        min_distance, x_l = t.min(distance, dim=-1)     # (960), (960)
        fit = t.mean(min_distance)
        return x_l, fit

    def dequantise(self, x_l):
        x = F.embedding(x_l, self.k)        # self.k: (512, 512) weighted array
        return x

    def encode(self, x):
        N, width, T = x.shape

        # Preprocess.
        x, prenorm = self.preprocess(x)

        # Quantise
        x_l, fit = self.quantise(x)

        # Postprocess.
        x_l = x_l.view(N, T)
        return x_l

    def decode(self, x_l):
        N, T = x_l.shape
        width = self.emb_width

        # Dequantise
        x_d = self.dequantise(x_l)

        # Postprocess
        x_d = x_d.view(N, T, width).permute(0, 2, 1).contiguous()
        return x_d

    def forward(self, x, update_k=True):
        N, width, T = x.shape       # 32, 512, 30

        # Preprocess
        x, prenorm = self.preprocess(x)     # (960, 512), 0.2888

        # Init k if not inited
        if update_k and not self.init:
            self.init_k(x)

        # Quantise and dequantise through bottleneck
        x_l, fit = self.quantise(x)     # (960), 34.1081
        x_d = self.dequantise(x_l)      # (960, 512)

        # Update embeddings
        if update_k:
            update_metrics = self.update_k(x, x_l)
        else:
            update_metrics = {}

        # Loss
        commit_loss = t.norm(x_d.detach() - x) ** 2 / np.prod(x.shape)      # L2 loss -> L1 loss

        # Passthrough
        x_d = x + (x_d - x).detach()

        # Postprocess
        x_l, x_d = self.postprocess(x_l, x_d, (N,T))
        return x_l, x_d, commit_loss, dict(fit=fit,
                                           pn=prenorm,
                                           **update_metrics)


class Bottleneck(nn.Module):
    def __init__(self, l_bins, emb_width, mu, levels):
        super().__init__()
        self.levels = levels
        level_block = lambda level: BottleneckBlock(l_bins, emb_width, mu)
        self.level_blocks = nn.ModuleList()
        for level in range(self.levels):
            self.level_blocks.append(level_block(level))

    def encode(self, xs):
        zs = [level_block.encode(x) for (level_block, x) in zip(self.level_blocks, xs)]
        return zs

    def decode(self, zs, start_level=0, end_level=None):
        if end_level is None:
            end_level = self.levels
        xs_quantised = [level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], zs)]
        return xs_quantised

    def forward(self, xs):
        zs, xs_quantised, commit_losses, metrics = [], [], [], []
        for level in range(self.levels):
            level_block = self.level_blocks[level]
            x = xs[level]       # (32, 512, 30)
            z, x_quantised, commit_loss, metric = level_block(x, update_k=self.training)
            '''
            z: (32, 30)
            x_quantised: (32, 512, 30)
            commit_loss: 0.0666
            metric: same as models/vqvae.py
            '''
            zs.append(z)
            if not self.training:
                # Be extra paranoid and make sure the encoder weights can't
                # change from straight-through estimator
                x_quantised = x_quantised.detach()
            xs_quantised.append(x_quantised)
            commit_losses.append(commit_loss)
            if self.training:
                metrics.append(metric)
        return zs, xs_quantised, commit_losses, metrics





class Residual_Bottleneck(nn.Module):
    def __init__(self, l_bins, emb_width, mu, levels):
        super().__init__()
        self.levels = levels
        self.residuals = 4
        level_block = lambda level: BottleneckBlock(l_bins, emb_width, mu)
        self.level_blocks = nn.ModuleList()
        for level in range(self.levels):
            self.level_blocks.append(level_block(level))
            
        for residual in range(self.residuals):
            self.residual_blocks.append(level_block(residual))

    def encode(self, xs):
        zs = [level_block.encode(x) for (level_block, x) in zip(self.level_blocks, xs)]
        return zs

    def decode(self, zs, start_level=0, end_level=None):
        if end_level is None:
            end_level = self.levels
        xs_quantised = [level_block.decode(z) for (level_block, z) in zip(self.level_blocks[start_level:end_level], zs)]
        return xs_quantised

    def forward(self, xs):
        zs, xs_quantised, commit_losses, metrics = [], [], [], []
        for level in range(self.levels):
            level_block = self.level_blocks[level]
            x = xs[level]       # (32, 512, 30)
            
            residual = x
            quantized_out = 0.
            
            for residual_num in range(self.residuals):
                residual_block = self.residual_blocks[residual_num]
                z, x_quantised, commit_loss, metric = residual_block(x, update_k=self.training)
                residual = residual - x_quantised.detach()
                quantized_out = quantized_out + x_quantised
            
            z, x_quantised, commit_loss, metric = level_block(x, update_k=self.training)
            '''
            z: (32, 30)
            x_quantised: (32, 512, 30)
            commit_loss: 0.0666
            metric: same as models/vqvae.py
            '''
            zs.append(z)
            if not self.training:
                # Be extra paranoid and make sure the encoder weights can't
                # change from straight-through estimator
                x_quantised = x_quantised.detach()
            xs_quantised.append(x_quantised)
            commit_losses.append(commit_loss)
            if self.training:
                metrics.append(metric)
        return zs, xs_quantised, commit_losses, metrics




class NoBottleneckBlock(nn.Module):
    def restore_k(self):
        pass

class NoBottleneck(nn.Module):
    def __init__(self, levels):
        super().__init__()
        self.level_blocks = nn.ModuleList()
        self.levels = levels
        for level in range(levels):
            self.level_blocks.append(NoBottleneckBlock())

    def encode(self, xs):
        return xs

    def decode(self, zs, start_level=0, end_level=None):
        if end_level is None:
            end_level = self.levels
        return zs

    def forward(self, xs):
        zero = t.zeros(()).cuda()
        commit_losses = [zero for _ in range(self.levels)]
        metrics = [dict(entropy=zero, usage=zero, used_curr=zero, pn=zero, dk=zero) for _ in range(self.levels)]
        return xs, xs, commit_losses, metrics

if __name__ == '__main__':
    '''
    python -m models.bottleneck --config configs/sep_vqvae.yaml --train --no_cuda 2 --gpu 2
    '''
    # x = [t.rand(32, 512, 30)]
    # bottleneck = Bottleneck(512, 512, 0.99, 1).to(mydevice)
    # zs, xs_quantised, commit_losses, quantiser_metrics = bottleneck(x)

    x = t.rand(32, 512, 30)
    model = BottleneckBlock(k_bins=512, emb_width=512, mu=0.99)
    zs, xs_quantised, commit_losses, quantiser_metrics = model(x)