robinwitch commited on
Commit
1da48bb
·
1 Parent(s): 0619e07
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +1 -0
  2. app.py +766 -0
  3. bash_raw_cospeech_download.sh +4 -0
  4. ckpt/beatx2_cospeech_diffusion/0403_212319_diffusion_rvqvae_128.txt +0 -0
  5. ckpt/beatx2_cospeech_diffusion/0403_212319_diffusion_rvqvae_128.yaml +54 -0
  6. ckpt/beatx2_cospeech_diffusion/1001_203942_diffusion_rvqvae_128_gaps-210-0.txt +451 -0
  7. ckpt/beatx2_cospeech_diffusion/last_500.bin +3 -0
  8. ckpt/beatx2_rvqvae/RVQVAE_hands/net_300000.pth +3 -0
  9. ckpt/beatx2_rvqvae/RVQVAE_hands/run.log +0 -0
  10. ckpt/beatx2_rvqvae/RVQVAE_lower/net_300000.pth +3 -0
  11. ckpt/beatx2_rvqvae/RVQVAE_lower/run.log +0 -0
  12. ckpt/beatx2_rvqvae/RVQVAE_lower_trans/net_300000.pth +3 -0
  13. ckpt/beatx2_rvqvae/RVQVAE_lower_trans/run.log +0 -0
  14. ckpt/beatx2_rvqvae/RVQVAE_upper/net_300000.pth +3 -0
  15. ckpt/beatx2_rvqvae/RVQVAE_upper/run.log +0 -0
  16. configs/beat2_rvqvae.yaml +134 -0
  17. configs/diffusion_rvqvae_128.yaml +118 -0
  18. configs/diffusion_rvqvae_128_hf.yaml +118 -0
  19. dataloaders/amass_sep_lower.py +713 -0
  20. dataloaders/beat_sep.py +772 -0
  21. dataloaders/beat_sep_lower.py +876 -0
  22. dataloaders/beat_sep_lower_single.py +730 -0
  23. dataloaders/beat_smplx2020.py +763 -0
  24. dataloaders/build_vocab.py +199 -0
  25. dataloaders/data_tools.py +1756 -0
  26. dataloaders/mix_sep.py +637 -0
  27. dataloaders/pymo/Quaternions.py +468 -0
  28. dataloaders/pymo/__init__.py +0 -0
  29. dataloaders/pymo/data.py +53 -0
  30. dataloaders/pymo/features.py +43 -0
  31. dataloaders/pymo/mocapplayer/data-template.js +3 -0
  32. dataloaders/pymo/mocapplayer/js/skeletonFactory.js +233 -0
  33. dataloaders/pymo/mocapplayer/libs/jquery.min.js +4 -0
  34. dataloaders/pymo/mocapplayer/libs/math.min.js +0 -0
  35. dataloaders/pymo/mocapplayer/libs/mocapjs.js +1312 -0
  36. dataloaders/pymo/mocapplayer/libs/pace.min.js +2 -0
  37. dataloaders/pymo/mocapplayer/libs/papaparse.min.js +6 -0
  38. dataloaders/pymo/mocapplayer/libs/threejs/Detector.js +78 -0
  39. dataloaders/pymo/mocapplayer/libs/threejs/OrbitControls.js +1037 -0
  40. dataloaders/pymo/mocapplayer/libs/threejs/dat.gui.min.js +14 -0
  41. dataloaders/pymo/mocapplayer/libs/threejs/three.min.js +0 -0
  42. dataloaders/pymo/mocapplayer/playBuffer.html +418 -0
  43. dataloaders/pymo/mocapplayer/playURL.html +269 -0
  44. dataloaders/pymo/mocapplayer/styles/pace.css +76 -0
  45. dataloaders/pymo/parsers.py +274 -0
  46. dataloaders/pymo/preprocessing.py +726 -0
  47. dataloaders/pymo/rotation_tools.py +153 -0
  48. dataloaders/pymo/rotation_tools.py! +69 -0
  49. dataloaders/pymo/viz_tools.py +236 -0
  50. dataloaders/pymo/writers.py +55 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ **_pycache**
app.py ADDED
@@ -0,0 +1,766 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import signal
3
+ import time
4
+ import csv
5
+ import sys
6
+ import warnings
7
+ import random
8
+ import gradio as gr
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ import torch.multiprocessing as mp
15
+ import numpy as np
16
+ import time
17
+ import pprint
18
+ from loguru import logger
19
+ import smplx
20
+ from torch.utils.tensorboard import SummaryWriter
21
+ import wandb
22
+ import matplotlib.pyplot as plt
23
+ from utils import config, logger_tools, other_tools_hf, metric, data_transfer, other_tools
24
+ from dataloaders import data_tools
25
+ from dataloaders.build_vocab import Vocab
26
+ from optimizers.optim_factory import create_optimizer
27
+ from optimizers.scheduler_factory import create_scheduler
28
+ from optimizers.loss_factory import get_loss_func
29
+ from dataloaders.data_tools import joints_list
30
+ from utils import rotation_conversions as rc
31
+ import soundfile as sf
32
+ import librosa
33
+ import subprocess
34
+ from transformers import pipeline
35
+ from diffusion.model_util import create_gaussian_diffusion
36
+ from diffusion.resample import create_named_schedule_sampler
37
+ from models.vq.model import RVQVAE
38
+ import train
39
+ import spaces
40
+
41
+ command = ["bash","./demo/install_mfs.sh"]
42
+ result = subprocess.run(command, capture_output=True, text=True)
43
+
44
+ device = "cuda" if torch.cuda.is_available() else "cpu"
45
+
46
+ pipe = pipeline(
47
+ "automatic-speech-recognition",
48
+ model="openai/whisper-tiny.en",
49
+ chunk_length_s=30,
50
+ device=device,
51
+ )
52
+
53
+ debug = False
54
+
55
+ class BaseTrainer(object):
56
+ def __init__(self, args,ap):
57
+ args.use_ddim=True
58
+ hf_dir = "hf"
59
+ time_local = time.localtime()
60
+ time_name_expend = "%02d%02d_%02d%02d%02d_"%(time_local[1], time_local[2],time_local[3], time_local[4], time_local[5])
61
+ self.time_name_expend = time_name_expend
62
+ tmp_dir = args.out_path + "custom/"+ time_name_expend + hf_dir
63
+ if not os.path.exists(tmp_dir + "/"):
64
+ os.makedirs(tmp_dir + "/")
65
+ self.audio_path = tmp_dir + "/tmp.wav"
66
+ sf.write(self.audio_path, ap[1], ap[0])
67
+
68
+
69
+ audio, ssr = librosa.load(self.audio_path,sr=args.audio_sr)
70
+
71
+ # use asr model to get corresponding text transcripts
72
+ file_path = tmp_dir+"/tmp.lab"
73
+ self.textgrid_path = tmp_dir + "/tmp.TextGrid"
74
+ if not debug:
75
+ text = pipe(audio, batch_size=8)["text"]
76
+ with open(file_path, "w", encoding="utf-8") as file:
77
+ file.write(text)
78
+
79
+ # use montreal forced aligner to get textgrid
80
+
81
+ command = ["mfa", "align", tmp_dir, "english_us_arpa", "english_us_arpa", tmp_dir]
82
+ result = subprocess.run(command, capture_output=True, text=True)
83
+
84
+
85
+ ap = (ssr, audio)
86
+ self.args = args
87
+ self.rank = 0 # dist.get_rank()
88
+
89
+ args.textgrid_file_path = self.textgrid_path
90
+ args.audio_file_path = self.audio_path
91
+
92
+
93
+ self.rank = 0 # dist.get_rank()
94
+
95
+ self.checkpoint_path = tmp_dir
96
+ args.tmp_dir = tmp_dir
97
+ if self.rank == 0:
98
+ self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test")
99
+ self.test_loader = torch.utils.data.DataLoader(
100
+ self.test_data,
101
+ batch_size=1,
102
+ shuffle=False,
103
+ num_workers=args.loader_workers,
104
+ drop_last=False,
105
+ )
106
+ logger.info(f"Init test dataloader success")
107
+ model_module = __import__(f"models.{args.model}", fromlist=["something"])
108
+
109
+ self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cuda()
110
+
111
+ if self.rank == 0:
112
+ logger.info(self.model)
113
+ logger.info(f"init {args.g_name} success")
114
+
115
+ self.smplx = smplx.create(
116
+ self.args.data_path_1+"smplx_models/",
117
+ model_type='smplx',
118
+ gender='NEUTRAL_2020',
119
+ use_face_contour=False,
120
+ num_betas=300,
121
+ num_expression_coeffs=100,
122
+ ext='npz',
123
+ use_pca=False,
124
+ ).to(self.rank).eval()
125
+
126
+
127
+
128
+
129
+
130
+ self.args = args
131
+ self.ori_joint_list = joints_list[self.args.ori_joints]
132
+ self.tar_joint_list_face = joints_list["beat_smplx_face"]
133
+ self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
134
+ self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
135
+ self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
136
+
137
+ self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
138
+ self.joints = 55
139
+ for joint_name in self.tar_joint_list_face:
140
+ self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
141
+ self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
142
+ for joint_name in self.tar_joint_list_upper:
143
+ self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
144
+ self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
145
+ for joint_name in self.tar_joint_list_hands:
146
+ self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
147
+ self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
148
+ for joint_name in self.tar_joint_list_lower:
149
+ self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
150
+
151
+ self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self","predict_x0_loss"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False, False, False,False,False,False])
152
+
153
+ vq_model_module = __import__(f"models.motion_representation", fromlist=["something"])
154
+ self.args.vae_layer = 2
155
+ self.args.vae_length = 256
156
+ self.args.vae_test_dim = 106
157
+ self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
158
+ other_tools.load_checkpoints(self.vq_model_face, "./datasets/hub/pretrained_vq/face_vertex_1layer_790.bin", args.e_name)
159
+
160
+
161
+ vq_type = self.args.vqvae_type
162
+ if vq_type=="vqvae":
163
+
164
+ self.args.vae_layer = 4
165
+ self.args.vae_test_dim = 78
166
+ self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
167
+ other_tools.load_checkpoints(self.vq_model_upper, args.vqvae_upper_path, args.e_name)
168
+ self.args.vae_test_dim = 180
169
+ self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
170
+ other_tools.load_checkpoints(self.vq_model_hands, args.vqvae_hands_path, args.e_name)
171
+ self.args.vae_test_dim = 54
172
+ self.args.vae_layer = 4
173
+ self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank)
174
+ other_tools.load_checkpoints(self.vq_model_lower, args.vqvae_lower_path, args.e_name)
175
+
176
+ elif vq_type=="rvqvae":
177
+
178
+ args.num_quantizers = 6
179
+ args.shared_codebook = False
180
+ args.quantize_dropout_prob = 0.2
181
+ args.mu = 0.99
182
+
183
+ args.nb_code = 512
184
+ args.code_dim = 512
185
+ args.code_dim = 512
186
+ args.down_t = 2
187
+ args.stride_t = 2
188
+ args.width = 512
189
+ args.depth = 3
190
+ args.dilation_growth_rate = 3
191
+ args.vq_act = "relu"
192
+ args.vq_norm = None
193
+
194
+ dim_pose = 78
195
+ args.body_part = "upper"
196
+ self.vq_model_upper = RVQVAE(args,
197
+ dim_pose,
198
+ args.nb_code,
199
+ args.code_dim,
200
+ args.code_dim,
201
+ args.down_t,
202
+ args.stride_t,
203
+ args.width,
204
+ args.depth,
205
+ args.dilation_growth_rate,
206
+ args.vq_act,
207
+ args.vq_norm)
208
+
209
+ dim_pose = 180
210
+ args.body_part = "hands"
211
+ self.vq_model_hands = RVQVAE(args,
212
+ dim_pose,
213
+ args.nb_code,
214
+ args.code_dim,
215
+ args.code_dim,
216
+ args.down_t,
217
+ args.stride_t,
218
+ args.width,
219
+ args.depth,
220
+ args.dilation_growth_rate,
221
+ args.vq_act,
222
+ args.vq_norm)
223
+
224
+ dim_pose = 54
225
+ if args.use_trans:
226
+ dim_pose = 57
227
+ self.args.vqvae_lower_path = self.args.vqvae_lower_trans_path
228
+ args.body_part = "lower"
229
+ self.vq_model_lower = RVQVAE(args,
230
+ dim_pose,
231
+ args.nb_code,
232
+ args.code_dim,
233
+ args.code_dim,
234
+ args.down_t,
235
+ args.stride_t,
236
+ args.width,
237
+ args.depth,
238
+ args.dilation_growth_rate,
239
+ args.vq_act,
240
+ args.vq_norm)
241
+
242
+ self.vq_model_upper.load_state_dict(torch.load(self.args.vqvae_upper_path)['net'])
243
+ self.vq_model_hands.load_state_dict(torch.load(self.args.vqvae_hands_path)['net'])
244
+ self.vq_model_lower.load_state_dict(torch.load(self.args.vqvae_lower_path)['net'])
245
+
246
+ self.vqvae_latent_scale = self.args.vqvae_latent_scale
247
+
248
+ self.vq_model_upper.eval().to(self.rank)
249
+ self.vq_model_hands.eval().to(self.rank)
250
+ self.vq_model_lower.eval().to(self.rank)
251
+
252
+
253
+
254
+
255
+
256
+ self.args.vae_test_dim = 61
257
+ self.args.vae_layer = 4
258
+ self.args.vae_test_dim = 330
259
+ self.args.vae_layer = 4
260
+ self.args.vae_length = 240
261
+
262
+
263
+ self.vq_model_face.eval()
264
+ self.vq_model_upper.eval()
265
+ self.vq_model_hands.eval()
266
+ self.vq_model_lower.eval()
267
+
268
+ self.cls_loss = nn.NLLLoss().to(self.rank)
269
+ self.reclatent_loss = nn.MSELoss().to(self.rank)
270
+ self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
271
+ self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
272
+ self.log_softmax = nn.LogSoftmax(dim=2).to(self.rank)
273
+
274
+ self.diffusion = create_gaussian_diffusion(use_ddim=args.use_ddim)
275
+ self.schedule_sampler_type = 'uniform'
276
+ self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, self.diffusion)
277
+ self.mean = np.load(args.mean_pose_path)
278
+ self.std = np.load(args.std_pose_path)
279
+
280
+ self.use_trans = args.use_trans
281
+ if self.use_trans:
282
+ self.trans_mean = np.load(args.mean_trans_path)
283
+ self.trans_std = np.load(args.std_trans_path)
284
+ self.trans_mean = torch.from_numpy(self.trans_mean).cuda()
285
+ self.trans_std = torch.from_numpy(self.trans_std).cuda()
286
+
287
+
288
+ joints = [3,6,9,12,13,14,15,16,17,18,19,20,21]
289
+ upper_body_mask = []
290
+ for i in joints:
291
+ upper_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
292
+
293
+ joints = list(range(25,55))
294
+ hands_body_mask = []
295
+ for i in joints:
296
+ hands_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
297
+
298
+ joints = [0,1,2,4,5,7,8,10,11]
299
+ lower_body_mask = []
300
+ for i in joints:
301
+ lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5])
302
+
303
+ self.mean_upper = self.mean[upper_body_mask]
304
+ self.mean_hands = self.mean[hands_body_mask]
305
+ self.mean_lower = self.mean[lower_body_mask]
306
+ self.std_upper = self.std[upper_body_mask]
307
+ self.std_hands = self.std[hands_body_mask]
308
+ self.std_lower = self.std[lower_body_mask]
309
+
310
+ self.mean_upper = torch.from_numpy(self.mean_upper).cuda()
311
+ self.mean_hands = torch.from_numpy(self.mean_hands).cuda()
312
+ self.mean_lower = torch.from_numpy(self.mean_lower).cuda()
313
+ self.std_upper = torch.from_numpy(self.std_upper).cuda()
314
+ self.std_hands = torch.from_numpy(self.std_hands).cuda()
315
+ self.std_lower = torch.from_numpy(self.std_lower).cuda()
316
+
317
+
318
+ def inverse_selection(self, filtered_t, selection_array, n):
319
+ original_shape_t = np.zeros((n, selection_array.size))
320
+ selected_indices = np.where(selection_array == 1)[0]
321
+ for i in range(n):
322
+ original_shape_t[i, selected_indices] = filtered_t[i]
323
+ return original_shape_t
324
+
325
+ def inverse_selection_tensor(self, filtered_t, selection_array, n):
326
+ selection_array = torch.from_numpy(selection_array).cuda()
327
+ original_shape_t = torch.zeros((n, 165)).cuda()
328
+ selected_indices = torch.where(selection_array == 1)[0]
329
+ for i in range(n):
330
+ original_shape_t[i, selected_indices] = filtered_t[i]
331
+ return original_shape_t
332
+
333
+ def _load_data(self, dict_data):
334
+ tar_pose_raw = dict_data["pose"]
335
+ tar_pose = tar_pose_raw[:, :, :165].to(self.rank)
336
+ tar_contact = tar_pose_raw[:, :, 165:169].to(self.rank)
337
+ tar_trans = dict_data["trans"].to(self.rank)
338
+ tar_trans_v = dict_data["trans_v"].to(self.rank)
339
+ tar_exps = dict_data["facial"].to(self.rank)
340
+ in_audio = dict_data["audio"].to(self.rank)
341
+ in_word = dict_data["word"].to(self.rank)
342
+ tar_beta = dict_data["beta"].to(self.rank)
343
+ tar_id = dict_data["id"].to(self.rank).long()
344
+ bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
345
+
346
+ tar_pose_jaw = tar_pose[:, :, 66:69]
347
+ tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
348
+ tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
349
+ tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
350
+
351
+ tar_pose_hands = tar_pose[:, :, 25*3:55*3]
352
+ tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
353
+ tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
354
+
355
+ tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
356
+ tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
357
+ tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
358
+
359
+ tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
360
+ tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
361
+ tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
362
+
363
+ tar_pose_lower = tar_pose_leg
364
+
365
+
366
+ tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2)
367
+
368
+
369
+ if self.args.pose_norm:
370
+ tar_pose_upper = (tar_pose_upper - self.mean_upper) / self.std_upper
371
+ tar_pose_hands = (tar_pose_hands - self.mean_hands) / self.std_hands
372
+ tar_pose_lower = (tar_pose_lower - self.mean_lower) / self.std_lower
373
+
374
+ if self.use_trans:
375
+ tar_trans_v = (tar_trans_v - self.trans_mean)/self.trans_std
376
+ tar_pose_lower = torch.cat([tar_pose_lower,tar_trans_v], dim=-1)
377
+
378
+ latent_face_top = self.vq_model_face.map2latent(tar_pose_face) # bs*n/4
379
+ latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper)
380
+ latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands)
381
+ latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower)
382
+
383
+ latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)/self.args.vqvae_latent_scale
384
+
385
+
386
+ tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
387
+ tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
388
+ latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
389
+ style_feature = None
390
+ if self.args.use_motionclip:
391
+ motionclip_feat = tar_pose_6d[...,:22*6]
392
+ batch = {}
393
+ bs,seq,feat = motionclip_feat.shape
394
+ batch['x']=motionclip_feat.permute(0,2,1).contiguous()
395
+ batch['y']=torch.zeros(bs).int().cuda()
396
+ batch['mask']=torch.ones([bs,seq]).bool().cuda()
397
+ style_feature = self.motionclip.encoder(batch)['mu'].detach().float()
398
+
399
+
400
+
401
+ # print(tar_index_value_upper_top.shape, index_in.shape)
402
+ return {
403
+ "tar_pose_jaw": tar_pose_jaw,
404
+ "tar_pose_face": tar_pose_face,
405
+ "tar_pose_upper": tar_pose_upper,
406
+ "tar_pose_lower": tar_pose_lower,
407
+ "tar_pose_hands": tar_pose_hands,
408
+ 'tar_pose_leg': tar_pose_leg,
409
+ "in_audio": in_audio,
410
+ "in_word": in_word,
411
+ "tar_trans": tar_trans,
412
+ "tar_exps": tar_exps,
413
+ "tar_beta": tar_beta,
414
+ "tar_pose": tar_pose,
415
+ "tar4dis": tar4dis,
416
+ "latent_face_top": latent_face_top,
417
+ "latent_upper_top": latent_upper_top,
418
+ "latent_hands_top": latent_hands_top,
419
+ "latent_lower_top": latent_lower_top,
420
+ "latent_in": latent_in,
421
+ "tar_id": tar_id,
422
+ "latent_all": latent_all,
423
+ "tar_pose_6d": tar_pose_6d,
424
+ "tar_contact": tar_contact,
425
+ "style_feature":style_feature,
426
+ }
427
+
428
+ def _g_test(self, loaded_data):
429
+ sample_fn = self.diffusion.p_sample_loop
430
+ if self.args.use_ddim:
431
+ sample_fn = self.diffusion.ddim_sample_loop
432
+ mode = 'test'
433
+ bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints
434
+ tar_pose = loaded_data["tar_pose"]
435
+ tar_beta = loaded_data["tar_beta"]
436
+ tar_exps = loaded_data["tar_exps"]
437
+ tar_contact = loaded_data["tar_contact"]
438
+ tar_trans = loaded_data["tar_trans"]
439
+ in_word = loaded_data["in_word"]
440
+ in_audio = loaded_data["in_audio"]
441
+ in_x0 = loaded_data['latent_in']
442
+ in_seed = loaded_data['latent_in']
443
+
444
+ remain = n%8
445
+ if remain != 0:
446
+ tar_pose = tar_pose[:, :-remain, :]
447
+ tar_beta = tar_beta[:, :-remain, :]
448
+ tar_trans = tar_trans[:, :-remain, :]
449
+ in_word = in_word[:, :-remain]
450
+ tar_exps = tar_exps[:, :-remain, :]
451
+ tar_contact = tar_contact[:, :-remain, :]
452
+ in_x0 = in_x0[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
453
+ in_seed = in_seed[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :]
454
+ n = n - remain
455
+
456
+ tar_pose_jaw = tar_pose[:, :, 66:69]
457
+ tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
458
+ tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
459
+ tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
460
+
461
+ tar_pose_hands = tar_pose[:, :, 25*3:55*3]
462
+ tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
463
+ tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
464
+
465
+ tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)]
466
+ tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
467
+ tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
468
+
469
+ tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)]
470
+ tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
471
+ tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
472
+ tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
473
+
474
+ tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
475
+ tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
476
+ latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
477
+
478
+ rec_all_face = []
479
+ rec_all_upper = []
480
+ rec_all_lower = []
481
+ rec_all_hands = []
482
+ vqvae_squeeze_scale = self.args.vqvae_squeeze_scale
483
+ roundt = (n - self.args.pre_frames * vqvae_squeeze_scale) // (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
484
+ remain = (n - self.args.pre_frames * vqvae_squeeze_scale) % (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale)
485
+ round_l = self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale
486
+
487
+
488
+ for i in range(0, roundt):
489
+ in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale]
490
+
491
+ in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale]
492
+ in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames]
493
+ in_seed_tmp = in_seed[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
494
+ in_x0_tmp = in_x0[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames]
495
+ mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float().cuda()
496
+ mask_val[:, :self.args.pre_frames, :] = 0.0
497
+ if i == 0:
498
+ in_seed_tmp = in_seed_tmp[:, :self.args.pre_frames, :]
499
+ else:
500
+ in_seed_tmp = last_sample[:, -self.args.pre_frames:, :]
501
+
502
+ cond_ = {'y':{}}
503
+ cond_['y']['audio'] = in_audio_tmp
504
+ cond_['y']['word'] = in_word_tmp
505
+ cond_['y']['id'] = in_id_tmp
506
+ cond_['y']['seed'] =in_seed_tmp
507
+ cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length]) < 1).cuda()
508
+
509
+
510
+
511
+ cond_['y']['style_feature'] = torch.zeros([bs, 512]).cuda()
512
+
513
+ shape_ = (bs, 1536, 1, 32)
514
+ sample = sample_fn(
515
+ self.model,
516
+ shape_,
517
+ clip_denoised=False,
518
+ model_kwargs=cond_,
519
+ skip_timesteps=0,
520
+ init_image=None,
521
+ progress=True,
522
+ dump_steps=None,
523
+ noise=None,
524
+ const_noise=False,
525
+ )
526
+ sample = sample.squeeze().permute(1,0).unsqueeze(0)
527
+
528
+ last_sample = sample.clone()
529
+
530
+ rec_latent_upper = sample[...,:512]
531
+ rec_latent_hands = sample[...,512:1024]
532
+ rec_latent_lower = sample[...,1024:1536]
533
+
534
+
535
+
536
+ if i == 0:
537
+ rec_all_upper.append(rec_latent_upper)
538
+ rec_all_hands.append(rec_latent_hands)
539
+ rec_all_lower.append(rec_latent_lower)
540
+ else:
541
+ rec_all_upper.append(rec_latent_upper[:, self.args.pre_frames:])
542
+ rec_all_hands.append(rec_latent_hands[:, self.args.pre_frames:])
543
+ rec_all_lower.append(rec_latent_lower[:, self.args.pre_frames:])
544
+
545
+ rec_all_upper = torch.cat(rec_all_upper, dim=1) * self.vqvae_latent_scale
546
+ rec_all_hands = torch.cat(rec_all_hands, dim=1) * self.vqvae_latent_scale
547
+ rec_all_lower = torch.cat(rec_all_lower, dim=1) * self.vqvae_latent_scale
548
+
549
+ rec_upper = self.vq_model_upper.latent2origin(rec_all_upper)[0]
550
+ rec_hands = self.vq_model_hands.latent2origin(rec_all_hands)[0]
551
+ rec_lower = self.vq_model_lower.latent2origin(rec_all_lower)[0]
552
+
553
+
554
+ if self.use_trans:
555
+ rec_trans_v = rec_lower[...,-3:]
556
+ rec_trans_v = rec_trans_v * self.trans_std + self.trans_mean
557
+ rec_trans = torch.zeros_like(rec_trans_v)
558
+ rec_trans = torch.cumsum(rec_trans_v, dim=-2)
559
+ rec_trans[...,1]=rec_trans_v[...,1]
560
+ rec_lower = rec_lower[...,:-3]
561
+
562
+ if self.args.pose_norm:
563
+ rec_upper = rec_upper * self.std_upper + self.mean_upper
564
+ rec_hands = rec_hands * self.std_hands + self.mean_hands
565
+ rec_lower = rec_lower * self.std_lower + self.mean_lower
566
+
567
+
568
+
569
+
570
+ n = n - remain
571
+ tar_pose = tar_pose[:, :n, :]
572
+ tar_exps = tar_exps[:, :n, :]
573
+ tar_trans = tar_trans[:, :n, :]
574
+ tar_beta = tar_beta[:, :n, :]
575
+
576
+
577
+ rec_exps = tar_exps
578
+ #rec_pose_jaw = rec_face[:, :, :6]
579
+ rec_pose_legs = rec_lower[:, :, :54]
580
+ bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
581
+ rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
582
+ rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
583
+ rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
584
+ rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n)
585
+ rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
586
+ rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
587
+ rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
588
+ rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
589
+ rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n)
590
+ rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
591
+ rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
592
+ rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
593
+ rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n)
594
+ rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
595
+ rec_pose[:, 66:69] = tar_pose.reshape(bs*n, 55*3)[:, 66:69]
596
+
597
+ rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
598
+ rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
599
+ tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
600
+ tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
601
+
602
+ return {
603
+ 'rec_pose': rec_pose,
604
+ 'rec_trans': rec_trans,
605
+ 'tar_pose': tar_pose,
606
+ 'tar_exps': tar_exps,
607
+ 'tar_beta': tar_beta,
608
+ 'tar_trans': tar_trans,
609
+ 'rec_exps': rec_exps,
610
+ }
611
+
612
+
613
+ def test_demo(self, epoch):
614
+ '''
615
+ input audio and text, output motion
616
+ do not calculate loss and metric
617
+ save video
618
+ '''
619
+ results_save_path = self.checkpoint_path + f"/{epoch}/"
620
+ if os.path.exists(results_save_path):
621
+ import shutil
622
+ shutil.rmtree(results_save_path)
623
+ os.makedirs(results_save_path)
624
+ start_time = time.time()
625
+ total_length = 0
626
+ test_seq_list = self.test_data.selected_file
627
+ align = 0
628
+ latent_out = []
629
+ latent_ori = []
630
+ l2_all = 0
631
+ lvel = 0
632
+ self.model.eval()
633
+ self.smplx.eval()
634
+ # self.eval_copy.eval()
635
+ with torch.no_grad():
636
+ for its, batch_data in enumerate(self.test_loader):
637
+ loaded_data = self._load_data(batch_data)
638
+ net_out = self._g_test(loaded_data)
639
+ tar_pose = net_out['tar_pose']
640
+ rec_pose = net_out['rec_pose']
641
+ tar_exps = net_out['tar_exps']
642
+ tar_beta = net_out['tar_beta']
643
+ rec_trans = net_out['rec_trans']
644
+ tar_trans = net_out['tar_trans']
645
+ rec_exps = net_out['rec_exps']
646
+ bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
647
+ if (30/self.args.pose_fps) != 1:
648
+ assert 30%self.args.pose_fps == 0
649
+ n *= int(30/self.args.pose_fps)
650
+ tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
651
+ rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1)
652
+
653
+
654
+ rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
655
+ rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
656
+ tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
657
+ tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
658
+
659
+ rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
660
+ rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
661
+ tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
662
+ tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
663
+
664
+
665
+ tar_pose_np = tar_pose.detach().cpu().numpy()
666
+ rec_pose_np = rec_pose.detach().cpu().numpy()
667
+ rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
668
+ rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
669
+ tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
670
+ tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
671
+ gt_npz = np.load("./demo/examples/2_scott_0_1_1.npz", allow_pickle=True)
672
+
673
+ results_npz_file_save_path = results_save_path+f"result_{self.time_name_expend[:-1]}"+'.npz'
674
+ np.savez(results_npz_file_save_path,
675
+ betas=gt_npz["betas"],
676
+ poses=rec_pose_np,
677
+ expressions=rec_exp_np,
678
+ trans=rec_trans_np,
679
+ model='smplx2020',
680
+ gender='neutral',
681
+ mocap_frame_rate = 30,
682
+ )
683
+ total_length += n
684
+ render_vid_path = other_tools_hf.render_one_sequence_no_gt(
685
+ results_npz_file_save_path,
686
+ # results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
687
+ results_save_path,
688
+ self.audio_path,
689
+ self.args.data_path_1+"smplx_models/",
690
+ use_matplotlib = False,
691
+ args = self.args,
692
+ )
693
+
694
+ result = [
695
+ gr.Video(value=render_vid_path, visible=True),
696
+ gr.File(value=results_npz_file_save_path, label="download motion and visualize in blender"),
697
+ ]
698
+
699
+ end_time = time.time() - start_time
700
+ logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
701
+ return result
702
+
703
+ @logger.catch
704
+ @spaces.GPU
705
+ def syntalker(audio_path,sample_stratege):
706
+ args = config.parse_args()
707
+ if sample_stratege==0:
708
+ args.use_ddim=True
709
+ elif sample_stratege==1:
710
+ args.use_ddim=False
711
+ print(sample_stratege)
712
+ print(args.use_ddim)
713
+ #os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
714
+ if not sys.warnoptions:
715
+ warnings.simplefilter("ignore")
716
+ # dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
717
+
718
+ #logger_tools.set_args_and_logger(args, rank)
719
+ other_tools_hf.set_random_seed(args)
720
+ other_tools_hf.print_exp_info(args)
721
+
722
+ # return one intance of trainer
723
+ trainer = BaseTrainer(args, ap = audio_path)
724
+ other_tools.load_checkpoints(trainer.model, args.test_ckpt, args.g_name)
725
+
726
+ result = trainer.test_demo(999)
727
+ return result
728
+
729
+ examples = [
730
+ ["demo/examples/2_scott_0_1_1.wav"],
731
+ ["demo/examples/2_scott_0_2_2.wav"],
732
+ ["demo/examples/2_scott_0_3_3.wav"],
733
+ ["demo/examples/2_scott_0_4_4.wav"],
734
+ ["demo/examples/2_scott_0_5_5.wav"],
735
+ ]
736
+
737
+ demo = gr.Interface(
738
+ syntalker, # function
739
+ inputs=[
740
+ # gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]),
741
+ gr.Audio(),
742
+ gr.Radio(choices=["DDIM", "DDPM"], label="Please select a sample strategy", type="index", value="DDIM"), # 0 for DDIM, 1 for DDPM
743
+ # gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"])
744
+ ], # input type
745
+ outputs=[
746
+ gr.Video(format="mp4", visible=True),
747
+ gr.File(label="download motion and visualize in blender")
748
+ ],
749
+ title='SynTalker: Enabling Synergistic Full-Body Control in Prompt-Based Co-Speech Motion Generation',
750
+ description="1. Upload your audio. <br/>\
751
+ 2. Then, sit back and wait for the rendering to happen! This may take a while (e.g. 2 minutes) <br/>\
752
+ 3. After, you can view the videos. <br/>\
753
+ 4. Notice that we use a fix face animation, our method only produce body motion. <br/>\
754
+ 5. Use DDPM sample strategy will generate a better result, while it will take more inference time. \
755
+ ",
756
+ article="Project links: [SynTalker](https://robinwitch.github.io/SynTalker-Page). <br/>\
757
+ Reference links: [EMAGE](https://pantomatrix.github.io/EMAGE/). ",
758
+ examples=examples,
759
+ )
760
+
761
+
762
+ if __name__ == "__main__":
763
+ os.environ["MASTER_ADDR"]='127.0.0.1'
764
+ os.environ["MASTER_PORT"]='8675'
765
+ #os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
766
+ demo.launch(share=True)
bash_raw_cospeech_download.sh ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ mkdir -p datasets/BEAT_SMPL
2
+ cd datasets/BEAT_SMPL
3
+ gdown https://drive.google.com/uc?id=1_iXr0XiT_EdslXe4b0HwDr2OoOCrtlrB
4
+ unzip beat_v2.0.0.zip
ckpt/beatx2_cospeech_diffusion/0403_212319_diffusion_rvqvae_128.txt ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/beatx2_cospeech_diffusion/0403_212319_diffusion_rvqvae_128.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {a_encoder: null, a_fix_pre: false, a_pre_encoder: null, acc: 1, acc_weight: 0.0,
2
+ additional_data: false, adv_weight: 20.0, ali_weight: 0.0, amsgrad: false, apex: false,
3
+ asmr: 0.0, atcont: 0.0, atmr: 0.0, aud_prob: 1.0, audio_dims: 1, audio_f: 256, audio_fps: 16000,
4
+ audio_norm: false, audio_rep: onset+amplitude, audio_sr: 16000, batch_size: 40,
5
+ beat_align: true, benchmark: true, cache_only: false, cache_path: datasets/beat_cache/beat_smplx_en_emage_2_128/,
6
+ cf: 0.0, ch: 1.0, cl: 1.0, clean_final_seconds: 0, clean_first_seconds: 0, commit: 0.02,
7
+ config: configs/diffusion_rvqvae_128.yaml, csv_name: a2g_0, cu: 1.0, cudnn_enabled: true,
8
+ d_lr_weight: 0.2, d_name: null, data_path: /mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/,
9
+ data_path_1: /mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/hub/,
10
+ dataset: beat_sep_lower, ddp: false, debug: false, decay_epochs: 200, decay_rate: 0.1,
11
+ decode_fusion: null, depth: 3, deterministic: true, dilation_growth_rate: 3, disable_filtering: false,
12
+ div_reg_weight: 0.0, downs_t: [3], dropout_prob: 0.3, e_name: VAESKConv, e_path: weights/AESKConv_240_100.bin,
13
+ emb_width: 512, emo_rep: null, emotion_dims: 8, emotion_f: 0, epoch_stage: 0, epochs: 1000,
14
+ eval_model: motion_representation, f_encoder: 'null', f_fix_pre: false, f_pre_encoder: 'null',
15
+ fac_prob: 1.0, facial_dims: 100, facial_f: 0, facial_fps: 15, facial_norm: false,
16
+ facial_rep: smplxflame_30, fid_weight: 0.0, finger_net: original, freeze_wordembed: false,
17
+ fsmr: 0.0, ftmr: 0.0, fusion_mode: sum, g_name: MDM, gap_weight: 0.0, gpus: [0],
18
+ grad_norm: 0.99, hidden_size: 768, hvqvae_multipliers: [1], id_rep: onehot, input_context: both,
19
+ is_train: true, ita_weight: 0.0, iwa_weight: 0.0, joint_channel: 3, kld_aud_weight: 0.0,
20
+ kld_fac_weight: 0.0, kld_weight: 0.0, l: 4, l_bins: 512, l_mu: 0.99, levels: 1,
21
+ lf: 3.0, lh: 3.0, ll: 3.0, loader_workers: 0, log_period: 10, loss_contrastive_neg_weight: 0.005,
22
+ loss_contrastive_pos_weight: 0.2, loss_gan_weight: 5.0, loss_kld_weight: 0.1, loss_physical_weight: 0.0,
23
+ loss_reg_weight: 0.05, loss_regression_weight: 70.0, lr_base: 5.0e-05, lr_min: 1.0e-07,
24
+ lr_policy: step, lu: 3.0, m_conv: 1.0, m_decoder: null, m_encoder: 'null', m_fix_pre: false,
25
+ m_pre_encoder: 'null', mean_pose_path: /mnt/fu09a/chenbohong/PantoMatrix/beatx_2_330_mean.npy,
26
+ mean_trans_path: /mnt/fu09a/chenbohong/PantoMatrix/beatx_2_trans_mean.npy, model: denoiser,
27
+ momentum: 0.8, motion_f: 256, msmr: 0.0, mtmr: 0.0, multi_length_training: [1.0],
28
+ n_layer: 1, n_poses: 34, n_pre_poses: 4, name: 0403_212319_diffusion_rvqvae_128,
29
+ nesterov: true, new_cache: false, no_adv_epoch: 999, notes: '', opt: adam, opt_betas: [
30
+ 0.5, 0.999], ori_joints: beat_smplx_joints, out_path: /mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/outputs/audio2pose/,
31
+ pos_encoding_type: sin, pos_prob: 1.0, pose_dims: 330, pose_fps: 30, pose_length: 128,
32
+ pose_norm: true, pose_rep: smplxflame_30, pre_frames: 4, pre_type: zero, pretrain: false,
33
+ project: s2g, queue_size: 1024, random_seed: 2021, rec_aud_weight: 0.0, rec_fac_weight: 0.0,
34
+ rec_pos_weight: 0.0, rec_txt_weight: 0.0, rec_ver_weight: 0.0, rec_weight: 1.0,
35
+ root_path: /mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/, root_weight: 1.0,
36
+ rot6d: true, sample_length: 34, sem_rep: null, sparse: 1, speaker_dims: 4, speaker_f: 0,
37
+ speaker_id: onehot, stat: ts, std_pose_path: /mnt/fu09a/chenbohong/PantoMatrix/beatx_2_330_std.npy,
38
+ std_trans_path: /mnt/fu09a/chenbohong/PantoMatrix/beatx_2_trans_std.npy, stride: 20,
39
+ strides_t: [2], t_encoder: 'null', t_fix_pre: false, t_pre_encoder: fasttext, tar_joints: beat_smplx_full,
40
+ test_ckpt: /mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/outputs/audio2pose/custom/0330_140056_diffusion_rvqvae/last_300.bin,
41
+ test_data_path: /datasets/trinity/test/, test_length: 128, test_period: 20, train_data_path: /datasets/trinity/train/,
42
+ train_trans: true, trainer: diffusion_rvqvae, training_speakers: [2], tsmr: 0.0,
43
+ ttmr: 0.0, txt_prob: 1.0, use_amass: false, use_aug: false, use_bottleneck: true,
44
+ use_trans: true, vae_codebook_size: 256, vae_grow: [1, 1, 2, 1], vae_layer: 4, vae_length: 240,
45
+ vae_quantizer_lambda: 1.0, vae_test_dim: 330, vae_test_len: 32, vae_test_stride: 20,
46
+ val_data_path: /datasets/trinity/val/, variational: false, vel: 1, vel_weight: 0.0,
47
+ vqvae_ckpt: null, vqvae_hands_path: /mnt/fu09a/chenbohong/gdc/T2M-GPT/output_beatx2/RVQVAE_hands/net_300000.pth,
48
+ vqvae_latent_scale: 5.0, vqvae_lower_path: /mnt/fu09a/chenbohong/gdc/T2M-GPT/output_beatx2/RVQVAE_lower/net_300000.pth,
49
+ vqvae_lower_trans_path: /mnt/fu09a/chenbohong/gdc/T2M-GPT/output_beatx2/RVQVAE_lower_trans/net_300000.pth,
50
+ vqvae_reverse_decoder_dilation: true, vqvae_squeeze_scale: 4, vqvae_type: rvqvae,
51
+ vqvae_upper_path: /mnt/fu09a/chenbohong/gdc/T2M-GPT/output_beatx2/RVQVAE_upper/net_300000.pth,
52
+ warmup_epochs: 0, warmup_lr: 0.0005, wei_weight: 0.0, weight_decay: 0.0, width: 512,
53
+ word_cache: false, word_dims: 300, word_f: 256, word_index_num: 11195, word_rep: textgrid,
54
+ z_type: speaker}
ckpt/beatx2_cospeech_diffusion/1001_203942_diffusion_rvqvae_128_gaps-210-0.txt ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 10-01 20:39:43 | {'a_encoder': None,
2
+ 'a_fix_pre': False,
3
+ 'a_pre_encoder': None,
4
+ 'acc': 1,
5
+ 'acc_weight': 0.0,
6
+ 'additional_data': False,
7
+ 'adv_weight': 20.0,
8
+ 'ali_weight': 0.0,
9
+ 'amsgrad': False,
10
+ 'apex': False,
11
+ 'asmr': 0.0,
12
+ 'atcont': 0.0,
13
+ 'atmr': 0.0,
14
+ 'aud_prob': 1.0,
15
+ 'audio_dims': 1,
16
+ 'audio_f': 256,
17
+ 'audio_fps': 16000,
18
+ 'audio_norm': False,
19
+ 'audio_rep': 'onset+amplitude',
20
+ 'audio_sr': 16000,
21
+ 'batch_size': 40,
22
+ 'beat_align': True,
23
+ 'benchmark': True,
24
+ 'cache_only': False,
25
+ 'cache_path': 'datasets/beat_cache/beat_smplx_en_emage_2_128/',
26
+ 'cf': 0.0,
27
+ 'ch': 1.0,
28
+ 'cl': 1.0,
29
+ 'clean_final_seconds': 0,
30
+ 'clean_first_seconds': 0,
31
+ 'commit': 0.02,
32
+ 'config': 'configs/diffusion_rvqvae_128_gaps-210-0.yaml',
33
+ 'csv_name': 'a2g_0',
34
+ 'cu': 1.0,
35
+ 'cudnn_enabled': True,
36
+ 'd_lr_weight': 0.2,
37
+ 'd_name': None,
38
+ 'data_path': './datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/',
39
+ 'data_path_1': './datasets/hub/',
40
+ 'dataset': 'beat_sep_lower',
41
+ 'ddp': False,
42
+ 'debug': False,
43
+ 'decay_epochs': 500,
44
+ 'decay_rate': 0.1,
45
+ 'decode_fusion': None,
46
+ 'depth': 3,
47
+ 'deterministic': True,
48
+ 'dilation_growth_rate': 3,
49
+ 'disable_filtering': False,
50
+ 'div_reg_weight': 0.0,
51
+ 'downs_t': [3],
52
+ 'dropout_prob': 0.3,
53
+ 'e_name': 'VAESKConv',
54
+ 'e_path': 'weights/AESKConv_240_100.bin',
55
+ 'emb_width': 512,
56
+ 'emo_rep': None,
57
+ 'emotion_dims': 8,
58
+ 'emotion_f': 0,
59
+ 'epoch_stage': 0,
60
+ 'epochs': 2000,
61
+ 'eval_model': 'motion_representation',
62
+ 'f_encoder': 'null',
63
+ 'f_fix_pre': False,
64
+ 'f_pre_encoder': 'null',
65
+ 'fac_prob': 1.0,
66
+ 'facial_dims': 100,
67
+ 'facial_f': 0,
68
+ 'facial_fps': 15,
69
+ 'facial_norm': False,
70
+ 'facial_rep': 'smplxflame_30',
71
+ 'fid_weight': 0.0,
72
+ 'finger_net': 'original',
73
+ 'freeze_wordembed': False,
74
+ 'fsmr': 0.0,
75
+ 'ftmr': 0.0,
76
+ 'fusion_mode': 'sum',
77
+ 'g_name': 'MDM',
78
+ 'gap_weight': 0.0,
79
+ 'gpus': [0],
80
+ 'grad_norm': 0.99,
81
+ 'hidden_size': 768,
82
+ 'hvqvae_multipliers': [1],
83
+ 'id_rep': 'onehot',
84
+ 'input_context': 'both',
85
+ 'is_train': True,
86
+ 'ita_weight': 0.0,
87
+ 'iwa_weight': 0.0,
88
+ 'joint_channel': 3,
89
+ 'kld_aud_weight': 0.0,
90
+ 'kld_fac_weight': 0.0,
91
+ 'kld_weight': 0.0,
92
+ 'l': 4,
93
+ 'l_bins': 512,
94
+ 'l_mu': 0.99,
95
+ 'levels': 1,
96
+ 'lf': 3.0,
97
+ 'lh': 3.0,
98
+ 'll': 3.0,
99
+ 'loader_workers': 0,
100
+ 'log_period': 10,
101
+ 'loss_contrastive_neg_weight': 0.005,
102
+ 'loss_contrastive_pos_weight': 0.2,
103
+ 'loss_gan_weight': 5.0,
104
+ 'loss_kld_weight': 0.1,
105
+ 'loss_physical_weight': 0.0,
106
+ 'loss_reg_weight': 0.05,
107
+ 'loss_regression_weight': 70.0,
108
+ 'lr_base': 5e-05,
109
+ 'lr_min': 1e-07,
110
+ 'lr_policy': 'step',
111
+ 'lu': 3.0,
112
+ 'm_conv': 1.0,
113
+ 'm_decoder': None,
114
+ 'm_encoder': 'null',
115
+ 'm_fix_pre': False,
116
+ 'm_pre_encoder': 'null',
117
+ 'mean_pose_path': '../../beatx_2_330_mean.npy',
118
+ 'mean_trans_path': '../../beatx_2_trans_mean.npy',
119
+ 'model': 'denoiser',
120
+ 'momentum': 0.8,
121
+ 'motion_f': 256,
122
+ 'msmr': 0.0,
123
+ 'mtmr': 0.0,
124
+ 'multi_length_training': [1.0],
125
+ 'n_layer': 1,
126
+ 'n_poses': 34,
127
+ 'n_pre_poses': 4,
128
+ 'name': '1001_203942_diffusion_rvqvae_128_gaps-210-0',
129
+ 'nesterov': True,
130
+ 'new_cache': False,
131
+ 'no_adv_epoch': 999,
132
+ 'notes': '',
133
+ 'opt': 'adam',
134
+ 'opt_betas': [0.5, 0.999],
135
+ 'ori_joints': 'beat_smplx_joints',
136
+ 'out_path': './outputs/audio2pose/',
137
+ 'pos_encoding_type': 'sin',
138
+ 'pos_prob': 1.0,
139
+ 'pose_dims': 330,
140
+ 'pose_fps': 30,
141
+ 'pose_length': 128,
142
+ 'pose_norm': True,
143
+ 'pose_rep': 'smplxflame_30',
144
+ 'pre_frames': 4,
145
+ 'pre_type': 'zero',
146
+ 'pretrain': False,
147
+ 'project': 's2g',
148
+ 'queue_size': 1024,
149
+ 'random_seed': 2021,
150
+ 'rec_aud_weight': 0.0,
151
+ 'rec_fac_weight': 0.0,
152
+ 'rec_pos_weight': 0.0,
153
+ 'rec_txt_weight': 0.0,
154
+ 'rec_ver_weight': 0.0,
155
+ 'rec_weight': 1.0,
156
+ 'root_path': './',
157
+ 'root_weight': 1.0,
158
+ 'rot6d': True,
159
+ 'sample_length': 34,
160
+ 'sem_rep': None,
161
+ 'sparse': 1,
162
+ 'speaker_dims': 4,
163
+ 'speaker_f': 0,
164
+ 'speaker_id': 'onehot',
165
+ 'stat': 'ts',
166
+ 'std_pose_path': '../../beatx_2_330_std.npy',
167
+ 'std_trans_path': '../../beatx_2_trans_std.npy',
168
+ 'stride': 20,
169
+ 'strides_t': [2],
170
+ 't_encoder': 'null',
171
+ 't_fix_pre': False,
172
+ 't_pre_encoder': 'fasttext',
173
+ 'tar_joints': 'beat_smplx_full',
174
+ 'test_ckpt': './outputs/audio2pose/custom/0403_212319_diffusion_rvqvae_128/last_500.bin',
175
+ 'test_data_path': '/datasets/trinity/test/',
176
+ 'test_length': 128,
177
+ 'test_period': 20,
178
+ 'train_data_path': '/datasets/trinity/train/',
179
+ 'train_trans': True,
180
+ 'trainer': 'diffusion_rvqvae',
181
+ 'training_speakers': [2],
182
+ 'tsmr': 0.0,
183
+ 'ttmr': 0.0,
184
+ 'txt_prob': 1.0,
185
+ 'use_amass': False,
186
+ 'use_aug': False,
187
+ 'use_bottleneck': True,
188
+ 'use_motionclip': False,
189
+ 'use_trans': True,
190
+ 'vae_codebook_size': 256,
191
+ 'vae_grow': [1, 1, 2, 1],
192
+ 'vae_layer': 4,
193
+ 'vae_length': 240,
194
+ 'vae_quantizer_lambda': 1.0,
195
+ 'vae_test_dim': 330,
196
+ 'vae_test_len': 32,
197
+ 'vae_test_stride': 20,
198
+ 'val_data_path': '/datasets/trinity/val/',
199
+ 'variational': False,
200
+ 'vel': 1,
201
+ 'vel_weight': 0.0,
202
+ 'vqvae_ckpt': None,
203
+ 'vqvae_hands_path': './datasets/hub/output_beatx2/RVQVAE_hands/net_300000.pth',
204
+ 'vqvae_latent_scale': 5.0,
205
+ 'vqvae_lower_path': './datasets/hub/output_beatx2/RVQVAE_lower/net_300000.pth',
206
+ 'vqvae_lower_trans_path': './datasets/hub/output_beatx2/RVQVAE_lower_trans/net_300000.pth',
207
+ 'vqvae_reverse_decoder_dilation': True,
208
+ 'vqvae_squeeze_scale': 4,
209
+ 'vqvae_type': 'rvqvae',
210
+ 'vqvae_upper_path': './datasets/hub/output_beatx2/RVQVAE_upper/net_300000.pth',
211
+ 'warmup_epochs': 0,
212
+ 'warmup_lr': 0.0005,
213
+ 'wei_weight': 0.0,
214
+ 'weight_decay': 0.0,
215
+ 'width': 512,
216
+ 'word_cache': False,
217
+ 'word_dims': 300,
218
+ 'word_f': 256,
219
+ 'word_index_num': 11195,
220
+ 'word_rep': 'textgrid',
221
+ 'z_type': 'speaker'}
222
+ 10-01 20:39:43 | # ------------ 1001_203942_diffusion_rvqvae_128_gaps-210-0 ----------- #
223
+ 10-01 20:39:43 | PyTorch version: 2.4.1+cu121
224
+ 10-01 20:39:43 | CUDA version: 12.1
225
+ 10-01 20:39:43 | 1 GPUs
226
+ 10-01 20:39:43 | Random Seed: 2021
227
+ 10-01 20:39:46 | Audio bit rate: 16000
228
+ 10-01 20:39:46 | Reading data './datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/'...
229
+ 10-01 20:39:46 | Creating the dataset cache...
230
+ 10-01 20:39:46 | Found the cache ./datasets/beat_cache/beat_smplx_en_emage_2_128/train/smplxflame_30_cache
231
+ 10-01 20:39:46 | Init train dataloader success
232
+ 10-01 20:39:46 | Init val dataloader success
233
+ 10-01 20:39:46 | Audio bit rate: 16000
234
+ 10-01 20:39:46 | Reading data './datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/'...
235
+ 10-01 20:39:46 | Creating the dataset cache...
236
+ 10-01 20:39:46 | Found the cache ./datasets/beat_cache/beat_smplx_en_emage_2_128/test/smplxflame_30_cache
237
+ 10-01 20:39:46 | Init test dataloader success
238
+ 10-01 20:39:46 | DataParallel(
239
+ (module): MDM(
240
+ (WavEncoder): WavEncoder(
241
+ (feat_extractor): Sequential(
242
+ (0): BasicBlock(
243
+ (conv1): Conv1d(2, 64, kernel_size=(15,), stride=(5,), padding=(1700,))
244
+ (bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
245
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
246
+ (conv2): Conv1d(64, 64, kernel_size=(15,), stride=(1,), padding=(7,))
247
+ (bn2): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
248
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
249
+ (downsample): Sequential(
250
+ (0): Conv1d(2, 64, kernel_size=(15,), stride=(5,), padding=(1700,))
251
+ (1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
252
+ )
253
+ )
254
+ (1): BasicBlock(
255
+ (conv1): Conv1d(64, 64, kernel_size=(15,), stride=(6,))
256
+ (bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
257
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
258
+ (conv2): Conv1d(64, 64, kernel_size=(15,), stride=(1,), padding=(7,))
259
+ (bn2): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
260
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
261
+ (downsample): Sequential(
262
+ (0): Conv1d(64, 64, kernel_size=(15,), stride=(6,))
263
+ (1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
264
+ )
265
+ )
266
+ (2): BasicBlock(
267
+ (conv1): Conv1d(64, 64, kernel_size=(15,), stride=(1,), padding=(7,))
268
+ (bn1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
269
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
270
+ (conv2): Conv1d(64, 64, kernel_size=(15,), stride=(1,), padding=(7,))
271
+ (bn2): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
272
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
273
+ )
274
+ (3): BasicBlock(
275
+ (conv1): Conv1d(64, 128, kernel_size=(15,), stride=(6,))
276
+ (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
277
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
278
+ (conv2): Conv1d(128, 128, kernel_size=(15,), stride=(1,), padding=(7,))
279
+ (bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
280
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
281
+ (downsample): Sequential(
282
+ (0): Conv1d(64, 128, kernel_size=(15,), stride=(6,))
283
+ (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
284
+ )
285
+ )
286
+ (4): BasicBlock(
287
+ (conv1): Conv1d(128, 128, kernel_size=(15,), stride=(1,), padding=(7,))
288
+ (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
289
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
290
+ (conv2): Conv1d(128, 128, kernel_size=(15,), stride=(1,), padding=(7,))
291
+ (bn2): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
292
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
293
+ )
294
+ (5): BasicBlock(
295
+ (conv1): Conv1d(128, 256, kernel_size=(15,), stride=(3,))
296
+ (bn1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
297
+ (act1): LeakyReLU(negative_slope=0.01, inplace=True)
298
+ (conv2): Conv1d(256, 256, kernel_size=(15,), stride=(1,), padding=(7,))
299
+ (bn2): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
300
+ (act2): LeakyReLU(negative_slope=0.01, inplace=True)
301
+ (downsample): Sequential(
302
+ (0): Conv1d(128, 256, kernel_size=(15,), stride=(3,))
303
+ (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
304
+ )
305
+ )
306
+ )
307
+ )
308
+ (text_encoder_body): Linear(in_features=300, out_features=256, bias=True)
309
+ (text_pre_encoder_body): Embedding(11195, 300)
310
+ (sequence_pos_encoder): PositionalEncoding(
311
+ (dropout): Dropout(p=0.1, inplace=False)
312
+ )
313
+ (mytimmblocks): ModuleList(
314
+ (0-7): 8 x Block(
315
+ (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
316
+ (attn): Attention(
317
+ (qkv): Linear(in_features=512, out_features=1536, bias=False)
318
+ (q_norm): Identity()
319
+ (k_norm): Identity()
320
+ (attn_drop): Dropout(p=0.0, inplace=False)
321
+ (proj): Linear(in_features=512, out_features=512, bias=True)
322
+ (proj_drop): Dropout(p=0.0, inplace=False)
323
+ )
324
+ (ls1): Identity()
325
+ (drop_path1): DropPath(drop_prob=0.100)
326
+ (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
327
+ (mlp): Mlp(
328
+ (fc1): Linear(in_features=512, out_features=1024, bias=True)
329
+ (act): GELU(approximate='none')
330
+ (drop1): Dropout(p=0.0, inplace=False)
331
+ (norm): Identity()
332
+ (fc2): Linear(in_features=1024, out_features=512, bias=True)
333
+ (drop2): Dropout(p=0.0, inplace=False)
334
+ )
335
+ (ls2): Identity()
336
+ (drop_path2): DropPath(drop_prob=0.100)
337
+ )
338
+ )
339
+ (embed_timestep): TimestepEmbedder(
340
+ (sequence_pos_encoder): PositionalEncoding(
341
+ (dropout): Dropout(p=0.1, inplace=False)
342
+ )
343
+ (time_embed): Sequential(
344
+ (0): Linear(in_features=512, out_features=512, bias=True)
345
+ (1): SiLU()
346
+ (2): Linear(in_features=512, out_features=512, bias=True)
347
+ )
348
+ )
349
+ (embed_style): Linear(in_features=6, out_features=64, bias=True)
350
+ (embed_text): Linear(in_features=6144, out_features=512, bias=True)
351
+ (output_process): OutputProcess(
352
+ (poseFinal): Linear(in_features=512, out_features=1536, bias=True)
353
+ )
354
+ (rel_pos): SinusoidalEmbeddings()
355
+ (input_process): InputProcess(
356
+ (poseEmbedding): Linear(in_features=1536, out_features=512, bias=True)
357
+ )
358
+ (input_process2): Linear(in_features=1280, out_features=512, bias=True)
359
+ (mix_audio_text): Linear(in_features=512, out_features=256, bias=True)
360
+ )
361
+ )
362
+ 10-01 20:39:46 | init MDM success
363
+ 10-01 20:39:46 | load self-pretrained checkpoints for VAESKConv
364
+ 10-01 20:39:46 | load self-pretrained checkpoints for VAESKConv
365
+ 10-01 20:39:46 | VAESKConv(
366
+ (encoder): LocalEncoder(
367
+ (layers): ModuleList(
368
+ (0): Sequential(
369
+ (0): SkeletonResidual(
370
+ (residual): Sequential(
371
+ (0): SkeletonConv()
372
+ (1): GroupNorm(10, 330, eps=1e-05, affine=True)
373
+ )
374
+ (shortcut): SkeletonConv()
375
+ (common): Sequential(
376
+ (0): SkeletonPool()
377
+ (1): Tanh()
378
+ )
379
+ )
380
+ )
381
+ (1): Sequential(
382
+ (0): SkeletonResidual(
383
+ (residual): Sequential(
384
+ (0): SkeletonConv()
385
+ (1): GroupNorm(10, 210, eps=1e-05, affine=True)
386
+ )
387
+ (shortcut): SkeletonConv()
388
+ (common): Sequential(
389
+ (0): SkeletonPool()
390
+ (1): Tanh()
391
+ )
392
+ )
393
+ )
394
+ (2-3): 2 x Sequential(
395
+ (0): SkeletonResidual(
396
+ (residual): Sequential(
397
+ (0): SkeletonConv()
398
+ (1): GroupNorm(10, 240, eps=1e-05, affine=True)
399
+ )
400
+ (shortcut): SkeletonConv()
401
+ (common): Sequential(
402
+ (0): Tanh()
403
+ )
404
+ )
405
+ )
406
+ )
407
+ )
408
+ (decoder): VQDecoderV3(
409
+ (main): Sequential(
410
+ (0): ResBlock(
411
+ (model): Sequential(
412
+ (0): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
413
+ (1): LeakyReLU(negative_slope=0.2, inplace=True)
414
+ (2): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
415
+ )
416
+ )
417
+ (1): ResBlock(
418
+ (model): Sequential(
419
+ (0): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
420
+ (1): LeakyReLU(negative_slope=0.2, inplace=True)
421
+ (2): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
422
+ )
423
+ )
424
+ (2): Upsample(scale_factor=2.0, mode='nearest')
425
+ (3): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
426
+ (4): LeakyReLU(negative_slope=0.2, inplace=True)
427
+ (5): Upsample(scale_factor=2.0, mode='nearest')
428
+ (6): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
429
+ (7): LeakyReLU(negative_slope=0.2, inplace=True)
430
+ (8): Upsample(scale_factor=2.0, mode='nearest')
431
+ (9): Conv1d(240, 240, kernel_size=(3,), stride=(1,), padding=(1,))
432
+ (10): LeakyReLU(negative_slope=0.2, inplace=True)
433
+ (11): Upsample(scale_factor=2.0, mode='nearest')
434
+ (12): Conv1d(240, 330, kernel_size=(3,), stride=(1,), padding=(1,))
435
+ (13): LeakyReLU(negative_slope=0.2, inplace=True)
436
+ (14): Conv1d(330, 330, kernel_size=(3,), stride=(1,), padding=(1,))
437
+ )
438
+ )
439
+ (fc_mu): Linear(in_features=240, out_features=240, bias=True)
440
+ (fc_logvar): Linear(in_features=240, out_features=240, bias=True)
441
+ )
442
+ 10-01 20:39:46 | init VAESKConv success
443
+ 10-01 20:39:47 | load self-pretrained checkpoints for VAESKConv
444
+ 10-01 20:39:47 | load self-pretrained checkpoints for VAESKConv
445
+ 10-01 20:39:48 | load self-pretrained checkpoints for MDM
446
+ 10-01 21:08:57 | l2 loss: 0.0
447
+ 10-01 21:08:57 | lvel loss: 0.0
448
+ 10-01 21:08:58 | fid score: 0.46525881529758983
449
+ 10-01 21:08:58 | align score: 0.7361291368819373
450
+ 10-01 21:08:58 | l1div score: 12.30848217010498
451
+ 10-01 21:08:58 | total inference time: 1749 s for 945 s motion
ckpt/beatx2_cospeech_diffusion/last_500.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d79b6fd3e412f7e3cb61eb6795ff686f6cdf80d32ce2bf941cd985d8cae24cc1
3
+ size 128770342
ckpt/beatx2_rvqvae/RVQVAE_hands/net_300000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4eb84ff69009be0b3e68419c5382aa10443b73739dfe2e2928b046e2db59a8b
3
+ size 83048747
ckpt/beatx2_rvqvae/RVQVAE_hands/run.log ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/beatx2_rvqvae/RVQVAE_lower/net_300000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a29217af4f33b7b50ae9aebfdfc2bf2c0e80bed48316ab218cdc40043bb03d20
3
+ size 81499947
ckpt/beatx2_rvqvae/RVQVAE_lower/run.log ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/beatx2_rvqvae/RVQVAE_lower_trans/net_300000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb81af9ebd6c34b473db39e4c343e76fb3b30e4dbbab60d56460544f9cea7f6f
3
+ size 81536811
ckpt/beatx2_rvqvae/RVQVAE_lower_trans/run.log ADDED
The diff for this file is too large to render. See raw diff
 
ckpt/beatx2_rvqvae/RVQVAE_upper/net_300000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:959d066138b293455a98fb0175b1fe2fcc31da9a1de83c9bfbf093ffea746a0e
3
+ size 81794923
ckpt/beatx2_rvqvae/RVQVAE_upper/run.log ADDED
The diff for this file is too large to render. See raw diff
 
configs/beat2_rvqvae.yaml ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ is_train: True
2
+ ddp: False
3
+ stat: ts
4
+ root_path: ./
5
+ out_path: ./outputs/audio2pose/
6
+ project: s2g
7
+ data_path: ./datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/
8
+ e_path: weights/AESKConv_240_100.bin
9
+ eval_model: motion_representation
10
+ e_name: VAESKConv
11
+ test_ckpt: ./outputs/audio2pose/custom/0112_001634_emage/last_200.bin
12
+ data_path_1: ./datasets/hub/
13
+
14
+ vae_test_len: 32
15
+ vae_test_dim: 330
16
+ vae_test_stride: 20
17
+ vae_length: 240
18
+ vae_codebook_size: 256
19
+ vae_layer: 4
20
+ vae_grow: [1,1,2,1]
21
+ variational: False
22
+
23
+ # data config
24
+ training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] #[2]
25
+ additional_data: False
26
+ cache_path: datasets/beat_cache/beat_smplx_en_emage_2_rvqvae/
27
+ dataset: mix_sep
28
+ new_cache: True
29
+ use_amass: False
30
+ # motion config
31
+ ori_joints: beat_smplx_joints
32
+ tar_joints: beat_smplx_full
33
+ pose_rep: smplxflame_30
34
+ pose_norm: False
35
+ pose_fps: 30
36
+ rot6d: True
37
+ pre_frames: 4
38
+ pose_dims: 330
39
+ pose_length: 64
40
+ stride: 20
41
+ test_length: 64
42
+ motion_f: 256
43
+ m_pre_encoder: null
44
+ m_encoder: null
45
+ m_fix_pre: False
46
+
47
+ # audio config
48
+ audio_rep: onset+amplitude
49
+ audio_sr: 16000
50
+ audio_fps: 16000
51
+ audio_norm: False
52
+ audio_f: 256
53
+ # a_pre_encoder: tcn_camn
54
+ # a_encoder: none
55
+ # a_fix_pre: False
56
+
57
+ # text config
58
+ word_rep: textgrid
59
+ word_index_num: 11195
60
+ word_dims: 300
61
+ freeze_wordembed: False
62
+ word_f: 256
63
+ t_pre_encoder: fasttext
64
+ t_encoder: null
65
+ t_fix_pre: False
66
+
67
+ # facial config
68
+ facial_rep: smplxflame_30
69
+ facial_dims: 100
70
+ facial_norm: False
71
+ facial_f: 0
72
+ f_pre_encoder: null
73
+ f_encoder: null
74
+ f_fix_pre: False
75
+
76
+ # speaker config
77
+ id_rep: onehot
78
+ speaker_f: 0
79
+
80
+ # model config
81
+ batch_size: 80 #80
82
+ # warmup_epochs: 1
83
+ # warmup_lr: 1e-6
84
+ lr_base: 4e-4
85
+ model: motion_representation
86
+ g_name: VQVAEConvZero
87
+ trainer: ae_total
88
+ hidden_size: 768
89
+ n_layer: 1
90
+
91
+ rec_weight: 1
92
+ grad_norm: 0.99
93
+ epochs: 200
94
+ test_period: 20
95
+ ll: 3
96
+ lf: 3
97
+ lu: 3
98
+ lh: 3
99
+ cl: 1
100
+ cf: 0
101
+ cu: 1
102
+ ch: 1
103
+
104
+
105
+
106
+ #below is vavae config, copy from QPGESTURE
107
+ #Codebook Configs
108
+ levels: 1
109
+ downs_t: [3]
110
+ strides_t : [2]
111
+ emb_width : 512
112
+ l_bins : 512
113
+ l_mu : 0.99
114
+ commit : 0.1
115
+ hvqvae_multipliers : [1]
116
+ width: 512
117
+ depth: 3
118
+ m_conv : 1.0
119
+ dilation_growth_rate : 3
120
+ sample_length: 80
121
+ use_bottleneck: True
122
+ joint_channel: 6
123
+ # depth: 3
124
+ # width: 128
125
+ # m_conv: 1.0
126
+ # dilation_growth_rate: 1
127
+ # dilation_cycle: None
128
+ vel: 1 # 1 -> 0
129
+ acc: 1 # 1 -> 0
130
+ vqvae_reverse_decoder_dilation: True
131
+
132
+
133
+ ## below is special for emage
134
+ rec_pos_weight : 1.0
configs/diffusion_rvqvae_128.yaml ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ is_train: True
2
+ ddp: False
3
+ stat: ts
4
+ root_path: ./
5
+ out_path: ./outputs/audio2pose/
6
+ project: s2g
7
+ data_path: ./datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/
8
+ e_path: weights/AESKConv_240_100.bin
9
+ eval_model: motion_representation
10
+ e_name: VAESKConv
11
+ test_ckpt: ./ckpt/beatx2_cospeech_diffusion/last_500.bin
12
+ data_path_1: ./datasets/hub/
13
+ pose_norm: True
14
+
15
+
16
+ mean_pose_path: ./mean_std/beatx_2_330_mean.npy
17
+ std_pose_path: ./mean_std/beatx_2_330_std.npy
18
+
19
+ mean_trans_path: ./mean_std/beatx_2_trans_mean.npy
20
+ std_trans_path: ./mean_std/beatx_2_trans_std.npy
21
+
22
+
23
+ vqvae_upper_path: ./ckpt/beatx2_rvqvae/RVQVAE_upper/net_300000.pth
24
+ vqvae_hands_path: ./ckpt/beatx2_rvqvae/RVQVAE_hands/net_300000.pth
25
+ vqvae_lower_path: ./ckpt/beatx2_rvqvae/RVQVAE_lower/net_300000.pth
26
+
27
+ vqvae_lower_trans_path: ./ckpt/beatx2_rvqvae/RVQVAE_lower_trans/net_300000.pth
28
+ use_trans: True
29
+
30
+ decay_epoch: 500
31
+
32
+ vqvae_squeeze_scale: 4
33
+ vqvae_type: rvqvae
34
+ vqvae_latent_scale: 5
35
+
36
+ vae_test_len: 32
37
+ vae_test_dim: 330
38
+ vae_test_stride: 20
39
+ vae_length: 240
40
+ vae_codebook_size: 256
41
+ vae_layer: 4
42
+ vae_grow: [1,1,2,1]
43
+ variational: False
44
+
45
+ # data config
46
+ training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
47
+ additional_data: False
48
+ cache_path: datasets/beat_cache/beat_smplx_en_emage_2_128/
49
+ dataset: beat_sep_lower
50
+ new_cache: False
51
+
52
+ # motion config
53
+ ori_joints: beat_smplx_joints
54
+ tar_joints: beat_smplx_full
55
+ pose_rep: smplxflame_30
56
+ pose_fps: 30
57
+ rot6d: True
58
+ pre_frames: 4
59
+ pose_dims: 330
60
+ pose_length: 128
61
+ stride: 20
62
+ test_length: 128
63
+ motion_f: 256
64
+ m_pre_encoder: null
65
+ m_encoder: null
66
+ m_fix_pre: False
67
+
68
+
69
+ audio_rep: onset+amplitude
70
+ audio_sr: 16000
71
+ audio_fps: 16000
72
+ audio_norm: False
73
+ audio_f: 256
74
+
75
+
76
+ word_rep: textgrid
77
+ word_index_num: 11195
78
+ word_dims: 300
79
+ freeze_wordembed: False
80
+ word_f: 256
81
+ t_pre_encoder: fasttext
82
+ t_encoder: null
83
+ t_fix_pre: False
84
+
85
+
86
+ facial_rep: smplxflame_30
87
+ facial_dims: 100
88
+ facial_norm: False
89
+ facial_f: 0
90
+ f_pre_encoder: null
91
+ f_encoder: null
92
+ f_fix_pre: False
93
+
94
+
95
+ id_rep: onehot
96
+ speaker_f: 0
97
+
98
+
99
+ batch_size: 40
100
+ lr_base: 5e-5
101
+ model: denoiser
102
+ g_name: MDM
103
+ trainer: diffusion_rvqvae
104
+ hidden_size: 768
105
+ n_layer: 1
106
+
107
+ rec_weight: 1
108
+ grad_norm: 0.99
109
+ epochs: 2000
110
+ test_period: 20
111
+ ll: 3
112
+ lf: 3
113
+ lu: 3
114
+ lh: 3
115
+ cl: 1
116
+ cf: 0
117
+ cu: 1
118
+ ch: 1
configs/diffusion_rvqvae_128_hf.yaml ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ is_train: True
2
+ ddp: False
3
+ stat: ts
4
+ root_path: ./
5
+ out_path: ./outputs/audio2pose/
6
+ project: s2g
7
+ data_path: ./datasets/BEAT_SMPL/beat_v2.0.0/beat_english_v2.0.0/
8
+ e_path: weights/AESKConv_240_100.bin
9
+ eval_model: motion_representation
10
+ e_name: VAESKConv
11
+ test_ckpt: ./ckpt/beatx2_cospeech_diffusion/last_500.bin
12
+ data_path_1: ./datasets/hub/
13
+ pose_norm: True
14
+
15
+
16
+ mean_pose_path: ./mean_std/beatx_2_330_mean.npy
17
+ std_pose_path: ./mean_std/beatx_2_330_std.npy
18
+
19
+ mean_trans_path: ./mean_std/beatx_2_trans_mean.npy
20
+ std_trans_path: ./mean_std/beatx_2_trans_std.npy
21
+
22
+
23
+ vqvae_upper_path: ./ckpt/beatx2_rvqvae/RVQVAE_upper/net_300000.pth
24
+ vqvae_hands_path: ./ckpt/beatx2_rvqvae/RVQVAE_hands/net_300000.pth
25
+ vqvae_lower_path: ./ckpt/beatx2_rvqvae/RVQVAE_lower/net_300000.pth
26
+
27
+ vqvae_lower_trans_path: ./ckpt/beatx2_rvqvae/RVQVAE_lower_trans/net_300000.pth
28
+ use_trans: True
29
+
30
+ decay_epoch: 500
31
+
32
+ vqvae_squeeze_scale: 4
33
+ vqvae_type: rvqvae
34
+ vqvae_latent_scale: 5
35
+
36
+ vae_test_len: 32
37
+ vae_test_dim: 330
38
+ vae_test_stride: 20
39
+ vae_length: 240
40
+ vae_codebook_size: 256
41
+ vae_layer: 4
42
+ vae_grow: [1,1,2,1]
43
+ variational: False
44
+
45
+ # data config
46
+ training_speakers: [2] #[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
47
+ additional_data: False
48
+ cache_path: datasets/beat_cache/web_demo_test/
49
+ dataset: beat_sep_lower_single
50
+ new_cache: True
51
+
52
+ # motion config
53
+ ori_joints: beat_smplx_joints
54
+ tar_joints: beat_smplx_full
55
+ pose_rep: smplxflame_30
56
+ pose_fps: 30
57
+ rot6d: True
58
+ pre_frames: 4
59
+ pose_dims: 330
60
+ pose_length: 128
61
+ stride: 20
62
+ test_length: 128
63
+ motion_f: 256
64
+ m_pre_encoder: null
65
+ m_encoder: null
66
+ m_fix_pre: False
67
+
68
+
69
+ audio_rep: onset+amplitude
70
+ audio_sr: 16000
71
+ audio_fps: 16000
72
+ audio_norm: False
73
+ audio_f: 256
74
+
75
+
76
+ word_rep: textgrid
77
+ word_index_num: 11195
78
+ word_dims: 300
79
+ freeze_wordembed: False
80
+ word_f: 256
81
+ t_pre_encoder: fasttext
82
+ t_encoder: null
83
+ t_fix_pre: False
84
+
85
+
86
+ facial_rep: smplxflame_30
87
+ facial_dims: 100
88
+ facial_norm: False
89
+ facial_f: 0
90
+ f_pre_encoder: null
91
+ f_encoder: null
92
+ f_fix_pre: False
93
+
94
+
95
+ id_rep: onehot
96
+ speaker_f: 0
97
+
98
+
99
+ batch_size: 40
100
+ lr_base: 5e-5
101
+ model: denoiser
102
+ g_name: MDM
103
+ trainer: diffusion_rvqvae
104
+ hidden_size: 768
105
+ n_layer: 1
106
+
107
+ rec_weight: 1
108
+ grad_norm: 0.99
109
+ epochs: 2000
110
+ test_period: 20
111
+ ll: 3
112
+ lf: 3
113
+ lu: 3
114
+ lh: 3
115
+ cl: 1
116
+ cf: 0
117
+ cu: 1
118
+ ch: 1
dataloaders/amass_sep_lower.py ADDED
@@ -0,0 +1,713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ #import pyarrow
18
+ import pickle
19
+ import librosa
20
+ import smplx
21
+ import glob
22
+
23
+ from .build_vocab import Vocab
24
+ from .utils.audio_features import Wav2Vec2Model
25
+ from .data_tools import joints_list
26
+ from .utils import rotation_conversions as rc
27
+ from .utils import other_tools
28
+
29
+ # ACCAD 120
30
+ # BioMotionLab_NTroje 120
31
+ # CMU 很复杂
32
+ # EKUT 100
33
+ # Eyes_Japan_Dataset 很复杂
34
+ # HumanEva 很复杂
35
+ # KIT 100
36
+ # MPI_HDM05 120
37
+ # MPI_Limits 120
38
+ # MPI_mosh 很复杂
39
+ # SFU 120
40
+ # SSM_synced 很复杂
41
+ # TCD_handMocap 很复杂
42
+ # TotalCapture 60
43
+ # Transitions_mocap 120
44
+
45
+ all_sequences = [
46
+ 'ACCAD',
47
+ 'BioMotionLab_NTroje',
48
+ 'CMU',
49
+ 'EKUT',
50
+ 'Eyes_Japan_Dataset',
51
+ 'HumanEva',
52
+ 'KIT',
53
+ 'MPI_HDM05',
54
+ 'MPI_Limits',
55
+ 'MPI_mosh',
56
+ 'SFU',
57
+ 'SSM_synced',
58
+ 'TCD_handMocap',
59
+ 'TotalCapture',
60
+ 'Transitions_mocap',
61
+ ]
62
+ amass_test_split = ['Transitions_mocap', 'SSM_synced']
63
+ amass_vald_split = ['HumanEva', 'MPI_HDM05', 'SFU', 'MPI_mosh']
64
+ amass_train_split = ['BioMotionLab_NTroje', 'Eyes_Japan_Dataset', 'TotalCapture', 'KIT', 'ACCAD', 'CMU', 'MPI_Limits',
65
+ 'TCD_handMocap', 'EKUT']
66
+
67
+ # 上面这些spilt方式是MOTION CLIP的,但是由于motionx中的framerate处理有问题,我先暂且只挑部分数据集进行训练
68
+ # 这些都是120fps的
69
+ # amass_test_split = ['SFU']
70
+ # amass_vald_split = ['MPI_Limits']
71
+ # amass_train_split = ['BioMotionLab_NTroje', 'MPI_HDM05', 'ACCAD','Transitions_mocap']
72
+
73
+
74
+ amass_splits = {
75
+ 'test': amass_test_split,
76
+ 'val': amass_vald_split,
77
+ 'train': amass_train_split
78
+ }
79
+ class CustomDataset(Dataset):
80
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
81
+ self.args = args
82
+ self.loader_type = loader_type
83
+
84
+ self.rank = dist.get_rank()
85
+ self.ori_stride = self.args.stride
86
+ self.ori_length = self.args.pose_length
87
+ self.alignment = [0,0] # for trinity
88
+
89
+ self.ori_joint_list = joints_list[self.args.ori_joints]
90
+ self.tar_joint_list = joints_list[self.args.tar_joints]
91
+ if 'smplx' in self.args.pose_rep:
92
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
93
+ self.joints = len(list(self.tar_joint_list.keys()))
94
+ for joint_name in self.tar_joint_list:
95
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
96
+ else:
97
+ self.joints = len(list(self.ori_joint_list.keys()))+1
98
+ self.joint_mask = np.zeros(self.joints*3)
99
+ for joint_name in self.tar_joint_list:
100
+ if joint_name == "Hips":
101
+ self.joint_mask[3:6] = 1
102
+ else:
103
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
104
+ # select trainable joints
105
+ self.smplx = smplx.create(
106
+ self.args.data_path_1+"smplx_models/",
107
+ model_type='smplx',
108
+ gender='NEUTRAL_2020',
109
+ use_face_contour=False,
110
+ num_betas=300,
111
+ num_expression_coeffs=100,
112
+ ext='npz',
113
+ use_pca=False,
114
+ ).cuda().eval()
115
+
116
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
117
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
118
+ if args.additional_data and loader_type == 'train':
119
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
120
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
121
+ self.selected_file = pd.concat([self.selected_file, split_b])
122
+ if self.selected_file.empty:
123
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
124
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
125
+ self.selected_file = self.selected_file.iloc[0:8]
126
+ self.data_dir = args.data_path
127
+
128
+ if loader_type == "test":
129
+ self.args.multi_length_training = [1.0]
130
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
131
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
132
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
133
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
134
+
135
+ if args.word_rep is not None:
136
+ with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
137
+ self.lang_model = pickle.load(f)
138
+
139
+ preloaded_dir = self.args.root_path + 'datasets/beat_cache/amass_smplx_en_emage_new/' + loader_type + f"/{args.pose_rep}_cache"
140
+ # if args.pose_norm:
141
+ # # careful for rotation vectors
142
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
143
+ # self.calculate_mean_pose()
144
+ # self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
145
+ # self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
146
+ # if args.audio_norm:
147
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
148
+ # self.calculate_mean_audio()
149
+ # self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
150
+ # self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
151
+ # if args.facial_norm:
152
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
153
+ # self.calculate_mean_face()
154
+ # self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
155
+ # self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
156
+ if self.args.beat_align:
157
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
158
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
159
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
160
+
161
+ if build_cache and self.rank == 0:
162
+ self.build_cache(preloaded_dir)
163
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
164
+ with self.lmdb_env.begin() as txn:
165
+ self.n_samples = txn.stat()["entries"]
166
+
167
+
168
+ def calculate_mean_velocity(self, save_path):
169
+ self.smplx = smplx.create(
170
+ self.args.data_path_1+"smplx_models/",
171
+ model_type='smplx',
172
+ gender='NEUTRAL_2020',
173
+ use_face_contour=False,
174
+ num_betas=300,
175
+ num_expression_coeffs=100,
176
+ ext='npz',
177
+ use_pca=False,
178
+ ).cuda().eval()
179
+ dir_p = self.data_dir + self.args.pose_rep + "/"
180
+ all_list = []
181
+ from tqdm import tqdm
182
+ for tar in tqdm(os.listdir(dir_p)):
183
+ if tar.endswith(".npz"):
184
+ m_data = np.load(dir_p+tar, allow_pickle=True)
185
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
186
+ n, c = poses.shape[0], poses.shape[1]
187
+ betas = betas.reshape(1, 300)
188
+ betas = np.tile(betas, (n, 1))
189
+ betas = torch.from_numpy(betas).cuda().float()
190
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
191
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
192
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
193
+ max_length = 128
194
+ s, r = n//max_length, n%max_length
195
+ #print(n, s, r)
196
+ all_tensor = []
197
+ for i in range(s):
198
+ with torch.no_grad():
199
+ joints = self.smplx(
200
+ betas=betas[i*max_length:(i+1)*max_length],
201
+ transl=trans[i*max_length:(i+1)*max_length],
202
+ expression=exps[i*max_length:(i+1)*max_length],
203
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
204
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
205
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
206
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
207
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
208
+ return_verts=True,
209
+ return_joints=True,
210
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
211
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
212
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
213
+ all_tensor.append(joints)
214
+ if r != 0:
215
+ with torch.no_grad():
216
+ joints = self.smplx(
217
+ betas=betas[s*max_length:s*max_length+r],
218
+ transl=trans[s*max_length:s*max_length+r],
219
+ expression=exps[s*max_length:s*max_length+r],
220
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
221
+ global_orient=poses[s*max_length:s*max_length+r,:3],
222
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
223
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
224
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
225
+ return_verts=True,
226
+ return_joints=True,
227
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
228
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
229
+ )['joints'][:, :55, :].reshape(r, 55*3)
230
+ all_tensor.append(joints)
231
+ joints = torch.cat(all_tensor, axis=0)
232
+ joints = joints.permute(1, 0)
233
+ dt = 1/30
234
+ # first steps is forward diff (t+1 - t) / dt
235
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
236
+ # middle steps are second order (t+1 - t-1) / 2dt
237
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
238
+ # last step is backward diff (t - t-1) / dt
239
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
240
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
241
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
242
+ #print(vel_seq.shape)
243
+ #.permute(1, 0).reshape(n, 55, 3)
244
+ vel_seq_np = vel_seq.cpu().numpy()
245
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
246
+ all_list.append(vel_joints_np)
247
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
248
+ np.save(save_path, avg_vel)
249
+
250
+
251
+ def build_cache(self, preloaded_dir):
252
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
253
+ logger.info("Reading data '{}'...".format(self.data_dir))
254
+ logger.info("Creating the dataset cache...")
255
+ if self.args.new_cache:
256
+ if os.path.exists(preloaded_dir):
257
+ shutil.rmtree(preloaded_dir)
258
+ if os.path.exists(preloaded_dir):
259
+ logger.info("Found the cache {}".format(preloaded_dir))
260
+ elif self.loader_type == "test":
261
+ self.cache_generation(
262
+ preloaded_dir, True,
263
+ 0, 0,
264
+ is_test=True)
265
+ else:
266
+ self.cache_generation(
267
+ preloaded_dir, self.args.disable_filtering,
268
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
269
+ is_test=False)
270
+
271
+ def __len__(self):
272
+ return self.n_samples
273
+
274
+
275
+ def load_amass(self,data):
276
+ ## 这个是用来
277
+ # 修改amass数据里面的朝向,原本在blender里面是Z轴向上,目标是Y轴向上,当时面向目前没改
278
+
279
+ data_dict = {key: data[key] for key in data}
280
+ frames = data_dict['poses'].shape[0]
281
+ b = data_dict['poses'][...,:3]
282
+ b = rc.axis_angle_to_matrix(torch.from_numpy(b))
283
+ rot_matrix = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, 1.0], [0.0, -1.0, 0.0]])
284
+ c = np.einsum('ij,kjl->kil',rot_matrix,b)
285
+ c = rc.matrix_to_axis_angle(torch.from_numpy(c))
286
+ data_dict['poses'][...,:3] = c
287
+
288
+ trans_matrix1 = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, -1.0], [0.0, 1.0, 0.0]])
289
+ data_dict['trans'] = np.einsum("bi,ij->bj",data_dict['trans'],trans_matrix1)
290
+
291
+ betas300 = np.zeros(300)
292
+ betas300[:16] = data_dict['betas']
293
+ data_dict['betas'] = betas300
294
+ data_dict["expressions"] = np.zeros((frames,100))
295
+
296
+ return data_dict
297
+
298
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
299
+ # if "wav2vec2" in self.args.audio_rep:
300
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
301
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
302
+ # self.wav2vec_model = self.wav2vec_model.cuda()
303
+ # self.wav2vec_model.eval()
304
+
305
+ self.n_out_samples = 0
306
+ # create db for samples
307
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
308
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 500))# 500G
309
+ n_filtered_out = defaultdict(int)
310
+
311
+
312
+ if self.args.use_amass:
313
+ amass_dir = '/mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/AMASS_SMPLX'
314
+ for dataset in amass_splits[self.loader_type]:
315
+ search_path = os.path.join(amass_dir,dataset, '**', '*.npz')
316
+ npz_files = glob.glob(search_path, recursive=True)
317
+ for index, file_name in enumerate(npz_files):
318
+ f_name = file_name.split('/')[-1]
319
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
320
+ pose_file = file_name
321
+ pose_each_file = []
322
+ trans_each_file = []
323
+ trans_v_each_file = []
324
+ shape_each_file = []
325
+ audio_each_file = []
326
+ facial_each_file = []
327
+ word_each_file = []
328
+ emo_each_file = []
329
+ sem_each_file = []
330
+ vid_each_file = []
331
+ id_pose = f_name #1_wayne_0_1_1
332
+ get_foot_contact = True
333
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
334
+ if "smplx" in self.args.pose_rep:
335
+ pose_data = np.load(pose_file, allow_pickle=True)
336
+ if len(pose_data.files)==6:
337
+ logger.info(colored(f"# ---- state file ---- #", "red"))
338
+ continue
339
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
340
+ assert self.args.pose_fps == 30, "should 30"
341
+ m_data = np.load(pose_file, allow_pickle=True)
342
+ m_data= self.load_amass(m_data)
343
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
344
+ mocap_framerate = float(m_data['mocap_frame_rate'])
345
+ stride = round(mocap_framerate / self.args.pose_fps)
346
+ pose_each_file = poses[::stride]
347
+ trans_each_file = trans[::stride]
348
+ trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
349
+ trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
350
+ trans_v_each_file = np.zeros_like(trans_each_file)
351
+ trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
352
+ trans_v_each_file[0,0] = trans_v_each_file[1,0]
353
+ trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
354
+ trans_v_each_file[0,2] = trans_v_each_file[1,2]
355
+ trans_v_each_file[:,1] = trans_each_file[:,1]
356
+
357
+
358
+ shape_each_file = np.repeat(betas.reshape(1, -1), pose_each_file.shape[0], axis=0)
359
+
360
+ n, c = poses.shape[0], poses.shape[1]
361
+ betas = betas.reshape(1, 300)
362
+ betas = np.tile(betas, (n, 1))
363
+ betas = torch.from_numpy(betas).cuda().float()
364
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
365
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
366
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
367
+
368
+ if get_foot_contact:
369
+ max_length = 128
370
+ s, r = n//max_length, n%max_length
371
+ #print(n, s, r)
372
+ all_tensor = []
373
+ for i in range(s):
374
+ with torch.no_grad():
375
+ joints = self.smplx(
376
+ betas=betas[i*max_length:(i+1)*max_length],
377
+ transl=trans[i*max_length:(i+1)*max_length],
378
+ expression=exps[i*max_length:(i+1)*max_length],
379
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
380
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
381
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
382
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
383
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
384
+ return_verts=True,
385
+ return_joints=True,
386
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
387
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
388
+ )['joints'][:, (7,8,10,11), :].reshape(max_length, 4, 3).cpu()
389
+ all_tensor.append(joints)
390
+ if r != 0:
391
+ with torch.no_grad():
392
+ joints = self.smplx(
393
+ betas=betas[s*max_length:s*max_length+r],
394
+ transl=trans[s*max_length:s*max_length+r],
395
+ expression=exps[s*max_length:s*max_length+r],
396
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
397
+ global_orient=poses[s*max_length:s*max_length+r,:3],
398
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
399
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
400
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
401
+ return_verts=True,
402
+ return_joints=True,
403
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
404
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
405
+ )['joints'][:, (7,8,10,11), :].reshape(r, 4, 3).cpu()
406
+ all_tensor.append(joints)
407
+ joints = torch.cat(all_tensor, axis=0) # all, 4, 3
408
+ # print(joints.shape)
409
+ feetv = torch.zeros(joints.shape[1], joints.shape[0])
410
+ joints = joints.permute(1, 0, 2)
411
+ #print(joints.shape, feetv.shape)
412
+ feetv[:, :-1] = (joints[:, 1:] - joints[:, :-1]).norm(dim=-1)
413
+ #print(feetv.shape)
414
+ contacts = (feetv < 0.01).numpy().astype(float)
415
+ # print(contacts.shape, contacts)
416
+ contacts = contacts.transpose(1, 0)[::stride]
417
+ pose_each_file = pose_each_file * self.joint_mask
418
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
419
+ pose_each_file = np.concatenate([pose_each_file, contacts], axis=1)
420
+ # print(pose_each_file.shape)
421
+ else:
422
+ pose_each_file = pose_each_file * self.joint_mask
423
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
424
+
425
+ # print(pose_each_file.shape)
426
+
427
+
428
+ if self.args.id_rep is not None:
429
+ vid_each_file = np.repeat(np.array(int(100)-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
430
+
431
+ filtered_result = self._sample_from_clip(
432
+ dst_lmdb_env,
433
+ audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
434
+ vid_each_file, emo_each_file, sem_each_file,
435
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
436
+ )
437
+ for type in filtered_result.keys():
438
+ n_filtered_out[type] += filtered_result[type]
439
+
440
+
441
+
442
+ with dst_lmdb_env.begin() as txn:
443
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
444
+ n_total_filtered = 0
445
+ for type, n_filtered in n_filtered_out.items():
446
+ logger.info("{}: {}".format(type, n_filtered))
447
+ n_total_filtered += n_filtered
448
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
449
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
450
+ dst_lmdb_env.sync()
451
+ dst_lmdb_env.close()
452
+
453
+ def _sample_from_clip(
454
+ self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
455
+ vid_each_file, emo_each_file, sem_each_file,
456
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
457
+ ):
458
+ """
459
+ for data cleaning, we ignore the data for first and final n s
460
+ for test, we return all data
461
+ """
462
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
463
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
464
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
465
+ # audio_each_file = audio_each_file[audio_start:]
466
+ # pose_each_file = pose_each_file[pose_start:]
467
+ # trans_each_file =
468
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
469
+ #print(pose_each_file.shape)
470
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
471
+ #print(round_seconds_skeleton)
472
+ if audio_each_file != []:
473
+ if self.args.audio_rep != "wave16k":
474
+ round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
475
+ elif self.args.audio_rep == "mfcc":
476
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
477
+ else:
478
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
479
+ if facial_each_file != []:
480
+ round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
481
+ logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
482
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
483
+ max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
484
+ if round_seconds_skeleton != max_round:
485
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
486
+ else:
487
+ logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
488
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
489
+ max_round = max(round_seconds_audio, round_seconds_skeleton)
490
+ if round_seconds_skeleton != max_round:
491
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
492
+
493
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
494
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
495
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
496
+
497
+
498
+ for ratio in self.args.multi_length_training:
499
+ if is_test:# stride = length for test
500
+ cut_length = clip_e_f_pose - clip_s_f_pose
501
+ self.args.stride = cut_length
502
+ self.max_length = cut_length
503
+ else:
504
+ self.args.stride = int(ratio*self.ori_stride)
505
+ cut_length = int(self.ori_length*ratio)
506
+
507
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
508
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
509
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
510
+
511
+ if audio_each_file != []:
512
+ audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
513
+ """
514
+ for audio sr = 16000, fps = 15, pose_length = 34,
515
+ audio short length = 36266.7 -> 36266
516
+ this error is fine.
517
+ """
518
+ logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
519
+
520
+ n_filtered_out = defaultdict(int)
521
+ sample_pose_list = []
522
+ sample_audio_list = []
523
+ sample_facial_list = []
524
+ sample_shape_list = []
525
+ sample_word_list = []
526
+ sample_emo_list = []
527
+ sample_sem_list = []
528
+ sample_vid_list = []
529
+ sample_trans_list = []
530
+ sample_trans_v_list = []
531
+
532
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
533
+ start_idx = clip_s_f_pose + i * self.args.stride
534
+ fin_idx = start_idx + cut_length
535
+ sample_pose = pose_each_file[start_idx:fin_idx]
536
+
537
+ sample_trans = trans_each_file[start_idx:fin_idx]
538
+ sample_trans_v = trans_v_each_file[start_idx:fin_idx]
539
+ sample_shape = shape_each_file[start_idx:fin_idx]
540
+ # print(sample_pose.shape)
541
+ if self.args.audio_rep is not None and audio_each_file != []:
542
+ audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
543
+ audio_end = audio_start + audio_short_length
544
+ sample_audio = audio_each_file[audio_start:audio_end]
545
+ else:
546
+ sample_audio = np.array([-1])
547
+ sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
548
+ sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
549
+ sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
550
+ sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
551
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
552
+
553
+ if sample_pose.any() != None:
554
+ # filtering motion skeleton data
555
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
556
+ is_correct_motion = (sample_pose != [])
557
+ if is_correct_motion or disable_filtering:
558
+ sample_pose_list.append(sample_pose)
559
+ sample_audio_list.append(sample_audio)
560
+ sample_facial_list.append(sample_facial)
561
+ sample_shape_list.append(sample_shape)
562
+ sample_word_list.append(sample_word)
563
+ sample_vid_list.append(sample_vid)
564
+ sample_emo_list.append(sample_emo)
565
+ sample_sem_list.append(sample_sem)
566
+ sample_trans_list.append(sample_trans)
567
+ sample_trans_v_list.append(sample_trans_v)
568
+ else:
569
+ n_filtered_out[filtering_message] += 1
570
+
571
+ if len(sample_pose_list) > 0:
572
+ with dst_lmdb_env.begin(write=True) as txn:
573
+ for pose, audio, facial, shape, word, vid, emo, sem, trans,trans_v in zip(
574
+ sample_pose_list,
575
+ sample_audio_list,
576
+ sample_facial_list,
577
+ sample_shape_list,
578
+ sample_word_list,
579
+ sample_vid_list,
580
+ sample_emo_list,
581
+ sample_sem_list,
582
+ sample_trans_list,
583
+ sample_trans_v_list,):
584
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
585
+ v = [pose, audio, facial, shape, word, emo, sem, vid, trans,trans_v]
586
+ v = pickle.dumps(v,5)
587
+ txn.put(k, v)
588
+ self.n_out_samples += 1
589
+ return n_filtered_out
590
+
591
+ def __getitem__(self, idx):
592
+ with self.lmdb_env.begin(write=False) as txn:
593
+ key = "{:005}".format(idx).encode("ascii")
594
+ sample = txn.get(key)
595
+ sample = pickle.loads(sample)
596
+ tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans,trans_v = sample
597
+ #print(in_shape)
598
+ #vid = torch.from_numpy(vid).int()
599
+ emo = torch.from_numpy(emo).int()
600
+ sem = torch.from_numpy(sem).float()
601
+ in_audio = np.zeros([68266,2])
602
+ in_audio = torch.from_numpy(in_audio).float()
603
+ in_word = np.zeros([128])
604
+ in_facial = np.zeros([128,100])
605
+ in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
606
+ if self.loader_type == "test":
607
+ tar_pose = torch.from_numpy(tar_pose).float()
608
+ trans = torch.from_numpy(trans).float()
609
+ trans_v = torch.from_numpy(trans_v).float()
610
+ in_facial = torch.from_numpy(in_facial).float()
611
+ vid = torch.from_numpy(vid).float()
612
+ in_shape = torch.from_numpy(in_shape).float()
613
+ else:
614
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
615
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
616
+ trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float()
617
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
618
+ tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
619
+ in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
620
+ return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans,"trans_v":trans_v}
621
+
622
+
623
+ class MotionPreprocessor:
624
+ def __init__(self, skeletons):
625
+ self.skeletons = skeletons
626
+ #self.mean_pose = mean_pose
627
+ self.filtering_message = "PASS"
628
+
629
+ def get(self):
630
+ assert (self.skeletons is not None)
631
+
632
+ # filtering
633
+ if self.skeletons != []:
634
+ if self.check_pose_diff():
635
+ self.skeletons = []
636
+ self.filtering_message = "pose"
637
+ # elif self.check_spine_angle():
638
+ # self.skeletons = []
639
+ # self.filtering_message = "spine angle"
640
+ # elif self.check_static_motion():
641
+ # self.skeletons = []
642
+ # self.filtering_message = "motion"
643
+
644
+ # if self.skeletons != []:
645
+ # self.skeletons = self.skeletons.tolist()
646
+ # for i, frame in enumerate(self.skeletons):
647
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
648
+
649
+ return self.skeletons, self.filtering_message
650
+
651
+ def check_static_motion(self, verbose=True):
652
+ def get_variance(skeleton, joint_idx):
653
+ wrist_pos = skeleton[:, joint_idx]
654
+ variance = np.sum(np.var(wrist_pos, axis=0))
655
+ return variance
656
+
657
+ left_arm_var = get_variance(self.skeletons, 6)
658
+ right_arm_var = get_variance(self.skeletons, 9)
659
+
660
+ th = 0.0014 # exclude 13110
661
+ # th = 0.002 # exclude 16905
662
+ if left_arm_var < th and right_arm_var < th:
663
+ if verbose:
664
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
665
+ return True
666
+ else:
667
+ if verbose:
668
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
669
+ return False
670
+
671
+
672
+ def check_pose_diff(self, verbose=False):
673
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
674
+ # diff = np.mean(diff)
675
+
676
+ # # th = 0.017
677
+ # th = 0.02 #0.02 # exclude 3594
678
+ # if diff < th:
679
+ # if verbose:
680
+ # print("skip - check_pose_diff {:.5f}".format(diff))
681
+ # return True
682
+ # # th = 3.5 #0.02 # exclude 3594
683
+ # # if 3.5 < diff < 5:
684
+ # # if verbose:
685
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
686
+ # # return True
687
+ # else:
688
+ # if verbose:
689
+ # print("pass - check_pose_diff {:.5f}".format(diff))
690
+ return False
691
+
692
+
693
+ def check_spine_angle(self, verbose=True):
694
+ def angle_between(v1, v2):
695
+ v1_u = v1 / np.linalg.norm(v1)
696
+ v2_u = v2 / np.linalg.norm(v2)
697
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
698
+
699
+ angles = []
700
+ for i in range(self.skeletons.shape[0]):
701
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
702
+ angle = angle_between(spine_vec, [0, -1, 0])
703
+ angles.append(angle)
704
+
705
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
706
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
707
+ if verbose:
708
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
709
+ return True
710
+ else:
711
+ if verbose:
712
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
713
+ return False
dataloaders/beat_sep.py ADDED
@@ -0,0 +1,772 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ #import pyarrow
18
+ import pickle
19
+ import librosa
20
+ import smplx
21
+
22
+ from .build_vocab import Vocab
23
+ from .utils.audio_features import Wav2Vec2Model
24
+ from .data_tools import joints_list
25
+ from .utils import rotation_conversions as rc
26
+ from .utils import other_tools
27
+
28
+ class CustomDataset(Dataset):
29
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
30
+ self.args = args
31
+ self.loader_type = loader_type
32
+
33
+ self.rank = dist.get_rank()
34
+ self.ori_stride = self.args.stride
35
+ self.ori_length = self.args.pose_length
36
+ self.alignment = [0,0] # for trinity
37
+
38
+ self.ori_joint_list = joints_list[self.args.ori_joints]
39
+ self.tar_joint_list = joints_list[self.args.tar_joints]
40
+ if 'smplx' in self.args.pose_rep:
41
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
42
+ self.joints = len(list(self.tar_joint_list.keys()))
43
+ for joint_name in self.tar_joint_list:
44
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
45
+ else:
46
+ self.joints = len(list(self.ori_joint_list.keys()))+1
47
+ self.joint_mask = np.zeros(self.joints*3)
48
+ for joint_name in self.tar_joint_list:
49
+ if joint_name == "Hips":
50
+ self.joint_mask[3:6] = 1
51
+ else:
52
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
53
+ # select trainable joints
54
+
55
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
56
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
57
+ if args.additional_data and loader_type == 'train':
58
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
59
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
60
+ self.selected_file = pd.concat([self.selected_file, split_b])
61
+ if self.selected_file.empty:
62
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
63
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
64
+ self.selected_file = self.selected_file.iloc[0:8]
65
+ self.data_dir = args.data_path
66
+
67
+ if loader_type == "test":
68
+ self.args.multi_length_training = [1.0]
69
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
70
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
71
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
72
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
73
+
74
+ if args.word_rep is not None:
75
+ with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
76
+ self.lang_model = pickle.load(f)
77
+
78
+ preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
79
+ # if args.pose_norm:
80
+ # # careful for rotation vectors
81
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
82
+ # self.calculate_mean_pose()
83
+ # self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
84
+ # self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
85
+ # if args.audio_norm:
86
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
87
+ # self.calculate_mean_audio()
88
+ # self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
89
+ # self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
90
+ # if args.facial_norm:
91
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
92
+ # self.calculate_mean_face()
93
+ # self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
94
+ # self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
95
+ if self.args.beat_align:
96
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
97
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
98
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
99
+
100
+ if build_cache and self.rank == 0:
101
+ self.build_cache(preloaded_dir)
102
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
103
+ with self.lmdb_env.begin() as txn:
104
+ self.n_samples = txn.stat()["entries"]
105
+
106
+
107
+ def calculate_mean_velocity(self, save_path):
108
+ self.smplx = smplx.create(
109
+ self.args.data_path_1+"smplx_models/",
110
+ model_type='smplx',
111
+ gender='NEUTRAL_2020',
112
+ use_face_contour=False,
113
+ num_betas=300,
114
+ num_expression_coeffs=100,
115
+ ext='npz',
116
+ use_pca=False,
117
+ ).cuda().eval()
118
+ dir_p = self.data_dir + self.args.pose_rep + "/"
119
+ all_list = []
120
+ from tqdm import tqdm
121
+ for tar in tqdm(os.listdir(dir_p)):
122
+ if tar.endswith(".npz"):
123
+ m_data = np.load(dir_p+tar, allow_pickle=True)
124
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
125
+ n, c = poses.shape[0], poses.shape[1]
126
+ betas = betas.reshape(1, 300)
127
+ betas = np.tile(betas, (n, 1))
128
+ betas = torch.from_numpy(betas).cuda().float()
129
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
130
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
131
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
132
+ max_length = 128
133
+ s, r = n//max_length, n%max_length
134
+ #print(n, s, r)
135
+ all_tensor = []
136
+ for i in range(s):
137
+ with torch.no_grad():
138
+ joints = self.smplx(
139
+ betas=betas[i*max_length:(i+1)*max_length],
140
+ transl=trans[i*max_length:(i+1)*max_length],
141
+ expression=exps[i*max_length:(i+1)*max_length],
142
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
143
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
144
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
145
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
146
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
147
+ return_verts=True,
148
+ return_joints=True,
149
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
150
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
151
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
152
+ all_tensor.append(joints)
153
+ if r != 0:
154
+ with torch.no_grad():
155
+ joints = self.smplx(
156
+ betas=betas[s*max_length:s*max_length+r],
157
+ transl=trans[s*max_length:s*max_length+r],
158
+ expression=exps[s*max_length:s*max_length+r],
159
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
160
+ global_orient=poses[s*max_length:s*max_length+r,:3],
161
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
162
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
163
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
164
+ return_verts=True,
165
+ return_joints=True,
166
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
167
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
168
+ )['joints'][:, :55, :].reshape(r, 55*3)
169
+ all_tensor.append(joints)
170
+ joints = torch.cat(all_tensor, axis=0)
171
+ joints = joints.permute(1, 0)
172
+ dt = 1/30
173
+ # first steps is forward diff (t+1 - t) / dt
174
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
175
+ # middle steps are second order (t+1 - t-1) / 2dt
176
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
177
+ # last step is backward diff (t - t-1) / dt
178
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
179
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
180
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
181
+ #print(vel_seq.shape)
182
+ #.permute(1, 0).reshape(n, 55, 3)
183
+ vel_seq_np = vel_seq.cpu().numpy()
184
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
185
+ all_list.append(vel_joints_np)
186
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
187
+ np.save(save_path, avg_vel)
188
+
189
+
190
+ def build_cache(self, preloaded_dir):
191
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
192
+ logger.info("Reading data '{}'...".format(self.data_dir))
193
+ logger.info("Creating the dataset cache...")
194
+ if self.args.new_cache:
195
+ if os.path.exists(preloaded_dir):
196
+ shutil.rmtree(preloaded_dir)
197
+ if os.path.exists(preloaded_dir):
198
+ logger.info("Found the cache {}".format(preloaded_dir))
199
+ elif self.loader_type == "test":
200
+ self.cache_generation(
201
+ preloaded_dir, True,
202
+ 0, 0,
203
+ is_test=True)
204
+ else:
205
+ self.cache_generation(
206
+ preloaded_dir, self.args.disable_filtering,
207
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
208
+ is_test=False)
209
+
210
+ def __len__(self):
211
+ return self.n_samples
212
+
213
+
214
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
215
+ # if "wav2vec2" in self.args.audio_rep:
216
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
217
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
218
+ # self.wav2vec_model = self.wav2vec_model.cuda()
219
+ # self.wav2vec_model.eval()
220
+
221
+ self.n_out_samples = 0
222
+ # create db for samples
223
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
224
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
225
+ n_filtered_out = defaultdict(int)
226
+
227
+ for index, file_name in self.selected_file.iterrows():
228
+ f_name = file_name["id"]
229
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
230
+ pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
231
+ pose_each_file = []
232
+ trans_each_file = []
233
+ shape_each_file = []
234
+ audio_each_file = []
235
+ facial_each_file = []
236
+ word_each_file = []
237
+ emo_each_file = []
238
+ sem_each_file = []
239
+ vid_each_file = []
240
+ id_pose = f_name #1_wayne_0_1_1
241
+
242
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
243
+ if "smplx" in self.args.pose_rep:
244
+ pose_data = np.load(pose_file, allow_pickle=True)
245
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
246
+ stride = int(30/self.args.pose_fps)
247
+ pose_each_file = pose_data["poses"][::stride] * self.joint_mask
248
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
249
+ # print(pose_each_file.shape)
250
+ trans_each_file = pose_data["trans"][::stride]
251
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
252
+ if self.args.facial_rep is not None:
253
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
254
+ facial_each_file = pose_data["expressions"][::stride]
255
+ if self.args.facial_norm:
256
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
257
+
258
+ else:
259
+ assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
260
+ stride = int(120/self.args.pose_fps)
261
+ with open(pose_file, "r") as pose_data:
262
+ for j, line in enumerate(pose_data.readlines()):
263
+ if j < 431: continue
264
+ if j%stride != 0:continue
265
+ data = np.fromstring(line, dtype=float, sep=" ")
266
+ rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
267
+ rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
268
+ rot_data = rot_data.numpy() * self.joint_mask
269
+
270
+ pose_each_file.append(rot_data)
271
+ trans_each_file.append(data[:3])
272
+
273
+ pose_each_file = np.array(pose_each_file)
274
+ # print(pose_each_file.shape)
275
+ trans_each_file = np.array(trans_each_file)
276
+ shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
277
+ if self.args.facial_rep is not None:
278
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
279
+ facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
280
+ assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
281
+ stride = int(60/self.args.pose_fps)
282
+ if not os.path.exists(facial_file):
283
+ logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
284
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
285
+ continue
286
+ with open(facial_file, 'r') as facial_data_file:
287
+ facial_data = json.load(facial_data_file)
288
+ for j, frame_data in enumerate(facial_data['frames']):
289
+ if j%stride != 0:continue
290
+ facial_each_file.append(frame_data['weights'])
291
+ facial_each_file = np.array(facial_each_file)
292
+ if self.args.facial_norm:
293
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
294
+
295
+ if self.args.id_rep is not None:
296
+ vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
297
+
298
+ if self.args.audio_rep is not None:
299
+ logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
300
+ audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
301
+ if not os.path.exists(audio_file):
302
+ logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
303
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
304
+ continue
305
+ audio_each_file, sr = librosa.load(audio_file)
306
+ audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
307
+ if self.args.audio_rep == "onset+amplitude":
308
+ from numpy.lib import stride_tricks
309
+ frame_length = 1024
310
+ # hop_length = 512
311
+ shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
312
+ strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
313
+ rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
314
+ amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
315
+ # pad the last frame_length-1 samples
316
+ amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
317
+ audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
318
+ onset_array = np.zeros(len(audio_each_file), dtype=float)
319
+ onset_array[audio_onset_f] = 1.0
320
+ # print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
321
+ audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
322
+ elif self.args.audio_rep == "mfcc":
323
+ audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps))
324
+ audio_each_file = audio_each_file.transpose(1, 0)
325
+ # print(audio_each_file.shape, pose_each_file.shape)
326
+ if self.args.audio_norm and self.args.audio_rep == "wave16k":
327
+ audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
328
+ # print(audio_each_file.shape)
329
+ time_offset = 0
330
+ if self.args.word_rep is not None:
331
+ logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
332
+ word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
333
+ if not os.path.exists(word_file):
334
+ logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
335
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
336
+ continue
337
+ tgrid = tg.TextGrid.fromFile(word_file)
338
+ if self.args.t_pre_encoder == "bert":
339
+ from transformers import AutoTokenizer, BertModel
340
+ tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
341
+ model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
342
+ list_word = []
343
+ all_hidden = []
344
+ max_len = 400
345
+ last = 0
346
+ word_token_mapping = []
347
+ first = True
348
+ for i, word in enumerate(tgrid[0]):
349
+ last = i
350
+ if (i%max_len != 0) or (i==0):
351
+ if word.mark == "":
352
+ list_word.append(".")
353
+ else:
354
+ list_word.append(word.mark)
355
+ else:
356
+ max_counter = max_len
357
+ str_word = ' '.join(map(str, list_word))
358
+ if first:
359
+ global_len = 0
360
+ end = -1
361
+ offset_word = []
362
+ for k, wordvalue in enumerate(list_word):
363
+ start = end+1
364
+ end = start+len(wordvalue)
365
+ offset_word.append((start, end))
366
+ #print(offset_word)
367
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
368
+ #print(token_scan)
369
+ for start, end in offset_word:
370
+ sub_mapping = []
371
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
372
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
373
+ #print(i+global_len)
374
+ sub_mapping.append(i+global_len)
375
+ word_token_mapping.append(sub_mapping)
376
+ #print(len(word_token_mapping))
377
+ global_len = word_token_mapping[-1][-1] + 1
378
+ list_word = []
379
+ if word.mark == "":
380
+ list_word.append(".")
381
+ else:
382
+ list_word.append(word.mark)
383
+
384
+ with torch.no_grad():
385
+ inputs = tokenizer(str_word, return_tensors="pt")
386
+ outputs = model(**inputs)
387
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
388
+ all_hidden.append(last_hidden_states)
389
+
390
+ #list_word = list_word[:10]
391
+ if list_word == []:
392
+ pass
393
+ else:
394
+ if first:
395
+ global_len = 0
396
+ str_word = ' '.join(map(str, list_word))
397
+ end = -1
398
+ offset_word = []
399
+ for k, wordvalue in enumerate(list_word):
400
+ start = end+1
401
+ end = start+len(wordvalue)
402
+ offset_word.append((start, end))
403
+ #print(offset_word)
404
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
405
+ #print(token_scan)
406
+ for start, end in offset_word:
407
+ sub_mapping = []
408
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
409
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
410
+ sub_mapping.append(i+global_len)
411
+ #print(sub_mapping)
412
+ word_token_mapping.append(sub_mapping)
413
+ #print(len(word_token_mapping))
414
+ with torch.no_grad():
415
+ inputs = tokenizer(str_word, return_tensors="pt")
416
+ outputs = model(**inputs)
417
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
418
+ all_hidden.append(last_hidden_states)
419
+ last_hidden_states = np.concatenate(all_hidden, axis=0)
420
+
421
+ for i in range(pose_each_file.shape[0]):
422
+ found_flag = False
423
+ current_time = i/self.args.pose_fps + time_offset
424
+ j_last = 0
425
+ for j, word in enumerate(tgrid[0]):
426
+ word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
427
+ if word_s<=current_time and current_time<=word_e:
428
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
429
+ mapping_index = word_token_mapping[j]
430
+ #print(mapping_index, word_s, word_e)
431
+ s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
432
+ #print(s_t)
433
+ for tt, t_sep in enumerate(s_t[1:]):
434
+ if current_time <= t_sep:
435
+ #if len(mapping_index) > 1: print(mapping_index[tt])
436
+ word_each_file.append(last_hidden_states[mapping_index[tt]])
437
+ break
438
+ else:
439
+ if word_n == " ":
440
+ word_each_file.append(self.lang_model.PAD_token)
441
+ else:
442
+ word_each_file.append(self.lang_model.get_word_index(word_n))
443
+ found_flag = True
444
+ j_last = j
445
+ break
446
+ else: continue
447
+ if not found_flag:
448
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
449
+ word_each_file.append(last_hidden_states[j_last])
450
+ else:
451
+ word_each_file.append(self.lang_model.UNK_token)
452
+ word_each_file = np.array(word_each_file)
453
+ #print(word_each_file.shape)
454
+
455
+ if self.args.emo_rep is not None:
456
+ logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
457
+ rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
458
+ if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
459
+ if start >= 1 and start <= 64:
460
+ score = 0
461
+ elif start >= 65 and start <= 72:
462
+ score = 1
463
+ elif start >= 73 and start <= 80:
464
+ score = 2
465
+ elif start >= 81 and start <= 86:
466
+ score = 3
467
+ elif start >= 87 and start <= 94:
468
+ score = 4
469
+ elif start >= 95 and start <= 102:
470
+ score = 5
471
+ elif start >= 103 and start <= 110:
472
+ score = 6
473
+ elif start >= 111 and start <= 118:
474
+ score = 7
475
+ else: pass
476
+ else:
477
+ # you may denote as unknown in the future
478
+ score = 0
479
+ emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
480
+ #print(emo_each_file)
481
+
482
+ if self.args.sem_rep is not None:
483
+ logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
484
+ sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
485
+ sem_all = pd.read_csv(sem_file,
486
+ sep='\t',
487
+ names=["name", "start_time", "end_time", "duration", "score", "keywords"])
488
+ # we adopt motion-level semantic score here.
489
+ for i in range(pose_each_file.shape[0]):
490
+ found_flag = False
491
+ for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
492
+ current_time = i/self.args.pose_fps + time_offset
493
+ if start<=current_time and current_time<=end:
494
+ sem_each_file.append(score)
495
+ found_flag=True
496
+ break
497
+ else: continue
498
+ if not found_flag: sem_each_file.append(0.)
499
+ sem_each_file = np.array(sem_each_file)
500
+ #print(sem_each_file)
501
+
502
+ filtered_result = self._sample_from_clip(
503
+ dst_lmdb_env,
504
+ audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
505
+ vid_each_file, emo_each_file, sem_each_file,
506
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
507
+ )
508
+ for type in filtered_result.keys():
509
+ n_filtered_out[type] += filtered_result[type]
510
+
511
+ with dst_lmdb_env.begin() as txn:
512
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
513
+ n_total_filtered = 0
514
+ for type, n_filtered in n_filtered_out.items():
515
+ logger.info("{}: {}".format(type, n_filtered))
516
+ n_total_filtered += n_filtered
517
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
518
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
519
+ dst_lmdb_env.sync()
520
+ dst_lmdb_env.close()
521
+
522
+ def _sample_from_clip(
523
+ self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
524
+ vid_each_file, emo_each_file, sem_each_file,
525
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
526
+ ):
527
+ """
528
+ for data cleaning, we ignore the data for first and final n s
529
+ for test, we return all data
530
+ """
531
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
532
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
533
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
534
+ # audio_each_file = audio_each_file[audio_start:]
535
+ # pose_each_file = pose_each_file[pose_start:]
536
+ # trans_each_file =
537
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
538
+ #print(pose_each_file.shape)
539
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
540
+ #print(round_seconds_skeleton)
541
+ if audio_each_file != []:
542
+ if self.args.audio_rep != "wave16k":
543
+ round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
544
+ elif self.args.audio_rep == "mfcc":
545
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
546
+ else:
547
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
548
+ if facial_each_file != []:
549
+ round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
550
+ logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
551
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
552
+ max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
553
+ if round_seconds_skeleton != max_round:
554
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
555
+ else:
556
+ logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
557
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
558
+ max_round = max(round_seconds_audio, round_seconds_skeleton)
559
+ if round_seconds_skeleton != max_round:
560
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
561
+
562
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
563
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
564
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
565
+
566
+
567
+ for ratio in self.args.multi_length_training:
568
+ if is_test:# stride = length for test
569
+ cut_length = clip_e_f_pose - clip_s_f_pose
570
+ self.args.stride = cut_length
571
+ self.max_length = cut_length
572
+ else:
573
+ self.args.stride = int(ratio*self.ori_stride)
574
+ cut_length = int(self.ori_length*ratio)
575
+
576
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
577
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
578
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
579
+
580
+ if audio_each_file != []:
581
+ audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
582
+ """
583
+ for audio sr = 16000, fps = 15, pose_length = 34,
584
+ audio short length = 36266.7 -> 36266
585
+ this error is fine.
586
+ """
587
+ logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
588
+
589
+ n_filtered_out = defaultdict(int)
590
+ sample_pose_list = []
591
+ sample_audio_list = []
592
+ sample_facial_list = []
593
+ sample_shape_list = []
594
+ sample_word_list = []
595
+ sample_emo_list = []
596
+ sample_sem_list = []
597
+ sample_vid_list = []
598
+ sample_trans_list = []
599
+
600
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
601
+ start_idx = clip_s_f_pose + i * self.args.stride
602
+ fin_idx = start_idx + cut_length
603
+ sample_pose = pose_each_file[start_idx:fin_idx]
604
+ sample_trans = trans_each_file[start_idx:fin_idx]
605
+ sample_shape = shape_each_file[start_idx:fin_idx]
606
+ # print(sample_pose.shape)
607
+ if self.args.audio_rep is not None:
608
+ audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
609
+ audio_end = audio_start + audio_short_length
610
+ sample_audio = audio_each_file[audio_start:audio_end]
611
+ else:
612
+ sample_audio = np.array([-1])
613
+ sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
614
+ sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
615
+ sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
616
+ sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
617
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
618
+
619
+ if sample_pose.any() != None:
620
+ # filtering motion skeleton data
621
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
622
+ is_correct_motion = (sample_pose != [])
623
+ if is_correct_motion or disable_filtering:
624
+ sample_pose_list.append(sample_pose)
625
+ sample_audio_list.append(sample_audio)
626
+ sample_facial_list.append(sample_facial)
627
+ sample_shape_list.append(sample_shape)
628
+ sample_word_list.append(sample_word)
629
+ sample_vid_list.append(sample_vid)
630
+ sample_emo_list.append(sample_emo)
631
+ sample_sem_list.append(sample_sem)
632
+ sample_trans_list.append(sample_trans)
633
+ else:
634
+ n_filtered_out[filtering_message] += 1
635
+
636
+ if len(sample_pose_list) > 0:
637
+ with dst_lmdb_env.begin(write=True) as txn:
638
+ for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
639
+ sample_pose_list,
640
+ sample_audio_list,
641
+ sample_facial_list,
642
+ sample_shape_list,
643
+ sample_word_list,
644
+ sample_vid_list,
645
+ sample_emo_list,
646
+ sample_sem_list,
647
+ sample_trans_list,):
648
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
649
+ v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
650
+ v = pickle.dumps(v,5)
651
+ txn.put(k, v)
652
+ self.n_out_samples += 1
653
+ return n_filtered_out
654
+
655
+ def __getitem__(self, idx):
656
+ with self.lmdb_env.begin(write=False) as txn:
657
+ key = "{:005}".format(idx).encode("ascii")
658
+ sample = txn.get(key)
659
+ sample = pickle.loads(sample)
660
+ tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
661
+ #print(in_shape)
662
+ #vid = torch.from_numpy(vid).int()
663
+ emo = torch.from_numpy(emo).int()
664
+ sem = torch.from_numpy(sem).float()
665
+ in_audio = torch.from_numpy(in_audio).float()
666
+ in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
667
+ if self.loader_type == "test":
668
+ tar_pose = torch.from_numpy(tar_pose).float()
669
+ trans = torch.from_numpy(trans).float()
670
+ in_facial = torch.from_numpy(in_facial).float()
671
+ vid = torch.from_numpy(vid).float()
672
+ in_shape = torch.from_numpy(in_shape).float()
673
+ else:
674
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
675
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
676
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
677
+ tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
678
+ in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
679
+ return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}
680
+
681
+
682
+ class MotionPreprocessor:
683
+ def __init__(self, skeletons):
684
+ self.skeletons = skeletons
685
+ #self.mean_pose = mean_pose
686
+ self.filtering_message = "PASS"
687
+
688
+ def get(self):
689
+ assert (self.skeletons is not None)
690
+
691
+ # filtering
692
+ if self.skeletons != []:
693
+ if self.check_pose_diff():
694
+ self.skeletons = []
695
+ self.filtering_message = "pose"
696
+ # elif self.check_spine_angle():
697
+ # self.skeletons = []
698
+ # self.filtering_message = "spine angle"
699
+ # elif self.check_static_motion():
700
+ # self.skeletons = []
701
+ # self.filtering_message = "motion"
702
+
703
+ # if self.skeletons != []:
704
+ # self.skeletons = self.skeletons.tolist()
705
+ # for i, frame in enumerate(self.skeletons):
706
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
707
+
708
+ return self.skeletons, self.filtering_message
709
+
710
+ def check_static_motion(self, verbose=True):
711
+ def get_variance(skeleton, joint_idx):
712
+ wrist_pos = skeleton[:, joint_idx]
713
+ variance = np.sum(np.var(wrist_pos, axis=0))
714
+ return variance
715
+
716
+ left_arm_var = get_variance(self.skeletons, 6)
717
+ right_arm_var = get_variance(self.skeletons, 9)
718
+
719
+ th = 0.0014 # exclude 13110
720
+ # th = 0.002 # exclude 16905
721
+ if left_arm_var < th and right_arm_var < th:
722
+ if verbose:
723
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
724
+ return True
725
+ else:
726
+ if verbose:
727
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
728
+ return False
729
+
730
+
731
+ def check_pose_diff(self, verbose=False):
732
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
733
+ # diff = np.mean(diff)
734
+
735
+ # # th = 0.017
736
+ # th = 0.02 #0.02 # exclude 3594
737
+ # if diff < th:
738
+ # if verbose:
739
+ # print("skip - check_pose_diff {:.5f}".format(diff))
740
+ # return True
741
+ # # th = 3.5 #0.02 # exclude 3594
742
+ # # if 3.5 < diff < 5:
743
+ # # if verbose:
744
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
745
+ # # return True
746
+ # else:
747
+ # if verbose:
748
+ # print("pass - check_pose_diff {:.5f}".format(diff))
749
+ return False
750
+
751
+
752
+ def check_spine_angle(self, verbose=True):
753
+ def angle_between(v1, v2):
754
+ v1_u = v1 / np.linalg.norm(v1)
755
+ v2_u = v2 / np.linalg.norm(v2)
756
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
757
+
758
+ angles = []
759
+ for i in range(self.skeletons.shape[0]):
760
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
761
+ angle = angle_between(spine_vec, [0, -1, 0])
762
+ angles.append(angle)
763
+
764
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
765
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
766
+ if verbose:
767
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
768
+ return True
769
+ else:
770
+ if verbose:
771
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
772
+ return False
dataloaders/beat_sep_lower.py ADDED
@@ -0,0 +1,876 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ #import pyarrow
18
+ import pickle
19
+ import librosa
20
+ import smplx
21
+
22
+ from .build_vocab import Vocab
23
+ from .utils.audio_features import Wav2Vec2Model
24
+ from .data_tools import joints_list
25
+ from .utils import rotation_conversions as rc
26
+ from .utils import other_tools
27
+
28
+ class CustomDataset(Dataset):
29
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
30
+ self.args = args
31
+ self.loader_type = loader_type
32
+
33
+ self.rank = dist.get_rank()
34
+ self.ori_stride = self.args.stride
35
+ self.ori_length = self.args.pose_length
36
+ self.alignment = [0,0] # for trinity
37
+
38
+ self.ori_joint_list = joints_list[self.args.ori_joints]
39
+ self.tar_joint_list = joints_list[self.args.tar_joints]
40
+ if 'smplx' in self.args.pose_rep:
41
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
42
+ self.joints = len(list(self.tar_joint_list.keys()))
43
+ for joint_name in self.tar_joint_list:
44
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
45
+ else:
46
+ self.joints = len(list(self.ori_joint_list.keys()))+1
47
+ self.joint_mask = np.zeros(self.joints*3)
48
+ for joint_name in self.tar_joint_list:
49
+ if joint_name == "Hips":
50
+ self.joint_mask[3:6] = 1
51
+ else:
52
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
53
+ # select trainable joints
54
+ self.smplx = smplx.create(
55
+ self.args.data_path_1+"smplx_models/",
56
+ model_type='smplx',
57
+ gender='NEUTRAL_2020',
58
+ use_face_contour=False,
59
+ num_betas=300,
60
+ num_expression_coeffs=100,
61
+ ext='npz',
62
+ use_pca=False,
63
+ ).cuda().eval()
64
+
65
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
66
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
67
+ if args.additional_data and loader_type == 'train':
68
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
69
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
70
+ self.selected_file = pd.concat([self.selected_file, split_b])
71
+ if self.selected_file.empty:
72
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
73
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
74
+ self.selected_file = self.selected_file.iloc[0:8]
75
+ self.data_dir = args.data_path
76
+
77
+ if loader_type == "test":
78
+ self.args.multi_length_training = [1.0]
79
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
80
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
81
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
82
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
83
+
84
+ if args.word_rep is not None:
85
+ with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
86
+ self.lang_model = pickle.load(f)
87
+
88
+ preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
89
+ # if args.pose_norm:
90
+ # # careful for rotation vectors
91
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
92
+ # self.calculate_mean_pose()
93
+ # self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
94
+ # self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
95
+ # if args.audio_norm:
96
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
97
+ # self.calculate_mean_audio()
98
+ # self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
99
+ # self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
100
+ # if args.facial_norm:
101
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
102
+ # self.calculate_mean_face()
103
+ # self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
104
+ # self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
105
+ if self.args.beat_align:
106
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
107
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
108
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
109
+
110
+ if build_cache and self.rank == 0:
111
+ self.build_cache(preloaded_dir)
112
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
113
+ with self.lmdb_env.begin() as txn:
114
+ self.n_samples = txn.stat()["entries"]
115
+
116
+
117
+ def calculate_mean_velocity(self, save_path):
118
+ self.smplx = smplx.create(
119
+ self.args.data_path_1+"smplx_models/",
120
+ model_type='smplx',
121
+ gender='NEUTRAL_2020',
122
+ use_face_contour=False,
123
+ num_betas=300,
124
+ num_expression_coeffs=100,
125
+ ext='npz',
126
+ use_pca=False,
127
+ ).cuda().eval()
128
+ dir_p = self.data_dir + self.args.pose_rep + "/"
129
+ all_list = []
130
+ from tqdm import tqdm
131
+ for tar in tqdm(os.listdir(dir_p)):
132
+ if tar.endswith(".npz"):
133
+ m_data = np.load(dir_p+tar, allow_pickle=True)
134
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
135
+ n, c = poses.shape[0], poses.shape[1]
136
+ betas = betas.reshape(1, 300)
137
+ betas = np.tile(betas, (n, 1))
138
+ betas = torch.from_numpy(betas).cuda().float()
139
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
140
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
141
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
142
+ max_length = 128
143
+ s, r = n//max_length, n%max_length
144
+ #print(n, s, r)
145
+ all_tensor = []
146
+ for i in range(s):
147
+ with torch.no_grad():
148
+ joints = self.smplx(
149
+ betas=betas[i*max_length:(i+1)*max_length],
150
+ transl=trans[i*max_length:(i+1)*max_length],
151
+ expression=exps[i*max_length:(i+1)*max_length],
152
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
153
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
154
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
155
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
156
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
157
+ return_verts=True,
158
+ return_joints=True,
159
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
160
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
161
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
162
+ all_tensor.append(joints)
163
+ if r != 0:
164
+ with torch.no_grad():
165
+ joints = self.smplx(
166
+ betas=betas[s*max_length:s*max_length+r],
167
+ transl=trans[s*max_length:s*max_length+r],
168
+ expression=exps[s*max_length:s*max_length+r],
169
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
170
+ global_orient=poses[s*max_length:s*max_length+r,:3],
171
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
172
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
173
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
174
+ return_verts=True,
175
+ return_joints=True,
176
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
177
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
178
+ )['joints'][:, :55, :].reshape(r, 55*3)
179
+ all_tensor.append(joints)
180
+ joints = torch.cat(all_tensor, axis=0)
181
+ joints = joints.permute(1, 0)
182
+ dt = 1/30
183
+ # first steps is forward diff (t+1 - t) / dt
184
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
185
+ # middle steps are second order (t+1 - t-1) / 2dt
186
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
187
+ # last step is backward diff (t - t-1) / dt
188
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
189
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
190
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
191
+ #print(vel_seq.shape)
192
+ #.permute(1, 0).reshape(n, 55, 3)
193
+ vel_seq_np = vel_seq.cpu().numpy()
194
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
195
+ all_list.append(vel_joints_np)
196
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
197
+ np.save(save_path, avg_vel)
198
+
199
+
200
+ def build_cache(self, preloaded_dir):
201
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
202
+ logger.info("Reading data '{}'...".format(self.data_dir))
203
+ logger.info("Creating the dataset cache...")
204
+ if self.args.new_cache:
205
+ if os.path.exists(preloaded_dir):
206
+ shutil.rmtree(preloaded_dir)
207
+ if os.path.exists(preloaded_dir):
208
+ logger.info("Found the cache {}".format(preloaded_dir))
209
+ elif self.loader_type == "test":
210
+ self.cache_generation(
211
+ preloaded_dir, True,
212
+ 0, 0,
213
+ is_test=True)
214
+ else:
215
+ self.cache_generation(
216
+ preloaded_dir, self.args.disable_filtering,
217
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
218
+ is_test=False)
219
+
220
+ def __len__(self):
221
+ return self.n_samples
222
+
223
+
224
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
225
+ # if "wav2vec2" in self.args.audio_rep:
226
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
227
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
228
+ # self.wav2vec_model = self.wav2vec_model.cuda()
229
+ # self.wav2vec_model.eval()
230
+
231
+ self.n_out_samples = 0
232
+ # create db for samples
233
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
234
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 500))# 500G
235
+ n_filtered_out = defaultdict(int)
236
+
237
+ for index, file_name in self.selected_file.iterrows():
238
+ f_name = file_name["id"]
239
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
240
+ pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
241
+ pose_each_file = []
242
+ trans_each_file = []
243
+ trans_v_each_file = []
244
+ shape_each_file = []
245
+ audio_each_file = []
246
+ facial_each_file = []
247
+ word_each_file = []
248
+ emo_each_file = []
249
+ sem_each_file = []
250
+ vid_each_file = []
251
+ id_pose = f_name #1_wayne_0_1_1
252
+
253
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
254
+ if "smplx" in self.args.pose_rep:
255
+ pose_data = np.load(pose_file, allow_pickle=True)
256
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
257
+ stride = int(30/self.args.pose_fps)
258
+ pose_each_file = pose_data["poses"][::stride]
259
+ trans_each_file = pose_data["trans"][::stride]
260
+ trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
261
+ trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
262
+ trans_v_each_file = np.zeros_like(trans_each_file)
263
+ trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
264
+ trans_v_each_file[0,0] = trans_v_each_file[1,0]
265
+ trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
266
+ trans_v_each_file[0,2] = trans_v_each_file[1,2]
267
+ trans_v_each_file[:,1] = trans_each_file[:,1]
268
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
269
+
270
+ assert self.args.pose_fps == 30, "should 30"
271
+ m_data = np.load(pose_file, allow_pickle=True)
272
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
273
+ n, c = poses.shape[0], poses.shape[1]
274
+ betas = betas.reshape(1, 300)
275
+ betas = np.tile(betas, (n, 1))
276
+ betas = torch.from_numpy(betas).cuda().float()
277
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
278
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
279
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
280
+ max_length = 128 # 为什么这里需要一��max_length
281
+ s, r = n//max_length, n%max_length
282
+ #print(n, s, r)
283
+ all_tensor = []
284
+ for i in range(s):
285
+ with torch.no_grad():
286
+ joints = self.smplx(
287
+ betas=betas[i*max_length:(i+1)*max_length],
288
+ transl=trans[i*max_length:(i+1)*max_length],
289
+ expression=exps[i*max_length:(i+1)*max_length],
290
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
291
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
292
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
293
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
294
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
295
+ return_verts=True,
296
+ return_joints=True,
297
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
298
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
299
+ )['joints'][:, (7,8,10,11), :].reshape(max_length, 4, 3).cpu()
300
+ all_tensor.append(joints)
301
+ if r != 0:
302
+ with torch.no_grad():
303
+ joints = self.smplx(
304
+ betas=betas[s*max_length:s*max_length+r],
305
+ transl=trans[s*max_length:s*max_length+r],
306
+ expression=exps[s*max_length:s*max_length+r],
307
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
308
+ global_orient=poses[s*max_length:s*max_length+r,:3],
309
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
310
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
311
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
312
+ return_verts=True,
313
+ return_joints=True,
314
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
315
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
316
+ )['joints'][:, (7,8,10,11), :].reshape(r, 4, 3).cpu()
317
+ all_tensor.append(joints)
318
+ joints = torch.cat(all_tensor, axis=0) # all, 4, 3
319
+ # print(joints.shape)
320
+ feetv = torch.zeros(joints.shape[1], joints.shape[0])
321
+ joints = joints.permute(1, 0, 2)
322
+ #print(joints.shape, feetv.shape)
323
+ feetv[:, :-1] = (joints[:, 1:] - joints[:, :-1]).norm(dim=-1)
324
+ #print(feetv.shape)
325
+ contacts = (feetv < 0.01).numpy().astype(float)
326
+ # print(contacts.shape, contacts)
327
+ contacts = contacts.transpose(1, 0)
328
+ pose_each_file = pose_each_file * self.joint_mask
329
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
330
+ pose_each_file = np.concatenate([pose_each_file, contacts], axis=1)
331
+ # print(pose_each_file.shape)
332
+
333
+
334
+ if self.args.facial_rep is not None:
335
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
336
+ facial_each_file = pose_data["expressions"][::stride]
337
+ if self.args.facial_norm:
338
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
339
+
340
+ else:
341
+ assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
342
+ stride = int(120/self.args.pose_fps)
343
+ with open(pose_file, "r") as pose_data:
344
+ for j, line in enumerate(pose_data.readlines()):
345
+ if j < 431: continue
346
+ if j%stride != 0:continue
347
+ data = np.fromstring(line, dtype=float, sep=" ")
348
+ rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
349
+ rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
350
+ rot_data = rot_data.numpy() * self.joint_mask
351
+
352
+ pose_each_file.append(rot_data)
353
+ trans_each_file.append(data[:3])
354
+
355
+ pose_each_file = np.array(pose_each_file)
356
+ # print(pose_each_file.shape)
357
+ trans_each_file = np.array(trans_each_file)
358
+ shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
359
+ if self.args.facial_rep is not None:
360
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
361
+ facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
362
+ assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
363
+ stride = int(60/self.args.pose_fps)
364
+ if not os.path.exists(facial_file):
365
+ logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
366
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
367
+ continue
368
+ with open(facial_file, 'r') as facial_data_file:
369
+ facial_data = json.load(facial_data_file)
370
+ for j, frame_data in enumerate(facial_data['frames']):
371
+ if j%stride != 0:continue
372
+ facial_each_file.append(frame_data['weights'])
373
+ facial_each_file = np.array(facial_each_file)
374
+ if self.args.facial_norm:
375
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
376
+
377
+ if self.args.id_rep is not None:
378
+ vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
379
+
380
+ if self.args.audio_rep is not None:
381
+ logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
382
+ audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
383
+ if not os.path.exists(audio_file):
384
+ logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
385
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
386
+ continue
387
+ audio_save_path = audio_file.replace("wave16k", "onset_amplitude").replace(".wav", ".npy")
388
+ if self.args.audio_rep == "onset+amplitude" and os.path.exists(audio_save_path):
389
+ audio_each_file = np.load(audio_save_path)
390
+ logger.warning(f"# ---- file found cache for Audio {id_pose} ---- #")
391
+ elif self.args.audio_rep == "onset+amplitude":
392
+ audio_each_file, sr = librosa.load(audio_file)
393
+ audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
394
+ from numpy.lib import stride_tricks
395
+ frame_length = 1024
396
+ # hop_length = 512
397
+ shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
398
+ strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
399
+ rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
400
+ amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
401
+ # pad the last frame_length-1 samples
402
+ amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
403
+ audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
404
+ onset_array = np.zeros(len(audio_each_file), dtype=float)
405
+ onset_array[audio_onset_f] = 1.0
406
+ # print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
407
+ audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
408
+ audio_save_path = audio_file.replace("wave16k", "onset_amplitude").replace(".wav", ".npy")
409
+ np.save(audio_save_path, audio_each_file)
410
+
411
+ elif self.args.audio_rep == "mfcc":
412
+ audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps))
413
+ audio_each_file = audio_each_file.transpose(1, 0)
414
+ # print(audio_each_file.shape, pose_each_file.shape)
415
+ if self.args.audio_norm and self.args.audio_rep == "wave16k":
416
+ audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
417
+
418
+ time_offset = 0
419
+ if self.args.word_rep is not None:
420
+ logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
421
+ word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
422
+ if not os.path.exists(word_file):
423
+ logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
424
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
425
+ continue
426
+ word_save_path = f"{self.data_dir}{self.args.t_pre_encoder}/{id_pose}.npy"
427
+ if os.path.exists(word_save_path):
428
+ word_each_file = np.load(word_save_path)
429
+ logger.warning(f"# ---- file found cache for Word {id_pose} ---- #")
430
+ else:
431
+ tgrid = tg.TextGrid.fromFile(word_file)
432
+ if self.args.t_pre_encoder == "bert":
433
+ from transformers import AutoTokenizer, BertModel
434
+ tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
435
+ model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
436
+ list_word = []
437
+ all_hidden = []
438
+ max_len = 400
439
+ last = 0
440
+ word_token_mapping = []
441
+ first = True
442
+ for i, word in enumerate(tgrid[0]):
443
+ last = i
444
+ if (i%max_len != 0) or (i==0):
445
+ if word.mark == "":
446
+ list_word.append(".")
447
+ else:
448
+ list_word.append(word.mark)
449
+ else:
450
+ max_counter = max_len
451
+ str_word = ' '.join(map(str, list_word))
452
+ if first:
453
+ global_len = 0
454
+ end = -1
455
+ offset_word = []
456
+ for k, wordvalue in enumerate(list_word):
457
+ start = end+1
458
+ end = start+len(wordvalue)
459
+ offset_word.append((start, end))
460
+ #print(offset_word)
461
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
462
+ #print(token_scan)
463
+ for start, end in offset_word:
464
+ sub_mapping = []
465
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
466
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
467
+ #print(i+global_len)
468
+ sub_mapping.append(i+global_len)
469
+ word_token_mapping.append(sub_mapping)
470
+ #print(len(word_token_mapping))
471
+ global_len = word_token_mapping[-1][-1] + 1
472
+ list_word = []
473
+ if word.mark == "":
474
+ list_word.append(".")
475
+ else:
476
+ list_word.append(word.mark)
477
+
478
+ with torch.no_grad():
479
+ inputs = tokenizer(str_word, return_tensors="pt")
480
+ outputs = model(**inputs)
481
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
482
+ all_hidden.append(last_hidden_states)
483
+
484
+ #list_word = list_word[:10]
485
+ if list_word == []:
486
+ pass
487
+ else:
488
+ if first:
489
+ global_len = 0
490
+ str_word = ' '.join(map(str, list_word))
491
+ end = -1
492
+ offset_word = []
493
+ for k, wordvalue in enumerate(list_word):
494
+ start = end+1
495
+ end = start+len(wordvalue)
496
+ offset_word.append((start, end))
497
+ #print(offset_word)
498
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
499
+ #print(token_scan)
500
+ for start, end in offset_word:
501
+ sub_mapping = []
502
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
503
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
504
+ sub_mapping.append(i+global_len)
505
+ #print(sub_mapping)
506
+ word_token_mapping.append(sub_mapping)
507
+ #print(len(word_token_mapping))
508
+ with torch.no_grad():
509
+ inputs = tokenizer(str_word, return_tensors="pt")
510
+ outputs = model(**inputs)
511
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
512
+ all_hidden.append(last_hidden_states)
513
+ last_hidden_states = np.concatenate(all_hidden, axis=0)
514
+
515
+ for i in range(pose_each_file.shape[0]):
516
+ found_flag = False
517
+ current_time = i/self.args.pose_fps + time_offset
518
+ j_last = 0
519
+ for j, word in enumerate(tgrid[0]):
520
+ word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
521
+ if word_s<=current_time and current_time<=word_e:
522
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
523
+ mapping_index = word_token_mapping[j]
524
+ #print(mapping_index, word_s, word_e)
525
+ s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
526
+ #print(s_t)
527
+ for tt, t_sep in enumerate(s_t[1:]):
528
+ if current_time <= t_sep:
529
+ #if len(mapping_index) > 1: print(mapping_index[tt])
530
+ word_each_file.append(last_hidden_states[mapping_index[tt]])
531
+ break
532
+ else:
533
+ if word_n == " ":
534
+ word_each_file.append(self.lang_model.PAD_token)
535
+ else:
536
+ word_each_file.append(self.lang_model.get_word_index(word_n))
537
+ found_flag = True
538
+ j_last = j
539
+ break
540
+ else: continue
541
+ if not found_flag:
542
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
543
+ word_each_file.append(last_hidden_states[j_last])
544
+ else:
545
+ word_each_file.append(self.lang_model.UNK_token)
546
+ word_each_file = np.array(word_each_file)
547
+ word_save_path = f"{self.data_dir}{self.args.t_pre_encoder}/{id_pose}.npy"
548
+ np.save(word_save_path, word_each_file)
549
+ #print(word_each_file.shape)
550
+ #print(word_each_file.shape)
551
+
552
+ if self.args.emo_rep is not None:
553
+ logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
554
+ rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
555
+ if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
556
+ if start >= 1 and start <= 64:
557
+ score = 0
558
+ elif start >= 65 and start <= 72:
559
+ score = 1
560
+ elif start >= 73 and start <= 80:
561
+ score = 2
562
+ elif start >= 81 and start <= 86:
563
+ score = 3
564
+ elif start >= 87 and start <= 94:
565
+ score = 4
566
+ elif start >= 95 and start <= 102:
567
+ score = 5
568
+ elif start >= 103 and start <= 110:
569
+ score = 6
570
+ elif start >= 111 and start <= 118:
571
+ score = 7
572
+ else: pass
573
+ else:
574
+ # you may denote as unknown in the future
575
+ score = 0
576
+ emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
577
+ #print(emo_each_file)
578
+
579
+ if self.args.sem_rep is not None:
580
+ logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
581
+ sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
582
+ sem_all = pd.read_csv(sem_file,
583
+ sep='\t',
584
+ names=["name", "start_time", "end_time", "duration", "score", "keywords"])
585
+ # we adopt motion-level semantic score here.
586
+ for i in range(pose_each_file.shape[0]):
587
+ found_flag = False
588
+ for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
589
+ current_time = i/self.args.pose_fps + time_offset
590
+ if start<=current_time and current_time<=end:
591
+ sem_each_file.append(score)
592
+ found_flag=True
593
+ break
594
+ else: continue
595
+ if not found_flag: sem_each_file.append(0.)
596
+ sem_each_file = np.array(sem_each_file)
597
+ #print(sem_each_file)
598
+
599
+ filtered_result = self._sample_from_clip(
600
+ dst_lmdb_env,
601
+ audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
602
+ vid_each_file, emo_each_file, sem_each_file,
603
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
604
+ )
605
+ for type in filtered_result.keys():
606
+ n_filtered_out[type] += filtered_result[type]
607
+
608
+ with dst_lmdb_env.begin() as txn:
609
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
610
+ n_total_filtered = 0
611
+ for type, n_filtered in n_filtered_out.items():
612
+ logger.info("{}: {}".format(type, n_filtered))
613
+ n_total_filtered += n_filtered
614
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
615
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
616
+ dst_lmdb_env.sync()
617
+ dst_lmdb_env.close()
618
+
619
+ def _sample_from_clip(
620
+ self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
621
+ vid_each_file, emo_each_file, sem_each_file,
622
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
623
+ ):
624
+ """
625
+ for data cleaning, we ignore the data for first and final n s
626
+ for test, we return all data
627
+ """
628
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
629
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
630
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
631
+ # audio_each_file = audio_each_file[audio_start:]
632
+ # pose_each_file = pose_each_file[pose_start:]
633
+ # trans_each_file =
634
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
635
+ #print(pose_each_file.shape)
636
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
637
+ #print(round_seconds_skeleton)
638
+ if audio_each_file != []:
639
+ if self.args.audio_rep != "wave16k":
640
+ round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
641
+ elif self.args.audio_rep == "mfcc":
642
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
643
+ else:
644
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
645
+ if facial_each_file != []:
646
+ round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
647
+ logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
648
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
649
+ max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
650
+ if round_seconds_skeleton != max_round:
651
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
652
+ else:
653
+ logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
654
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
655
+ max_round = max(round_seconds_audio, round_seconds_skeleton)
656
+ if round_seconds_skeleton != max_round:
657
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
658
+
659
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
660
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
661
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
662
+
663
+
664
+ for ratio in self.args.multi_length_training:
665
+ if is_test:# stride = length for test
666
+ cut_length = clip_e_f_pose - clip_s_f_pose
667
+ self.args.stride = cut_length
668
+ self.max_length = cut_length
669
+ else:
670
+ self.args.stride = int(ratio*self.ori_stride)
671
+ cut_length = int(self.ori_length*ratio)
672
+
673
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
674
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
675
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
676
+
677
+ if audio_each_file != []:
678
+ audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
679
+ """
680
+ for audio sr = 16000, fps = 15, pose_length = 34,
681
+ audio short length = 36266.7 -> 36266
682
+ this error is fine.
683
+ """
684
+ logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
685
+
686
+ n_filtered_out = defaultdict(int)
687
+ sample_pose_list = []
688
+ sample_audio_list = []
689
+ sample_facial_list = []
690
+ sample_shape_list = []
691
+ sample_word_list = []
692
+ sample_emo_list = []
693
+ sample_sem_list = []
694
+ sample_vid_list = []
695
+ sample_trans_list = []
696
+ sample_trans_v_list = []
697
+
698
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
699
+ start_idx = clip_s_f_pose + i * self.args.stride
700
+ fin_idx = start_idx + cut_length
701
+ sample_pose = pose_each_file[start_idx:fin_idx]
702
+
703
+ sample_trans = trans_each_file[start_idx:fin_idx]
704
+ sample_trans_v = trans_v_each_file[start_idx:fin_idx]
705
+ sample_shape = shape_each_file[start_idx:fin_idx]
706
+ # print(sample_pose.shape)
707
+ if self.args.audio_rep is not None:
708
+ audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
709
+ audio_end = audio_start + audio_short_length
710
+ sample_audio = audio_each_file[audio_start:audio_end]
711
+ else:
712
+ sample_audio = np.array([-1])
713
+ sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
714
+ sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
715
+ sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
716
+ sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
717
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
718
+
719
+ if sample_pose.any() != None:
720
+ # filtering motion skeleton data
721
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
722
+ is_correct_motion = (sample_pose != [])
723
+ if is_correct_motion or disable_filtering:
724
+ sample_pose_list.append(sample_pose)
725
+ sample_audio_list.append(sample_audio)
726
+ sample_facial_list.append(sample_facial)
727
+ sample_shape_list.append(sample_shape)
728
+ sample_word_list.append(sample_word)
729
+ sample_vid_list.append(sample_vid)
730
+ sample_emo_list.append(sample_emo)
731
+ sample_sem_list.append(sample_sem)
732
+ sample_trans_list.append(sample_trans)
733
+ sample_trans_v_list.append(sample_trans_v)
734
+ else:
735
+ n_filtered_out[filtering_message] += 1
736
+
737
+ if len(sample_pose_list) > 0:
738
+ with dst_lmdb_env.begin(write=True) as txn:
739
+ for pose, audio, facial, shape, word, vid, emo, sem, trans,trans_v in zip(
740
+ sample_pose_list,
741
+ sample_audio_list,
742
+ sample_facial_list,
743
+ sample_shape_list,
744
+ sample_word_list,
745
+ sample_vid_list,
746
+ sample_emo_list,
747
+ sample_sem_list,
748
+ sample_trans_list,
749
+ sample_trans_v_list,):
750
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
751
+ v = [pose, audio, facial, shape, word, emo, sem, vid, trans,trans_v]
752
+ v = pickle.dumps(v,5)
753
+ txn.put(k, v)
754
+ self.n_out_samples += 1
755
+ return n_filtered_out
756
+
757
+ def __getitem__(self, idx):
758
+ with self.lmdb_env.begin(write=False) as txn:
759
+ key = "{:005}".format(idx).encode("ascii")
760
+ sample = txn.get(key)
761
+ sample = pickle.loads(sample)
762
+ tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans,trans_v = sample
763
+ #print(in_shape)
764
+ #vid = torch.from_numpy(vid).int()
765
+ emo = torch.from_numpy(emo).int()
766
+ sem = torch.from_numpy(sem).float()
767
+ in_audio = torch.from_numpy(in_audio).float()
768
+ in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
769
+ if self.loader_type == "test":
770
+ tar_pose = torch.from_numpy(tar_pose).float()
771
+ trans = torch.from_numpy(trans).float()
772
+ trans_v = torch.from_numpy(trans_v).float()
773
+ in_facial = torch.from_numpy(in_facial).float()
774
+ vid = torch.from_numpy(vid).float()
775
+ in_shape = torch.from_numpy(in_shape).float()
776
+ else:
777
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
778
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
779
+ trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float()
780
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
781
+ tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
782
+ in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
783
+ return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans,"trans_v":trans_v}
784
+
785
+
786
+ class MotionPreprocessor:
787
+ def __init__(self, skeletons):
788
+ self.skeletons = skeletons
789
+ #self.mean_pose = mean_pose
790
+ self.filtering_message = "PASS"
791
+
792
+ def get(self):
793
+ assert (self.skeletons is not None)
794
+
795
+ # filtering
796
+ if self.skeletons != []:
797
+ if self.check_pose_diff():
798
+ self.skeletons = []
799
+ self.filtering_message = "pose"
800
+ # elif self.check_spine_angle():
801
+ # self.skeletons = []
802
+ # self.filtering_message = "spine angle"
803
+ # elif self.check_static_motion():
804
+ # self.skeletons = []
805
+ # self.filtering_message = "motion"
806
+
807
+ # if self.skeletons != []:
808
+ # self.skeletons = self.skeletons.tolist()
809
+ # for i, frame in enumerate(self.skeletons):
810
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
811
+
812
+ return self.skeletons, self.filtering_message
813
+
814
+ def check_static_motion(self, verbose=True):
815
+ def get_variance(skeleton, joint_idx):
816
+ wrist_pos = skeleton[:, joint_idx]
817
+ variance = np.sum(np.var(wrist_pos, axis=0))
818
+ return variance
819
+
820
+ left_arm_var = get_variance(self.skeletons, 6)
821
+ right_arm_var = get_variance(self.skeletons, 9)
822
+
823
+ th = 0.0014 # exclude 13110
824
+ # th = 0.002 # exclude 16905
825
+ if left_arm_var < th and right_arm_var < th:
826
+ if verbose:
827
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
828
+ return True
829
+ else:
830
+ if verbose:
831
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
832
+ return False
833
+
834
+
835
+ def check_pose_diff(self, verbose=False):
836
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
837
+ # diff = np.mean(diff)
838
+
839
+ # # th = 0.017
840
+ # th = 0.02 #0.02 # exclude 3594
841
+ # if diff < th:
842
+ # if verbose:
843
+ # print("skip - check_pose_diff {:.5f}".format(diff))
844
+ # return True
845
+ # # th = 3.5 #0.02 # exclude 3594
846
+ # # if 3.5 < diff < 5:
847
+ # # if verbose:
848
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
849
+ # # return True
850
+ # else:
851
+ # if verbose:
852
+ # print("pass - check_pose_diff {:.5f}".format(diff))
853
+ return False
854
+
855
+
856
+ def check_spine_angle(self, verbose=True):
857
+ def angle_between(v1, v2):
858
+ v1_u = v1 / np.linalg.norm(v1)
859
+ v2_u = v2 / np.linalg.norm(v2)
860
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
861
+
862
+ angles = []
863
+ for i in range(self.skeletons.shape[0]):
864
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
865
+ angle = angle_between(spine_vec, [0, -1, 0])
866
+ angles.append(angle)
867
+
868
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
869
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
870
+ if verbose:
871
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
872
+ return True
873
+ else:
874
+ if verbose:
875
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
876
+ return False
dataloaders/beat_sep_lower_single.py ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ #import pyarrow
18
+ import pickle
19
+ import librosa
20
+ import smplx
21
+
22
+ from .build_vocab import Vocab
23
+ from .utils.audio_features import Wav2Vec2Model
24
+ from .data_tools import joints_list
25
+ from .utils import rotation_conversions as rc
26
+ from .utils import other_tools
27
+
28
+ class CustomDataset(Dataset):
29
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
30
+
31
+ self.audio_file_path = args.audio_file_path
32
+ self.textgrid_file_path = args.textgrid_file_path
33
+ self.default_pose_file = "./demo/examples/2_scott_0_1_1.npz"
34
+
35
+ self.args = args
36
+ self.loader_type = loader_type
37
+
38
+ self.rank = 0
39
+ self.ori_stride = self.args.stride
40
+ self.ori_length = self.args.pose_length
41
+ self.alignment = [0,0] # for trinity
42
+
43
+ self.ori_joint_list = joints_list[self.args.ori_joints]
44
+ self.tar_joint_list = joints_list[self.args.tar_joints]
45
+ if 'smplx' in self.args.pose_rep:
46
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
47
+ self.joints = len(list(self.tar_joint_list.keys()))
48
+ for joint_name in self.tar_joint_list:
49
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
50
+ else:
51
+ self.joints = len(list(self.ori_joint_list.keys()))+1
52
+ self.joint_mask = np.zeros(self.joints*3)
53
+ for joint_name in self.tar_joint_list:
54
+ if joint_name == "Hips":
55
+ self.joint_mask[3:6] = 1
56
+ else:
57
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
58
+ # select trainable joints
59
+ self.smplx = smplx.create(
60
+ self.args.data_path_1+"smplx_models/",
61
+ model_type='smplx',
62
+ gender='NEUTRAL_2020',
63
+ use_face_contour=False,
64
+ num_betas=300,
65
+ num_expression_coeffs=100,
66
+ ext='npz',
67
+ use_pca=False,
68
+ ).cuda().eval()
69
+
70
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
71
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
72
+ if args.additional_data and loader_type == 'train':
73
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
74
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
75
+ self.selected_file = pd.concat([self.selected_file, split_b])
76
+ if self.selected_file.empty:
77
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
78
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
79
+ self.selected_file = self.selected_file.iloc[0:8]
80
+ self.data_dir = args.data_path
81
+
82
+ if loader_type == "test":
83
+ self.args.multi_length_training = [1.0]
84
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
85
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
86
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
87
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
88
+
89
+ if args.word_rep is not None:
90
+ with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
91
+ self.lang_model = pickle.load(f)
92
+
93
+ preloaded_dir = self.args.tmp_dir+'/' + loader_type + f"/{args.pose_rep}_cache"
94
+
95
+ if self.args.beat_align:
96
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
97
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
98
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
99
+
100
+ if build_cache and self.rank == 0:
101
+ self.build_cache(preloaded_dir)
102
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
103
+ with self.lmdb_env.begin() as txn:
104
+ self.n_samples = txn.stat()["entries"]
105
+
106
+
107
+
108
+
109
+ def calculate_mean_velocity(self, save_path):
110
+ self.smplx = smplx.create(
111
+ self.args.data_path_1+"smplx_models/",
112
+ model_type='smplx',
113
+ gender='NEUTRAL_2020',
114
+ use_face_contour=False,
115
+ num_betas=300,
116
+ num_expression_coeffs=100,
117
+ ext='npz',
118
+ use_pca=False,
119
+ ).cuda().eval()
120
+ dir_p = self.data_dir + self.args.pose_rep + "/"
121
+ all_list = []
122
+ from tqdm import tqdm
123
+ for tar in tqdm(os.listdir(dir_p)):
124
+ if tar.endswith(".npz"):
125
+ m_data = np.load(dir_p+tar, allow_pickle=True)
126
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
127
+ n, c = poses.shape[0], poses.shape[1]
128
+ betas = betas.reshape(1, 300)
129
+ betas = np.tile(betas, (n, 1))
130
+ betas = torch.from_numpy(betas).cuda().float()
131
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
132
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
133
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
134
+ max_length = 128
135
+ s, r = n//max_length, n%max_length
136
+ #print(n, s, r)
137
+ all_tensor = []
138
+ for i in range(s):
139
+ with torch.no_grad():
140
+ joints = self.smplx(
141
+ betas=betas[i*max_length:(i+1)*max_length],
142
+ transl=trans[i*max_length:(i+1)*max_length],
143
+ expression=exps[i*max_length:(i+1)*max_length],
144
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
145
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
146
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
147
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
148
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
149
+ return_verts=True,
150
+ return_joints=True,
151
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
152
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
153
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
154
+ all_tensor.append(joints)
155
+ if r != 0:
156
+ with torch.no_grad():
157
+ joints = self.smplx(
158
+ betas=betas[s*max_length:s*max_length+r],
159
+ transl=trans[s*max_length:s*max_length+r],
160
+ expression=exps[s*max_length:s*max_length+r],
161
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
162
+ global_orient=poses[s*max_length:s*max_length+r,:3],
163
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
164
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
165
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
166
+ return_verts=True,
167
+ return_joints=True,
168
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
169
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
170
+ )['joints'][:, :55, :].reshape(r, 55*3)
171
+ all_tensor.append(joints)
172
+ joints = torch.cat(all_tensor, axis=0)
173
+ joints = joints.permute(1, 0)
174
+ dt = 1/30
175
+ # first steps is forward diff (t+1 - t) / dt
176
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
177
+ # middle steps are second order (t+1 - t-1) / 2dt
178
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
179
+ # last step is backward diff (t - t-1) / dt
180
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
181
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
182
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
183
+ #print(vel_seq.shape)
184
+ #.permute(1, 0).reshape(n, 55, 3)
185
+ vel_seq_np = vel_seq.cpu().numpy()
186
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
187
+ all_list.append(vel_joints_np)
188
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
189
+ np.save(save_path, avg_vel)
190
+
191
+
192
+ def build_cache(self, preloaded_dir):
193
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
194
+ logger.info("Reading data '{}'...".format(self.data_dir))
195
+ logger.info("Creating the dataset cache...")
196
+ if self.args.new_cache:
197
+ if os.path.exists(preloaded_dir):
198
+ shutil.rmtree(preloaded_dir)
199
+ if os.path.exists(preloaded_dir):
200
+ logger.info("Found the cache {}".format(preloaded_dir))
201
+ elif self.loader_type == "test":
202
+ self.cache_generation(
203
+ preloaded_dir, True,
204
+ 0, 0,
205
+ is_test=True)
206
+ else:
207
+ self.cache_generation(
208
+ preloaded_dir, self.args.disable_filtering,
209
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
210
+ is_test=False)
211
+
212
+ def __len__(self):
213
+ return self.n_samples
214
+
215
+
216
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
217
+ # if "wav2vec2" in self.args.audio_rep:
218
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
219
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
220
+ # self.wav2vec_model = self.wav2vec_model.cuda()
221
+ # self.wav2vec_model.eval()
222
+
223
+ self.n_out_samples = 0
224
+ # create db for samples
225
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
226
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 500))# 500G
227
+ n_filtered_out = defaultdict(int)
228
+
229
+
230
+ #f_name = file_name["id"]
231
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
232
+ pose_file = self.default_pose_file
233
+ pose_each_file = []
234
+ trans_each_file = []
235
+ trans_v_each_file = []
236
+ shape_each_file = []
237
+ audio_each_file = []
238
+ facial_each_file = []
239
+ word_each_file = []
240
+ emo_each_file = []
241
+ sem_each_file = []
242
+ vid_each_file = []
243
+ id_pose = "tmp" #1_wayne_0_1_1
244
+
245
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
246
+ if "smplx" in self.args.pose_rep:
247
+ pose_data = np.load(pose_file, allow_pickle=True)
248
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
249
+ stride = int(30/self.args.pose_fps)
250
+ pose_each_file = pose_data["poses"][::stride]
251
+ trans_each_file = pose_data["trans"][::stride]
252
+ trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
253
+ trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
254
+ trans_v_each_file = np.zeros_like(trans_each_file)
255
+ trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
256
+ trans_v_each_file[0,0] = trans_v_each_file[1,0]
257
+ trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
258
+ trans_v_each_file[0,2] = trans_v_each_file[1,2]
259
+ trans_v_each_file[:,1] = trans_each_file[:,1]
260
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
261
+
262
+ assert self.args.pose_fps == 30, "should 30"
263
+ m_data = np.load(pose_file, allow_pickle=True)
264
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
265
+ n, c = poses.shape[0], poses.shape[1]
266
+ betas = betas.reshape(1, 300)
267
+ betas = np.tile(betas, (n, 1))
268
+ betas = torch.from_numpy(betas).cuda().float()
269
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
270
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
271
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
272
+ max_length = 128 # 为什么这里需要一个max_length
273
+ s, r = n//max_length, n%max_length
274
+ #print(n, s, r)
275
+ all_tensor = []
276
+ for i in range(s):
277
+ with torch.no_grad():
278
+ joints = self.smplx(
279
+ betas=betas[i*max_length:(i+1)*max_length],
280
+ transl=trans[i*max_length:(i+1)*max_length],
281
+ expression=exps[i*max_length:(i+1)*max_length],
282
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
283
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
284
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
285
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
286
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
287
+ return_verts=True,
288
+ return_joints=True,
289
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
290
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
291
+ )['joints'][:, (7,8,10,11), :].reshape(max_length, 4, 3).cpu()
292
+ all_tensor.append(joints)
293
+ if r != 0:
294
+ with torch.no_grad():
295
+ joints = self.smplx(
296
+ betas=betas[s*max_length:s*max_length+r],
297
+ transl=trans[s*max_length:s*max_length+r],
298
+ expression=exps[s*max_length:s*max_length+r],
299
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
300
+ global_orient=poses[s*max_length:s*max_length+r,:3],
301
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
302
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
303
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
304
+ return_verts=True,
305
+ return_joints=True,
306
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
307
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
308
+ )['joints'][:, (7,8,10,11), :].reshape(r, 4, 3).cpu()
309
+ all_tensor.append(joints)
310
+ joints = torch.cat(all_tensor, axis=0) # all, 4, 3
311
+ # print(joints.shape)
312
+ feetv = torch.zeros(joints.shape[1], joints.shape[0])
313
+ joints = joints.permute(1, 0, 2)
314
+ #print(joints.shape, feetv.shape)
315
+ feetv[:, :-1] = (joints[:, 1:] - joints[:, :-1]).norm(dim=-1)
316
+ #print(feetv.shape)
317
+ contacts = (feetv < 0.01).numpy().astype(float)
318
+ # print(contacts.shape, contacts)
319
+ contacts = contacts.transpose(1, 0)
320
+ pose_each_file = pose_each_file * self.joint_mask
321
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
322
+ pose_each_file = np.concatenate([pose_each_file, contacts], axis=1)
323
+ # print(pose_each_file.shape)
324
+
325
+
326
+ if self.args.facial_rep is not None:
327
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
328
+ facial_each_file = pose_data["expressions"][::stride]
329
+ if self.args.facial_norm:
330
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
331
+
332
+ if self.args.id_rep is not None:
333
+ vid_each_file = np.repeat(np.array(int(999)-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
334
+
335
+ if self.args.audio_rep is not None:
336
+ logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
337
+ audio_file = self.audio_file_path
338
+ if not os.path.exists(audio_file):
339
+ logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
340
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
341
+
342
+ audio_save_path = audio_file.replace("wave16k", "onset_amplitude").replace(".wav", ".npy")
343
+
344
+ if self.args.audio_rep == "onset+amplitude":
345
+ audio_each_file, sr = librosa.load(audio_file)
346
+ audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
347
+ from numpy.lib import stride_tricks
348
+ frame_length = 1024
349
+ # hop_length = 512
350
+ shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
351
+ strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
352
+ rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
353
+ amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
354
+ # pad the last frame_length-1 samples
355
+ amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
356
+ audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
357
+ onset_array = np.zeros(len(audio_each_file), dtype=float)
358
+ onset_array[audio_onset_f] = 1.0
359
+ # print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
360
+ audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
361
+
362
+
363
+ elif self.args.audio_rep == "mfcc":
364
+ audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps))
365
+ audio_each_file = audio_each_file.transpose(1, 0)
366
+ # print(audio_each_file.shape, pose_each_file.shape)
367
+ if self.args.audio_norm and self.args.audio_rep == "wave16k":
368
+ audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
369
+
370
+ time_offset = 0
371
+ if self.args.word_rep is not None:
372
+ logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
373
+ word_file = self.textgrid_file_path
374
+ if not os.path.exists(word_file):
375
+ logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
376
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
377
+ word_save_path = f"{self.data_dir}{self.args.t_pre_encoder}/{id_pose}.npy"
378
+
379
+ tgrid = tg.TextGrid.fromFile(word_file)
380
+
381
+ for i in range(pose_each_file.shape[0]):
382
+ found_flag = False
383
+ current_time = i/self.args.pose_fps + time_offset
384
+ j_last = 0
385
+ for j, word in enumerate(tgrid[0]):
386
+ word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
387
+ if word_s<=current_time and current_time<=word_e:
388
+ if word_n == " ":
389
+ word_each_file.append(self.lang_model.PAD_token)
390
+ else:
391
+ word_each_file.append(self.lang_model.get_word_index(word_n))
392
+ found_flag = True
393
+ j_last = j
394
+ break
395
+ else: continue
396
+ if not found_flag:
397
+ word_each_file.append(self.lang_model.UNK_token)
398
+ word_each_file = np.array(word_each_file)
399
+
400
+
401
+
402
+ if self.args.emo_rep is not None:
403
+ logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
404
+ rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
405
+ if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
406
+ if start >= 1 and start <= 64:
407
+ score = 0
408
+ elif start >= 65 and start <= 72:
409
+ score = 1
410
+ elif start >= 73 and start <= 80:
411
+ score = 2
412
+ elif start >= 81 and start <= 86:
413
+ score = 3
414
+ elif start >= 87 and start <= 94:
415
+ score = 4
416
+ elif start >= 95 and start <= 102:
417
+ score = 5
418
+ elif start >= 103 and start <= 110:
419
+ score = 6
420
+ elif start >= 111 and start <= 118:
421
+ score = 7
422
+ else: pass
423
+ else:
424
+ # you may denote as unknown in the future
425
+ score = 0
426
+ emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
427
+ #print(emo_each_file)
428
+
429
+ if self.args.sem_rep is not None:
430
+ logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
431
+ sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
432
+ sem_all = pd.read_csv(sem_file,
433
+ sep='\t',
434
+ names=["name", "start_time", "end_time", "duration", "score", "keywords"])
435
+ # we adopt motion-level semantic score here.
436
+ for i in range(pose_each_file.shape[0]):
437
+ found_flag = False
438
+ for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
439
+ current_time = i/self.args.pose_fps + time_offset
440
+ if start<=current_time and current_time<=end:
441
+ sem_each_file.append(score)
442
+ found_flag=True
443
+ break
444
+ else: continue
445
+ if not found_flag: sem_each_file.append(0.)
446
+ sem_each_file = np.array(sem_each_file)
447
+ #print(sem_each_file)
448
+
449
+ filtered_result = self._sample_from_clip(
450
+ dst_lmdb_env,
451
+ audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
452
+ vid_each_file, emo_each_file, sem_each_file,
453
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
454
+ )
455
+ for type in filtered_result.keys():
456
+ n_filtered_out[type] += filtered_result[type]
457
+
458
+
459
+
460
+
461
+ #### ---------for_end------------ ####
462
+ with dst_lmdb_env.begin() as txn:
463
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
464
+ n_total_filtered = 0
465
+ for type, n_filtered in n_filtered_out.items():
466
+ logger.info("{}: {}".format(type, n_filtered))
467
+ n_total_filtered += n_filtered
468
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
469
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
470
+ dst_lmdb_env.sync()
471
+ dst_lmdb_env.close()
472
+
473
+ def _sample_from_clip(
474
+ self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file, facial_each_file, word_each_file,
475
+ vid_each_file, emo_each_file, sem_each_file,
476
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
477
+ ):
478
+ """
479
+ for data cleaning, we ignore the data for first and final n s
480
+ for test, we return all data
481
+ """
482
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
483
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
484
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
485
+ # audio_each_file = audio_each_file[audio_start:]
486
+ # pose_each_file = pose_each_file[pose_start:]
487
+ # trans_each_file =
488
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
489
+ #print(pose_each_file.shape)
490
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
491
+ #print(round_seconds_skeleton)
492
+ if audio_each_file is not None:
493
+ if self.args.audio_rep != "wave16k":
494
+ round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
495
+ elif self.args.audio_rep == "mfcc":
496
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
497
+ else:
498
+ round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
499
+ if facial_each_file is not None:
500
+ round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
501
+ logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
502
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
503
+ max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
504
+ if round_seconds_skeleton != max_round:
505
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
506
+ else:
507
+ logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
508
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
509
+ max_round = max(round_seconds_audio, round_seconds_skeleton)
510
+ if round_seconds_skeleton != max_round:
511
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
512
+
513
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
514
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
515
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
516
+
517
+
518
+ for ratio in self.args.multi_length_training:
519
+ if is_test:# stride = length for test
520
+ cut_length = clip_e_f_pose - clip_s_f_pose
521
+ self.args.stride = cut_length
522
+ self.max_length = cut_length
523
+ else:
524
+ self.args.stride = int(ratio*self.ori_stride)
525
+ cut_length = int(self.ori_length*ratio)
526
+
527
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
528
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
529
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
530
+
531
+ if audio_each_file is not None:
532
+ audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
533
+ """
534
+ for audio sr = 16000, fps = 15, pose_length = 34,
535
+ audio short length = 36266.7 -> 36266
536
+ this error is fine.
537
+ """
538
+ logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
539
+
540
+ n_filtered_out = defaultdict(int)
541
+ sample_pose_list = []
542
+ sample_audio_list = []
543
+ sample_facial_list = []
544
+ sample_shape_list = []
545
+ sample_word_list = []
546
+ sample_emo_list = []
547
+ sample_sem_list = []
548
+ sample_vid_list = []
549
+ sample_trans_list = []
550
+ sample_trans_v_list = []
551
+
552
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
553
+ start_idx = clip_s_f_pose + i * self.args.stride
554
+ fin_idx = start_idx + cut_length
555
+ sample_pose = pose_each_file[start_idx:fin_idx]
556
+
557
+ sample_trans = trans_each_file[start_idx:fin_idx]
558
+ sample_trans_v = trans_v_each_file[start_idx:fin_idx]
559
+ sample_shape = shape_each_file[start_idx:fin_idx]
560
+ # print(sample_pose.shape)
561
+ if self.args.audio_rep is not None:
562
+ audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
563
+ audio_end = audio_start + audio_short_length
564
+ sample_audio = audio_each_file[audio_start:audio_end]
565
+ else:
566
+ sample_audio = np.array([-1])
567
+ sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
568
+ sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
569
+ sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
570
+ sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
571
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
572
+
573
+ if sample_pose.any() != None:
574
+ # filtering motion skeleton data
575
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
576
+ is_correct_motion = (sample_pose is not None)
577
+ if is_correct_motion or disable_filtering:
578
+ sample_pose_list.append(sample_pose)
579
+ sample_audio_list.append(sample_audio)
580
+ sample_facial_list.append(sample_facial)
581
+ sample_shape_list.append(sample_shape)
582
+ sample_word_list.append(sample_word)
583
+ sample_vid_list.append(sample_vid)
584
+ sample_emo_list.append(sample_emo)
585
+ sample_sem_list.append(sample_sem)
586
+ sample_trans_list.append(sample_trans)
587
+ sample_trans_v_list.append(sample_trans_v)
588
+ else:
589
+ n_filtered_out[filtering_message] += 1
590
+
591
+ if len(sample_pose_list) > 0:
592
+ with dst_lmdb_env.begin(write=True) as txn:
593
+ for pose, audio, facial, shape, word, vid, emo, sem, trans,trans_v in zip(
594
+ sample_pose_list,
595
+ sample_audio_list,
596
+ sample_facial_list,
597
+ sample_shape_list,
598
+ sample_word_list,
599
+ sample_vid_list,
600
+ sample_emo_list,
601
+ sample_sem_list,
602
+ sample_trans_list,
603
+ sample_trans_v_list,):
604
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
605
+ v = [pose, audio, facial, shape, word, emo, sem, vid, trans,trans_v]
606
+ v = pickle.dumps(v,5)
607
+ txn.put(k, v)
608
+ self.n_out_samples += 1
609
+ return n_filtered_out
610
+
611
+ def __getitem__(self, idx):
612
+ with self.lmdb_env.begin(write=False) as txn:
613
+ key = "{:005}".format(idx).encode("ascii")
614
+ sample = txn.get(key)
615
+ sample = pickle.loads(sample)
616
+ tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans,trans_v = sample
617
+ #print(in_shape)
618
+ #vid = torch.from_numpy(vid).int()
619
+ emo = torch.from_numpy(emo).int()
620
+ sem = torch.from_numpy(sem).float()
621
+ in_audio = torch.from_numpy(in_audio).float()
622
+ in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
623
+ if self.loader_type == "test":
624
+ tar_pose = torch.from_numpy(tar_pose).float()
625
+ trans = torch.from_numpy(trans).float()
626
+ trans_v = torch.from_numpy(trans_v).float()
627
+ in_facial = torch.from_numpy(in_facial).float()
628
+ vid = torch.from_numpy(vid).float()
629
+ in_shape = torch.from_numpy(in_shape).float()
630
+ else:
631
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
632
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
633
+ trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float()
634
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
635
+ tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
636
+ in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
637
+ return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans,"trans_v":trans_v}
638
+
639
+
640
+ class MotionPreprocessor:
641
+ def __init__(self, skeletons):
642
+ self.skeletons = skeletons
643
+ #self.mean_pose = mean_pose
644
+ self.filtering_message = "PASS"
645
+
646
+ def get(self):
647
+ assert (self.skeletons is not None)
648
+
649
+ # filtering
650
+ if self.skeletons is not None:
651
+ if self.check_pose_diff():
652
+ self.skeletons = []
653
+ self.filtering_message = "pose"
654
+ # elif self.check_spine_angle():
655
+ # self.skeletons = []
656
+ # self.filtering_message = "spine angle"
657
+ # elif self.check_static_motion():
658
+ # self.skeletons = []
659
+ # self.filtering_message = "motion"
660
+
661
+ # if self.skeletons is not None:
662
+ # self.skeletons = self.skeletons.tolist()
663
+ # for i, frame in enumerate(self.skeletons):
664
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
665
+
666
+ return self.skeletons, self.filtering_message
667
+
668
+ def check_static_motion(self, verbose=True):
669
+ def get_variance(skeleton, joint_idx):
670
+ wrist_pos = skeleton[:, joint_idx]
671
+ variance = np.sum(np.var(wrist_pos, axis=0))
672
+ return variance
673
+
674
+ left_arm_var = get_variance(self.skeletons, 6)
675
+ right_arm_var = get_variance(self.skeletons, 9)
676
+
677
+ th = 0.0014 # exclude 13110
678
+ # th = 0.002 # exclude 16905
679
+ if left_arm_var < th and right_arm_var < th:
680
+ if verbose:
681
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
682
+ return True
683
+ else:
684
+ if verbose:
685
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
686
+ return False
687
+
688
+
689
+ def check_pose_diff(self, verbose=False):
690
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
691
+ # diff = np.mean(diff)
692
+
693
+ # # th = 0.017
694
+ # th = 0.02 #0.02 # exclude 3594
695
+ # if diff < th:
696
+ # if verbose:
697
+ # print("skip - check_pose_diff {:.5f}".format(diff))
698
+ # return True
699
+ # # th = 3.5 #0.02 # exclude 3594
700
+ # # if 3.5 < diff < 5:
701
+ # # if verbose:
702
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
703
+ # # return True
704
+ # else:
705
+ # if verbose:
706
+ # print("pass - check_pose_diff {:.5f}".format(diff))
707
+ return False
708
+
709
+
710
+ def check_spine_angle(self, verbose=True):
711
+ def angle_between(v1, v2):
712
+ v1_u = v1 / np.linalg.norm(v1)
713
+ v2_u = v2 / np.linalg.norm(v2)
714
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
715
+
716
+ angles = []
717
+ for i in range(self.skeletons.shape[0]):
718
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
719
+ angle = angle_between(spine_vec, [0, -1, 0])
720
+ angles.append(angle)
721
+
722
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
723
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
724
+ if verbose:
725
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
726
+ return True
727
+ else:
728
+ if verbose:
729
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
730
+ return False
dataloaders/beat_smplx2020.py ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ import pyarrow
18
+ import librosa
19
+ import smplx
20
+
21
+ from .build_vocab import Vocab
22
+ from .utils.audio_features import Wav2Vec2Model
23
+ from .data_tools import joints_list
24
+ from .utils import rotation_conversions as rc
25
+ from .utils import other_tools
26
+
27
+ class CustomDataset(Dataset):
28
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
29
+ self.args = args
30
+ self.loader_type = loader_type
31
+
32
+ self.rank = dist.get_rank()
33
+ self.ori_stride = self.args.stride
34
+ self.ori_length = self.args.pose_length
35
+ self.alignment = [0,0] # for trinity
36
+
37
+ self.ori_joint_list = joints_list[self.args.ori_joints]
38
+ self.tar_joint_list = joints_list[self.args.tar_joints]
39
+ if 'smplx' in self.args.pose_rep:
40
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
41
+ self.joints = len(list(self.ori_joint_list.keys()))
42
+ for joint_name in self.tar_joint_list:
43
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
44
+ else:
45
+ self.joints = len(list(self.ori_joint_list.keys()))+1
46
+ self.joint_mask = np.zeros(self.joints*3)
47
+ for joint_name in self.tar_joint_list:
48
+ if joint_name == "Hips":
49
+ self.joint_mask[3:6] = 1
50
+ else:
51
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
52
+ # select trainable joints
53
+
54
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
55
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
56
+ if args.additional_data and loader_type == 'train':
57
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
58
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
59
+ self.selected_file = pd.concat([self.selected_file, split_b])
60
+ if self.selected_file.empty:
61
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
62
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
63
+ self.selected_file = self.selected_file.iloc[0:8]
64
+ self.data_dir = args.data_path
65
+
66
+ if loader_type == "test":
67
+ self.args.multi_length_training = [1.0]
68
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
69
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
70
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
71
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
72
+
73
+ if args.word_rep is not None:
74
+ with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
75
+ self.lang_model = pickle.load(f)
76
+
77
+ preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
78
+ # if args.pose_norm:
79
+ # # careful for rotation vectors
80
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
81
+ # self.calculate_mean_pose()
82
+ # self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
83
+ # self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
84
+ # if args.audio_norm:
85
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
86
+ # self.calculate_mean_audio()
87
+ # self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
88
+ # self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
89
+ # if args.facial_norm:
90
+ # if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
91
+ # self.calculate_mean_face()
92
+ # self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
93
+ # self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
94
+ if self.args.beat_align:
95
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
96
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
97
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
98
+
99
+ if build_cache and self.rank == 0:
100
+ self.build_cache(preloaded_dir)
101
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
102
+ with self.lmdb_env.begin() as txn:
103
+ self.n_samples = txn.stat()["entries"]
104
+
105
+
106
+ def calculate_mean_velocity(self, save_path):
107
+ self.smplx = smplx.create(
108
+ self.args.data_path_1+"smplx_models/",
109
+ model_type='smplx',
110
+ gender='NEUTRAL_2020',
111
+ use_face_contour=False,
112
+ num_betas=300,
113
+ num_expression_coeffs=100,
114
+ ext='npz',
115
+ use_pca=False,
116
+ ).cuda().eval()
117
+ dir_p = self.data_dir + self.args.pose_rep + "/"
118
+ all_list = []
119
+ from tqdm import tqdm
120
+ for tar in tqdm(os.listdir(dir_p)):
121
+ if tar.endswith(".npz"):
122
+ m_data = np.load(dir_p+tar, allow_pickle=True)
123
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
124
+ n, c = poses.shape[0], poses.shape[1]
125
+ betas = betas.reshape(1, 300)
126
+ betas = np.tile(betas, (n, 1))
127
+ betas = torch.from_numpy(betas).cuda().float()
128
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
129
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
130
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
131
+ max_length = 128
132
+ s, r = n//max_length, n%max_length
133
+ #print(n, s, r)
134
+ all_tensor = []
135
+ for i in range(s):
136
+ with torch.no_grad():
137
+ joints = self.smplx(
138
+ betas=betas[i*max_length:(i+1)*max_length],
139
+ transl=trans[i*max_length:(i+1)*max_length],
140
+ expression=exps[i*max_length:(i+1)*max_length],
141
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
142
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
143
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
144
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
145
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
146
+ return_verts=True,
147
+ return_joints=True,
148
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
149
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
150
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
151
+ all_tensor.append(joints)
152
+ if r != 0:
153
+ with torch.no_grad():
154
+ joints = self.smplx(
155
+ betas=betas[s*max_length:s*max_length+r],
156
+ transl=trans[s*max_length:s*max_length+r],
157
+ expression=exps[s*max_length:s*max_length+r],
158
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
159
+ global_orient=poses[s*max_length:s*max_length+r,:3],
160
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
161
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
162
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
163
+ return_verts=True,
164
+ return_joints=True,
165
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
166
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
167
+ )['joints'][:, :55, :].reshape(r, 55*3)
168
+ all_tensor.append(joints)
169
+ joints = torch.cat(all_tensor, axis=0)
170
+ joints = joints.permute(1, 0)
171
+ dt = 1/30
172
+ # first steps is forward diff (t+1 - t) / dt
173
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
174
+ # middle steps are second order (t+1 - t-1) / 2dt
175
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
176
+ # last step is backward diff (t - t-1) / dt
177
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
178
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
179
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
180
+ #print(vel_seq.shape)
181
+ #.permute(1, 0).reshape(n, 55, 3)
182
+ vel_seq_np = vel_seq.cpu().numpy()
183
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
184
+ all_list.append(vel_joints_np)
185
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
186
+ np.save(save_path, avg_vel)
187
+
188
+
189
+ def build_cache(self, preloaded_dir):
190
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
191
+ logger.info("Reading data '{}'...".format(self.data_dir))
192
+ logger.info("Creating the dataset cache...")
193
+ if self.args.new_cache:
194
+ if os.path.exists(preloaded_dir):
195
+ shutil.rmtree(preloaded_dir)
196
+ if os.path.exists(preloaded_dir):
197
+ logger.info("Found the cache {}".format(preloaded_dir))
198
+ elif self.loader_type == "test":
199
+ self.cache_generation(
200
+ preloaded_dir, True,
201
+ 0, 0,
202
+ is_test=True)
203
+ else:
204
+ self.cache_generation(
205
+ preloaded_dir, self.args.disable_filtering,
206
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
207
+ is_test=False)
208
+
209
+ def __len__(self):
210
+ return self.n_samples
211
+
212
+
213
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
214
+ # if "wav2vec2" in self.args.audio_rep:
215
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
216
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
217
+ # self.wav2vec_model = self.wav2vec_model.cuda()
218
+ # self.wav2vec_model.eval()
219
+
220
+ self.n_out_samples = 0
221
+ # create db for samples
222
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
223
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
224
+ n_filtered_out = defaultdict(int)
225
+
226
+ for index, file_name in self.selected_file.iterrows():
227
+ f_name = file_name["id"]
228
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
229
+ pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
230
+ pose_each_file = []
231
+ trans_each_file = []
232
+ shape_each_file = []
233
+ audio_each_file = []
234
+ facial_each_file = []
235
+ word_each_file = []
236
+ emo_each_file = []
237
+ sem_each_file = []
238
+ vid_each_file = []
239
+ id_pose = f_name #1_wayne_0_1_1
240
+
241
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
242
+ if "smplx" in self.args.pose_rep:
243
+ pose_data = np.load(pose_file, allow_pickle=True)
244
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
245
+ stride = int(30/self.args.pose_fps)
246
+ pose_each_file = pose_data["poses"][::stride] * self.joint_mask
247
+ trans_each_file = pose_data["trans"][::stride]
248
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
249
+ if self.args.facial_rep is not None:
250
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
251
+ facial_each_file = pose_data["expressions"][::stride]
252
+ if self.args.facial_norm:
253
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
254
+
255
+ else:
256
+ assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
257
+ stride = int(120/self.args.pose_fps)
258
+ with open(pose_file, "r") as pose_data:
259
+ for j, line in enumerate(pose_data.readlines()):
260
+ if j < 431: continue
261
+ if j%stride != 0:continue
262
+ data = np.fromstring(line, dtype=float, sep=" ")
263
+ rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
264
+ rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
265
+ rot_data = rot_data.numpy() * self.joint_mask
266
+
267
+ pose_each_file.append(rot_data)
268
+ trans_each_file.append(data[:3])
269
+
270
+ pose_each_file = np.array(pose_each_file)
271
+ # print(pose_each_file.shape)
272
+ trans_each_file = np.array(trans_each_file)
273
+ shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
274
+ if self.args.facial_rep is not None:
275
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
276
+ facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
277
+ assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
278
+ stride = int(60/self.args.pose_fps)
279
+ if not os.path.exists(facial_file):
280
+ logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
281
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
282
+ continue
283
+ with open(facial_file, 'r') as facial_data_file:
284
+ facial_data = json.load(facial_data_file)
285
+ for j, frame_data in enumerate(facial_data['frames']):
286
+ if j%stride != 0:continue
287
+ facial_each_file.append(frame_data['weights'])
288
+ facial_each_file = np.array(facial_each_file)
289
+ if self.args.facial_norm:
290
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
291
+
292
+ if self.args.id_rep is not None:
293
+ vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
294
+
295
+ if self.args.audio_rep is not None:
296
+ logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
297
+ audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
298
+ if not os.path.exists(audio_file):
299
+ logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
300
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
301
+ continue
302
+ audio_each_file, sr = librosa.load(audio_file)
303
+ audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
304
+ if self.args.audio_rep == "onset+amplitude":
305
+ from numpy.lib import stride_tricks
306
+ frame_length = 1024
307
+ # hop_length = 512
308
+ shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
309
+ strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
310
+ rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
311
+ amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
312
+ # pad the last frame_length-1 samples
313
+ amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
314
+ audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
315
+ onset_array = np.zeros(len(audio_each_file), dtype=float)
316
+ onset_array[audio_onset_f] = 1.0
317
+ # print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
318
+ audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
319
+ elif self.args.audio_rep == "mfcc":
320
+ audio_each_file = librosa.feature.mfcc(audio_each_file, sr=self.args.audio_sr, n_mfcc=13, hop_length=int(self.args.audio_sr/self.args.audio_fps))
321
+
322
+ if self.args.audio_norm and self.args.audio_rep == "wave16k":
323
+ audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
324
+
325
+ time_offset = 0
326
+ if self.args.word_rep is not None:
327
+ logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
328
+ word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
329
+ if not os.path.exists(word_file):
330
+ logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
331
+ self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
332
+ continue
333
+ tgrid = tg.TextGrid.fromFile(word_file)
334
+ if self.args.t_pre_encoder == "bert":
335
+ from transformers import AutoTokenizer, BertModel
336
+ tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
337
+ model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
338
+ list_word = []
339
+ all_hidden = []
340
+ max_len = 400
341
+ last = 0
342
+ word_token_mapping = []
343
+ first = True
344
+ for i, word in enumerate(tgrid[0]):
345
+ last = i
346
+ if (i%max_len != 0) or (i==0):
347
+ if word.mark == "":
348
+ list_word.append(".")
349
+ else:
350
+ list_word.append(word.mark)
351
+ else:
352
+ max_counter = max_len
353
+ str_word = ' '.join(map(str, list_word))
354
+ if first:
355
+ global_len = 0
356
+ end = -1
357
+ offset_word = []
358
+ for k, wordvalue in enumerate(list_word):
359
+ start = end+1
360
+ end = start+len(wordvalue)
361
+ offset_word.append((start, end))
362
+ #print(offset_word)
363
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
364
+ #print(token_scan)
365
+ for start, end in offset_word:
366
+ sub_mapping = []
367
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
368
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
369
+ #print(i+global_len)
370
+ sub_mapping.append(i+global_len)
371
+ word_token_mapping.append(sub_mapping)
372
+ #print(len(word_token_mapping))
373
+ global_len = word_token_mapping[-1][-1] + 1
374
+ list_word = []
375
+ if word.mark == "":
376
+ list_word.append(".")
377
+ else:
378
+ list_word.append(word.mark)
379
+
380
+ with torch.no_grad():
381
+ inputs = tokenizer(str_word, return_tensors="pt")
382
+ outputs = model(**inputs)
383
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
384
+ all_hidden.append(last_hidden_states)
385
+
386
+ #list_word = list_word[:10]
387
+ if list_word == []:
388
+ pass
389
+ else:
390
+ if first:
391
+ global_len = 0
392
+ str_word = ' '.join(map(str, list_word))
393
+ end = -1
394
+ offset_word = []
395
+ for k, wordvalue in enumerate(list_word):
396
+ start = end+1
397
+ end = start+len(wordvalue)
398
+ offset_word.append((start, end))
399
+ #print(offset_word)
400
+ token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
401
+ #print(token_scan)
402
+ for start, end in offset_word:
403
+ sub_mapping = []
404
+ for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
405
+ if int(start) <= int(start_t) and int(end_t) <= int(end):
406
+ sub_mapping.append(i+global_len)
407
+ #print(sub_mapping)
408
+ word_token_mapping.append(sub_mapping)
409
+ #print(len(word_token_mapping))
410
+ with torch.no_grad():
411
+ inputs = tokenizer(str_word, return_tensors="pt")
412
+ outputs = model(**inputs)
413
+ last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
414
+ all_hidden.append(last_hidden_states)
415
+ last_hidden_states = np.concatenate(all_hidden, axis=0)
416
+
417
+ for i in range(pose_each_file.shape[0]):
418
+ found_flag = False
419
+ current_time = i/self.args.pose_fps + time_offset
420
+ j_last = 0
421
+ for j, word in enumerate(tgrid[0]):
422
+ word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
423
+ if word_s<=current_time and current_time<=word_e:
424
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
425
+ mapping_index = word_token_mapping[j]
426
+ #print(mapping_index, word_s, word_e)
427
+ s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
428
+ #print(s_t)
429
+ for tt, t_sep in enumerate(s_t[1:]):
430
+ if current_time <= t_sep:
431
+ #if len(mapping_index) > 1: print(mapping_index[tt])
432
+ word_each_file.append(last_hidden_states[mapping_index[tt]])
433
+ break
434
+ else:
435
+ if word_n == " ":
436
+ word_each_file.append(self.lang_model.PAD_token)
437
+ else:
438
+ word_each_file.append(self.lang_model.get_word_index(word_n))
439
+ found_flag = True
440
+ j_last = j
441
+ break
442
+ else: continue
443
+ if not found_flag:
444
+ if self.args.word_cache and self.args.t_pre_encoder == 'bert':
445
+ word_each_file.append(last_hidden_states[j_last])
446
+ else:
447
+ word_each_file.append(self.lang_model.UNK_token)
448
+ word_each_file = np.array(word_each_file)
449
+ #print(word_each_file.shape)
450
+
451
+ if self.args.emo_rep is not None:
452
+ logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
453
+ rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
454
+ if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
455
+ if start >= 1 and start <= 64:
456
+ score = 0
457
+ elif start >= 65 and start <= 72:
458
+ score = 1
459
+ elif start >= 73 and start <= 80:
460
+ score = 2
461
+ elif start >= 81 and start <= 86:
462
+ score = 3
463
+ elif start >= 87 and start <= 94:
464
+ score = 4
465
+ elif start >= 95 and start <= 102:
466
+ score = 5
467
+ elif start >= 103 and start <= 110:
468
+ score = 6
469
+ elif start >= 111 and start <= 118:
470
+ score = 7
471
+ else: pass
472
+ else:
473
+ # you may denote as unknown in the future
474
+ score = 0
475
+ emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
476
+ #print(emo_each_file)
477
+
478
+ if self.args.sem_rep is not None:
479
+ logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
480
+ sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
481
+ sem_all = pd.read_csv(sem_file,
482
+ sep='\t',
483
+ names=["name", "start_time", "end_time", "duration", "score", "keywords"])
484
+ # we adopt motion-level semantic score here.
485
+ for i in range(pose_each_file.shape[0]):
486
+ found_flag = False
487
+ for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
488
+ current_time = i/self.args.pose_fps + time_offset
489
+ if start<=current_time and current_time<=end:
490
+ sem_each_file.append(score)
491
+ found_flag=True
492
+ break
493
+ else: continue
494
+ if not found_flag: sem_each_file.append(0.)
495
+ sem_each_file = np.array(sem_each_file)
496
+ #print(sem_each_file)
497
+
498
+ filtered_result = self._sample_from_clip(
499
+ dst_lmdb_env,
500
+ audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
501
+ vid_each_file, emo_each_file, sem_each_file,
502
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
503
+ )
504
+ for type in filtered_result.keys():
505
+ n_filtered_out[type] += filtered_result[type]
506
+
507
+ with dst_lmdb_env.begin() as txn:
508
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
509
+ n_total_filtered = 0
510
+ for type, n_filtered in n_filtered_out.items():
511
+ logger.info("{}: {}".format(type, n_filtered))
512
+ n_total_filtered += n_filtered
513
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
514
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
515
+ dst_lmdb_env.sync()
516
+ dst_lmdb_env.close()
517
+
518
+ def _sample_from_clip(
519
+ self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
520
+ vid_each_file, emo_each_file, sem_each_file,
521
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
522
+ ):
523
+ """
524
+ for data cleaning, we ignore the data for first and final n s
525
+ for test, we return all data
526
+ """
527
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
528
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
529
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
530
+ # audio_each_file = audio_each_file[audio_start:]
531
+ # pose_each_file = pose_each_file[pose_start:]
532
+ # trans_each_file =
533
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
534
+ #print(pose_each_file.shape)
535
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
536
+ #print(round_seconds_skeleton)
537
+ if audio_each_file != []:
538
+ round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
539
+ if facial_each_file != []:
540
+ round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
541
+ logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
542
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
543
+ max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
544
+ if round_seconds_skeleton != max_round:
545
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
546
+ else:
547
+ logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
548
+ round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
549
+ max_round = max(round_seconds_audio, round_seconds_skeleton)
550
+ if round_seconds_skeleton != max_round:
551
+ logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
552
+
553
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
554
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
555
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
556
+
557
+
558
+ for ratio in self.args.multi_length_training:
559
+ if is_test:# stride = length for test
560
+ cut_length = clip_e_f_pose - clip_s_f_pose
561
+ self.args.stride = cut_length
562
+ self.max_length = cut_length
563
+ else:
564
+ self.args.stride = int(ratio*self.ori_stride)
565
+ cut_length = int(self.ori_length*ratio)
566
+
567
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
568
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
569
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
570
+
571
+ if audio_each_file != []:
572
+ audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
573
+ """
574
+ for audio sr = 16000, fps = 15, pose_length = 34,
575
+ audio short length = 36266.7 -> 36266
576
+ this error is fine.
577
+ """
578
+ logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
579
+
580
+ n_filtered_out = defaultdict(int)
581
+ sample_pose_list = []
582
+ sample_audio_list = []
583
+ sample_facial_list = []
584
+ sample_shape_list = []
585
+ sample_word_list = []
586
+ sample_emo_list = []
587
+ sample_sem_list = []
588
+ sample_vid_list = []
589
+ sample_trans_list = []
590
+
591
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
592
+ start_idx = clip_s_f_pose + i * self.args.stride
593
+ fin_idx = start_idx + cut_length
594
+ sample_pose = pose_each_file[start_idx:fin_idx]
595
+ sample_trans = trans_each_file[start_idx:fin_idx]
596
+ sample_shape = shape_each_file[start_idx:fin_idx]
597
+ # print(sample_pose.shape)
598
+ if self.args.audio_rep is not None:
599
+ audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
600
+ audio_end = audio_start + audio_short_length
601
+ sample_audio = audio_each_file[audio_start:audio_end]
602
+ else:
603
+ sample_audio = np.array([-1])
604
+ sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
605
+ sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
606
+ sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
607
+ sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
608
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
609
+
610
+ if sample_pose.any() != None:
611
+ # filtering motion skeleton data
612
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
613
+ is_correct_motion = (sample_pose != [])
614
+ if is_correct_motion or disable_filtering:
615
+ sample_pose_list.append(sample_pose)
616
+ sample_audio_list.append(sample_audio)
617
+ sample_facial_list.append(sample_facial)
618
+ sample_shape_list.append(sample_shape)
619
+ sample_word_list.append(sample_word)
620
+ sample_vid_list.append(sample_vid)
621
+ sample_emo_list.append(sample_emo)
622
+ sample_sem_list.append(sample_sem)
623
+ sample_trans_list.append(sample_trans)
624
+ else:
625
+ n_filtered_out[filtering_message] += 1
626
+
627
+ if len(sample_pose_list) > 0:
628
+ with dst_lmdb_env.begin(write=True) as txn:
629
+ for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
630
+ sample_pose_list,
631
+ sample_audio_list,
632
+ sample_facial_list,
633
+ sample_shape_list,
634
+ sample_word_list,
635
+ sample_vid_list,
636
+ sample_emo_list,
637
+ sample_sem_list,
638
+ sample_trans_list,):
639
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
640
+ v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
641
+ v = pyarrow.serialize(v).to_buffer()
642
+ txn.put(k, v)
643
+ self.n_out_samples += 1
644
+ return n_filtered_out
645
+
646
+ def __getitem__(self, idx):
647
+ with self.lmdb_env.begin(write=False) as txn:
648
+ key = "{:005}".format(idx).encode("ascii")
649
+ sample = txn.get(key)
650
+ sample = pyarrow.deserialize(sample)
651
+ tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
652
+ #print(in_shape)
653
+ #vid = torch.from_numpy(vid).int()
654
+ emo = torch.from_numpy(emo).int()
655
+ sem = torch.from_numpy(sem).float()
656
+ in_audio = torch.from_numpy(in_audio).float()
657
+ in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
658
+ if self.loader_type == "test":
659
+ tar_pose = torch.from_numpy(tar_pose).float()
660
+ trans = torch.from_numpy(trans).float()
661
+ in_facial = torch.from_numpy(in_facial).float()
662
+ vid = torch.from_numpy(vid).float()
663
+ in_shape = torch.from_numpy(in_shape).float()
664
+ else:
665
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
666
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
667
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
668
+ tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
669
+ in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
670
+ return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}
671
+
672
+
673
+ class MotionPreprocessor:
674
+ def __init__(self, skeletons):
675
+ self.skeletons = skeletons
676
+ #self.mean_pose = mean_pose
677
+ self.filtering_message = "PASS"
678
+
679
+ def get(self):
680
+ assert (self.skeletons is not None)
681
+
682
+ # filtering
683
+ if self.skeletons != []:
684
+ if self.check_pose_diff():
685
+ self.skeletons = []
686
+ self.filtering_message = "pose"
687
+ # elif self.check_spine_angle():
688
+ # self.skeletons = []
689
+ # self.filtering_message = "spine angle"
690
+ # elif self.check_static_motion():
691
+ # self.skeletons = []
692
+ # self.filtering_message = "motion"
693
+
694
+ # if self.skeletons != []:
695
+ # self.skeletons = self.skeletons.tolist()
696
+ # for i, frame in enumerate(self.skeletons):
697
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
698
+
699
+ return self.skeletons, self.filtering_message
700
+
701
+ def check_static_motion(self, verbose=True):
702
+ def get_variance(skeleton, joint_idx):
703
+ wrist_pos = skeleton[:, joint_idx]
704
+ variance = np.sum(np.var(wrist_pos, axis=0))
705
+ return variance
706
+
707
+ left_arm_var = get_variance(self.skeletons, 6)
708
+ right_arm_var = get_variance(self.skeletons, 9)
709
+
710
+ th = 0.0014 # exclude 13110
711
+ # th = 0.002 # exclude 16905
712
+ if left_arm_var < th and right_arm_var < th:
713
+ if verbose:
714
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
715
+ return True
716
+ else:
717
+ if verbose:
718
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
719
+ return False
720
+
721
+
722
+ def check_pose_diff(self, verbose=False):
723
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
724
+ # diff = np.mean(diff)
725
+
726
+ # # th = 0.017
727
+ # th = 0.02 #0.02 # exclude 3594
728
+ # if diff < th:
729
+ # if verbose:
730
+ # print("skip - check_pose_diff {:.5f}".format(diff))
731
+ # return True
732
+ # # th = 3.5 #0.02 # exclude 3594
733
+ # # if 3.5 < diff < 5:
734
+ # # if verbose:
735
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
736
+ # # return True
737
+ # else:
738
+ # if verbose:
739
+ # print("pass - check_pose_diff {:.5f}".format(diff))
740
+ return False
741
+
742
+
743
+ def check_spine_angle(self, verbose=True):
744
+ def angle_between(v1, v2):
745
+ v1_u = v1 / np.linalg.norm(v1)
746
+ v2_u = v2 / np.linalg.norm(v2)
747
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
748
+
749
+ angles = []
750
+ for i in range(self.skeletons.shape[0]):
751
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
752
+ angle = angle_between(spine_vec, [0, -1, 0])
753
+ angles.append(angle)
754
+
755
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
756
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
757
+ if verbose:
758
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
759
+ return True
760
+ else:
761
+ if verbose:
762
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
763
+ return False
dataloaders/build_vocab.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import glob
3
+ import os
4
+ import pickle
5
+ import lmdb
6
+ #import pyarrow
7
+ import fasttext
8
+ from loguru import logger
9
+ from scipy import linalg
10
+
11
+
12
+ class Vocab:
13
+ PAD_token = 0
14
+ SOS_token = 1
15
+ EOS_token = 2
16
+ UNK_token = 3
17
+
18
+ def __init__(self, name, insert_default_tokens=True):
19
+ self.name = name
20
+ self.trimmed = False
21
+ self.word_embedding_weights = None
22
+ self.reset_dictionary(insert_default_tokens)
23
+
24
+ def reset_dictionary(self, insert_default_tokens=True):
25
+ self.word2index = {}
26
+ self.word2count = {}
27
+ if insert_default_tokens:
28
+ self.index2word = {self.PAD_token: "<PAD>", self.SOS_token: "<SOS>",
29
+ self.EOS_token: "<EOS>", self.UNK_token: "<UNK>"}
30
+ else:
31
+ self.index2word = {self.UNK_token: "<UNK>"}
32
+ self.n_words = len(self.index2word) # count default tokens
33
+
34
+ def index_word(self, word):
35
+ if word not in self.word2index:
36
+ self.word2index[word] = self.n_words
37
+ self.word2count[word] = 1
38
+ self.index2word[self.n_words] = word
39
+ self.n_words += 1
40
+ else:
41
+ self.word2count[word] += 1
42
+
43
+ def add_vocab(self, other_vocab):
44
+ for word, _ in other_vocab.word2count.items():
45
+ self.index_word(word)
46
+
47
+ # remove words below a certain count threshold
48
+ def trim(self, min_count):
49
+ if self.trimmed:
50
+ return
51
+ self.trimmed = True
52
+
53
+ keep_words = []
54
+
55
+ for k, v in self.word2count.items():
56
+ if v >= min_count:
57
+ keep_words.append(k)
58
+
59
+ print(' word trimming, kept %s / %s = %.4f' % (
60
+ len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
61
+ ))
62
+
63
+ # reinitialize dictionary
64
+ self.reset_dictionary()
65
+ for word in keep_words:
66
+ self.index_word(word)
67
+
68
+ def get_word_index(self, word):
69
+ if word in self.word2index:
70
+ return self.word2index[word]
71
+ else:
72
+ return self.UNK_token
73
+
74
+ def load_word_vectors(self, pretrained_path, embedding_dim=300):
75
+ print(" loading word vectors from '{}'...".format(pretrained_path))
76
+
77
+ # initialize embeddings to random values for special words
78
+ init_sd = 1 / np.sqrt(embedding_dim)
79
+ weights = np.random.normal(0, scale=init_sd, size=[self.n_words, embedding_dim])
80
+ weights = weights.astype(np.float32)
81
+
82
+ # read word vectors
83
+ word_model = fasttext.load_model(pretrained_path)
84
+ for word, id in self.word2index.items():
85
+ vec = word_model.get_word_vector(word)
86
+ weights[id] = vec
87
+ self.word_embedding_weights = weights
88
+
89
+ def __get_embedding_weight(self, pretrained_path, embedding_dim=300):
90
+ """ function modified from http://ronny.rest/blog/post_2017_08_04_glove/ """
91
+ print("Loading word embedding '{}'...".format(pretrained_path))
92
+ cache_path = pretrained_path
93
+ weights = None
94
+
95
+ # use cached file if it exists
96
+ if os.path.exists(cache_path): #
97
+ with open(cache_path, 'rb') as f:
98
+ print(' using cached result from {}'.format(cache_path))
99
+ weights = pickle.load(f)
100
+ if weights.shape != (self.n_words, embedding_dim):
101
+ logging.warning(' failed to load word embedding weights. reinitializing...')
102
+ weights = None
103
+
104
+ if weights is None:
105
+ # initialize embeddings to random values for special and OOV words
106
+ init_sd = 1 / np.sqrt(embedding_dim)
107
+ weights = np.random.normal(0, scale=init_sd, size=[self.n_words, embedding_dim])
108
+ weights = weights.astype(np.float32)
109
+
110
+ with open(pretrained_path, encoding="utf-8", mode="r") as textFile:
111
+ num_embedded_words = 0
112
+ for line_raw in textFile:
113
+ # extract the word, and embeddings vector
114
+ line = line_raw.split()
115
+ try:
116
+ word, vector = (line[0], np.array(line[1:], dtype=np.float32))
117
+ # if word == 'love': # debugging
118
+ # print(word, vector)
119
+
120
+ # if it is in our vocab, then update the corresponding weights
121
+ id = self.word2index.get(word, None)
122
+ if id is not None:
123
+ weights[id] = vector
124
+ num_embedded_words += 1
125
+ except ValueError:
126
+ print(' parsing error at {}...'.format(line_raw[:50]))
127
+ continue
128
+ print(' {} / {} word vectors are found in the embedding'.format(num_embedded_words, len(self.word2index)))
129
+
130
+ with open(cache_path, 'wb') as f:
131
+ pickle.dump(weights, f)
132
+ return weights
133
+
134
+
135
+ def build_vocab(name, data_path, cache_path, word_vec_path=None, feat_dim=None):
136
+ print(' building a language model...')
137
+ #if not os.path.exists(cache_path):
138
+ lang_model = Vocab(name)
139
+ print(' indexing words from {}'.format(data_path))
140
+ index_words_from_textgrid(lang_model, data_path)
141
+
142
+ if word_vec_path is not None:
143
+ lang_model.load_word_vectors(word_vec_path, feat_dim)
144
+ else:
145
+ print(' loaded from {}'.format(cache_path))
146
+ with open(cache_path, 'rb') as f:
147
+ lang_model = pickle.load(f)
148
+ if word_vec_path is None:
149
+ lang_model.word_embedding_weights = None
150
+ elif lang_model.word_embedding_weights.shape[0] != lang_model.n_words:
151
+ logging.warning(' failed to load word embedding weights. check this')
152
+ assert False
153
+
154
+ with open(cache_path, 'wb') as f:
155
+ pickle.dump(lang_model, f)
156
+
157
+
158
+ return lang_model
159
+
160
+
161
+ def index_words(lang_model, data_path):
162
+ #index words form text
163
+ with open(data_path, "r") as f:
164
+ for line in f.readlines():
165
+ line = line.replace(",", " ")
166
+ line = line.replace(".", " ")
167
+ line = line.replace("?", " ")
168
+ line = line.replace("!", " ")
169
+ for word in line.split():
170
+ lang_model.index_word(word)
171
+ print(' indexed %d words' % lang_model.n_words)
172
+
173
+ def index_words_from_textgrid(lang_model, data_path):
174
+ import textgrid as tg
175
+ from tqdm import tqdm
176
+ #trainvaltest=os.listdir(data_path)
177
+ # for loadtype in trainvaltest:
178
+ # if "." in loadtype: continue #ignore .ipynb_checkpoints
179
+ texts = os.listdir(data_path+"/textgrid/")
180
+ #print(texts)
181
+ for textfile in tqdm(texts):
182
+ tgrid = tg.TextGrid.fromFile(data_path+"/textgrid/"+textfile)
183
+ for word in tgrid[0]:
184
+ word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
185
+ word_n = word_n.replace(",", " ")
186
+ word_n = word_n.replace(".", " ")
187
+ word_n = word_n.replace("?", " ")
188
+ word_n = word_n.replace("!", " ")
189
+ #print(word_n)
190
+ lang_model.index_word(word_n)
191
+ print(' indexed %d words' % lang_model.n_words)
192
+ print(lang_model.word2index, lang_model.word2count)
193
+
194
+ if __name__ == "__main__":
195
+ # 11195 for all, 5793 for 4 speakers
196
+ # build_vocab("beat_english_15_141", "/home/ma-user/work/datasets/beat_cache/beat_english_15_141/", "/home/ma-user/work/datasets/beat_cache/beat_english_15_141/vocab.pkl", "/home/ma-user/work/datasets/cc.en.300.bin", 300)
197
+ build_vocab("beat_chinese_v1.0.0", "/data/datasets/beat_chinese_v1.0.0/", "/data/datasets/beat_chinese_v1.0.0/weights/vocab.pkl", "/home/ma-user/work/cc.zh.300.bin", 300)
198
+
199
+
dataloaders/data_tools.py ADDED
@@ -0,0 +1,1756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import glob
3
+ import os
4
+ import pickle
5
+ import lmdb
6
+ #import pyarrow
7
+ import fasttext
8
+ from loguru import logger
9
+ from scipy import linalg
10
+ from .pymo.parsers import BVHParser
11
+ from .pymo.viz_tools import *
12
+ from .pymo.preprocessing import *
13
+
14
+
15
+
16
+
17
+ # pose version fpsxx_trinity/japanese_joints(_xxx)
18
+ joints_list = {
19
+ "trinity_joints":{
20
+ 'Hips': [6,6],
21
+ 'Spine': [3,9],
22
+ 'Spine1': [3,12],
23
+ 'Spine2': [3,15],
24
+ 'Spine3': [3,18],
25
+ 'Neck': [3,21],
26
+ 'Neck1': [3,24],
27
+ 'Head': [3,27],
28
+ 'RShoulder': [3,30],
29
+ 'RArm': [3,33],
30
+ 'RArm1': [3,36],
31
+ 'RHand': [3,39],
32
+ 'RHandT1': [3,42],
33
+ 'RHandT2': [3,45],
34
+ 'RHandT3': [3,48],
35
+ 'RHandI1': [3,51],
36
+ 'RHandI2': [3,54],
37
+ 'RHandI3': [3,57],
38
+ 'RHandM1': [3,60],
39
+ 'RHandM2': [3,63],
40
+ 'RHandM3': [3,66],
41
+ 'RHandR1': [3,69],
42
+ 'RHandR2': [3,72],
43
+ 'RHandR3': [3,75],
44
+ 'RHandP1': [3,78],
45
+ 'RHandP2': [3,81],
46
+ 'RHandP3': [3,84],
47
+ 'LShoulder': [3,87],
48
+ 'LArm': [3,90],
49
+ 'LArm1': [3,93],
50
+ 'LHand': [3,96],
51
+ 'LHandT1': [3,99],
52
+ 'LHandT2': [3,102],
53
+ 'LHandT3': [3,105],
54
+ 'LHandI1': [3,108],
55
+ 'LHandI2': [3,111],
56
+ 'LHandI3': [3,114],
57
+ 'LHandM1': [3,117],
58
+ 'LHandM2': [3,120],
59
+ 'LHandM3': [3,123],
60
+ 'LHandR1': [3,126],
61
+ 'LHandR2': [3,129],
62
+ 'LHandR3': [3,132],
63
+ 'LHandP1': [3,135],
64
+ 'LHandP2': [3,138],
65
+ 'LHandP3': [3,141],
66
+ 'RUpLeg': [3,144],
67
+ 'RLeg': [3,147],
68
+ 'RFoot': [3,150],
69
+ 'RFootF': [3,153],
70
+ 'RToeBase': [3,156],
71
+ 'LUpLeg': [3,159],
72
+ 'LLeg': [3,162],
73
+ 'LFoot': [3,165],
74
+ 'LFootF': [3,168],
75
+ 'LToeBase': [3,171],},
76
+ "trinity_joints_123":{
77
+ 'Spine': 3 ,
78
+ 'Neck': 3 ,
79
+ 'Neck1': 3 ,
80
+ 'RShoulder': 3 ,
81
+ 'RArm': 3 ,
82
+ 'RArm1': 3 ,
83
+ 'RHand': 3 ,
84
+ 'RHandT1': 3 ,
85
+ 'RHandT2': 3 ,
86
+ 'RHandT3': 3 ,
87
+ 'RHandI1': 3 ,
88
+ 'RHandI2': 3 ,
89
+ 'RHandI3': 3 ,
90
+ 'RHandM1': 3 ,
91
+ 'RHandM2': 3 ,
92
+ 'RHandM3': 3 ,
93
+ 'RHandR1': 3 ,
94
+ 'RHandR2': 3 ,
95
+ 'RHandR3': 3 ,
96
+ 'RHandP1': 3 ,
97
+ 'RHandP2': 3 ,
98
+ 'RHandP3': 3 ,
99
+ 'LShoulder': 3 ,
100
+ 'LArm': 3 ,
101
+ 'LArm1': 3 ,
102
+ 'LHand': 3 ,
103
+ 'LHandT1': 3 ,
104
+ 'LHandT2': 3 ,
105
+ 'LHandT3': 3 ,
106
+ 'LHandI1': 3 ,
107
+ 'LHandI2': 3 ,
108
+ 'LHandI3': 3 ,
109
+ 'LHandM1': 3 ,
110
+ 'LHandM2': 3 ,
111
+ 'LHandM3': 3 ,
112
+ 'LHandR1': 3 ,
113
+ 'LHandR2': 3 ,
114
+ 'LHandR3': 3 ,
115
+ 'LHandP1': 3 ,
116
+ 'LHandP2': 3 ,
117
+ 'LHandP3': 3 ,},
118
+ "trinity_joints_168":{
119
+ 'Hips': 3 ,
120
+ 'Spine': 3 ,
121
+ 'Spine1': 3 ,
122
+ 'Spine2': 3 ,
123
+ 'Spine3': 3 ,
124
+ 'Neck': 3 ,
125
+ 'Neck1': 3 ,
126
+ 'Head': 3 ,
127
+ 'RShoulder': 3 ,
128
+ 'RArm': 3 ,
129
+ 'RArm1': 3 ,
130
+ 'RHand': 3 ,
131
+ 'RHandT1': 3 ,
132
+ 'RHandT2': 3 ,
133
+ 'RHandT3': 3 ,
134
+ 'RHandI1': 3 ,
135
+ 'RHandI2': 3 ,
136
+ 'RHandI3': 3 ,
137
+ 'RHandM1': 3 ,
138
+ 'RHandM2': 3 ,
139
+ 'RHandM3': 3 ,
140
+ 'RHandR1': 3 ,
141
+ 'RHandR2': 3 ,
142
+ 'RHandR3': 3 ,
143
+ 'RHandP1': 3 ,
144
+ 'RHandP2': 3 ,
145
+ 'RHandP3': 3 ,
146
+ 'LShoulder': 3 ,
147
+ 'LArm': 3 ,
148
+ 'LArm1': 3 ,
149
+ 'LHand': 3 ,
150
+ 'LHandT1': 3 ,
151
+ 'LHandT2': 3 ,
152
+ 'LHandT3': 3 ,
153
+ 'LHandI1': 3 ,
154
+ 'LHandI2': 3 ,
155
+ 'LHandI3': 3 ,
156
+ 'LHandM1': 3 ,
157
+ 'LHandM2': 3 ,
158
+ 'LHandM3': 3 ,
159
+ 'LHandR1': 3 ,
160
+ 'LHandR2': 3 ,
161
+ 'LHandR3': 3 ,
162
+ 'LHandP1': 3 ,
163
+ 'LHandP2': 3 ,
164
+ 'LHandP3': 3 ,
165
+ 'RUpLeg': 3 ,
166
+ 'RLeg': 3 ,
167
+ 'RFoot': 3 ,
168
+ 'RFootF': 3 ,
169
+ 'RToeBase': 3 ,
170
+ 'LUpLeg': 3 ,
171
+ 'LLeg': 3 ,
172
+ 'LFoot': 3 ,
173
+ 'LFootF': 3 ,
174
+ 'LToeBase': 3 ,},
175
+ "trinity_joints_138":{
176
+ "Hips": 3 ,
177
+ 'Spine': 3 ,
178
+ 'Spine1': 3 ,
179
+ 'Spine2': 3 ,
180
+ 'Spine3': 3 ,
181
+ 'Neck': 3 ,
182
+ 'Neck1': 3 ,
183
+ 'Head': 3 ,
184
+ 'RShoulder': 3 ,
185
+ 'RArm': 3 ,
186
+ 'RArm1': 3 ,
187
+ 'RHand': 3 ,
188
+ 'RHandT1': 3 ,
189
+ 'RHandT2': 3 ,
190
+ 'RHandT3': 3 ,
191
+ 'RHandI1': 3 ,
192
+ 'RHandI2': 3 ,
193
+ 'RHandI3': 3 ,
194
+ 'RHandM1': 3 ,
195
+ 'RHandM2': 3 ,
196
+ 'RHandM3': 3 ,
197
+ 'RHandR1': 3 ,
198
+ 'RHandR2': 3 ,
199
+ 'RHandR3': 3 ,
200
+ 'RHandP1': 3 ,
201
+ 'RHandP2': 3 ,
202
+ 'RHandP3': 3 ,
203
+ 'LShoulder': 3 ,
204
+ 'LArm': 3 ,
205
+ 'LArm1': 3 ,
206
+ 'LHand': 3 ,
207
+ 'LHandT1': 3 ,
208
+ 'LHandT2': 3 ,
209
+ 'LHandT3': 3 ,
210
+ 'LHandI1': 3 ,
211
+ 'LHandI2': 3 ,
212
+ 'LHandI3': 3 ,
213
+ 'LHandM1': 3 ,
214
+ 'LHandM2': 3 ,
215
+ 'LHandM3': 3 ,
216
+ 'LHandR1': 3 ,
217
+ 'LHandR2': 3 ,
218
+ 'LHandR3': 3 ,
219
+ 'LHandP1': 3 ,
220
+ 'LHandP2': 3 ,
221
+ 'LHandP3': 3 ,},
222
+ "beat_smplx_joints": {
223
+ 'pelvis': [3,3],
224
+ 'left_hip': [3,6],
225
+ 'right_hip': [3,9],
226
+ 'spine1': [3,12],
227
+ 'left_knee': [3,15],
228
+ 'right_knee': [3,18],
229
+ 'spine2': [3,21],
230
+ 'left_ankle': [3,24],
231
+ 'right_ankle': [3,27],
232
+
233
+ 'spine3': [3,30],
234
+ 'left_foot': [3,33],
235
+ 'right_foot': [3,36],
236
+ 'neck': [3,39],
237
+ 'left_collar': [3,42],
238
+ 'right_collar': [3,45],
239
+ 'head': [3,48],
240
+ 'left_shoulder': [3,51],
241
+
242
+ 'right_shoulder': [3,54],
243
+ 'left_elbow': [3,57],
244
+ 'right_elbow': [3,60],
245
+ 'left_wrist': [3,63],
246
+ 'right_wrist': [3,66],
247
+
248
+ 'jaw': [3,69],
249
+ 'left_eye_smplhf': [3,72],
250
+ 'right_eye_smplhf': [3,75],
251
+ 'left_index1': [3,78],
252
+ 'left_index2': [3,81],
253
+
254
+ 'left_index3': [3,84],
255
+ 'left_middle1': [3,87],
256
+ 'left_middle2': [3,90],
257
+ 'left_middle3': [3,93],
258
+ 'left_pinky1': [3,96],
259
+
260
+ 'left_pinky2': [3,99],
261
+ 'left_pinky3': [3,102],
262
+ 'left_ring1': [3,105],
263
+ 'left_ring2': [3,108],
264
+
265
+ 'left_ring3': [3,111],
266
+ 'left_thumb1': [3,114],
267
+ 'left_thumb2': [3,117],
268
+ 'left_thumb3': [3,120],
269
+ 'right_index1': [3,123],
270
+ 'right_index2': [3,126],
271
+ 'right_index3': [3,129],
272
+ 'right_middle1': [3,132],
273
+
274
+ 'right_middle2': [3,135],
275
+ 'right_middle3': [3,138],
276
+ 'right_pinky1': [3,141],
277
+ 'right_pinky2': [3,144],
278
+ 'right_pinky3': [3,147],
279
+
280
+ 'right_ring1': [3,150],
281
+ 'right_ring2': [3,153],
282
+ 'right_ring3': [3,156],
283
+ 'right_thumb1': [3,159],
284
+ 'right_thumb2': [3,162],
285
+ 'right_thumb3': [3,165],
286
+
287
+ # 'nose': [3,168],
288
+ # 'right_eye': [3,171],
289
+ # 'left_eye': [3,174],
290
+ # 'right_ear': [3,177],
291
+
292
+ # 'left_ear': [3,180],
293
+ # 'left_big_toe': [3,183],
294
+ # 'left_small_toe': [3,186],
295
+ # 'left_heel': [3,189],
296
+
297
+ # 'right_big_toe': [3,192],
298
+ # 'right_small_toe': [3,195],
299
+ # 'right_heel': [3,198],
300
+ # 'left_thumb': [3,201],
301
+ # 'left_index': [3,204],
302
+ # 'left_middle': [3,207],
303
+
304
+ # 'left_ring': [3,210],
305
+ # 'left_pinky': [3,213],
306
+ # 'right_thumb': [3,216],
307
+ # 'right_index': [3,219],
308
+ # 'right_middle': [3,222],
309
+ # 'right_ring': [3,225],
310
+
311
+ # 'right_pinky': [3,228],
312
+ # 'right_eye_brow1': [3,231],
313
+ # 'right_eye_brow2': [3,234],
314
+ # 'right_eye_brow3': [3,237],
315
+
316
+ # 'right_eye_brow4': [3,240],
317
+ # 'right_eye_brow5': [3,243],
318
+ # 'left_eye_brow5': [3,246],
319
+ # 'left_eye_brow4': [3,249],
320
+
321
+ # 'left_eye_brow3': [3,252],
322
+ # 'left_eye_brow2': [3,255],
323
+ # 'left_eye_brow1': [3,258],
324
+ # 'nose1': [3,261],
325
+ # 'nose2': [3,264],
326
+ # 'nose3': [3,267],
327
+
328
+ # 'nose4': [3,270],
329
+ # 'right_nose_2': [3,273],
330
+ # 'right_nose_1': [3,276],
331
+ # 'nose_middle': [3,279],
332
+ # 'left_nose_1': [3,282],
333
+ # 'left_nose_2': [3,285],
334
+
335
+ # 'right_eye1': [3,288],
336
+ # 'right_eye2': [3,291],
337
+ # 'right_eye3': [3,294],
338
+ # 'right_eye4': [3,297],
339
+
340
+ # 'right_eye5': [3,300],
341
+ # 'right_eye6': [3,303],
342
+ # 'left_eye4': [3,306],
343
+ # 'left_eye3': [3,309],
344
+
345
+ # 'left_eye2': [3,312],
346
+ # 'left_eye1': [3,315],
347
+ # 'left_eye6': [3,318],
348
+ # 'left_eye5': [3,321],
349
+ # 'right_mouth_1': [3,324],
350
+ # 'right_mouth_2': [3,327],
351
+ # 'right_mouth_3': [3,330],
352
+ # 'mouth_top': [3,333],
353
+ # 'left_mouth_3': [3,336],
354
+ # 'left_mouth_2': [3,339],
355
+ # 'left_mouth_1': [3,342],
356
+ # 'left_mouth_5': [3,345],
357
+ # 'left_mouth_4': [3,348],
358
+ # 'mouth_bottom': [3,351],
359
+ # 'right_mouth_4': [3,354],
360
+ # 'right_mouth_5': [3,357],
361
+ # 'right_lip_1': [3,360],
362
+ # 'right_lip_2': [3,363],
363
+ # 'lip_top': [3,366],
364
+ # 'left_lip_2': [3,369],
365
+
366
+ # 'left_lip_1': [3,372],
367
+ # 'left_lip_3': [3,375],
368
+ # 'lip_bottom': [3,378],
369
+ # 'right_lip_3': [3,381],
370
+ # 'right_contour_1': [3,384],
371
+ # 'right_contour_2': [3,387],
372
+ # 'right_contour_3': [3,390],
373
+ # 'right_contour_4': [3,393],
374
+ # 'right_contour_5': [3,396],
375
+ # 'right_contour_6': [3,399],
376
+ # 'right_contour_7': [3,402],
377
+ # 'right_contour_8': [3,405],
378
+ # 'contour_middle': [3,408],
379
+ # 'left_contour_8': [3,411],
380
+ # 'left_contour_7': [3,414],
381
+ # 'left_contour_6': [3,417],
382
+ # 'left_contour_5': [3,420],
383
+ # 'left_contour_4': [3,423],
384
+ # 'left_contour_3': [3,426],
385
+ # 'left_contour_2': [3,429],
386
+ # 'left_contour_1': [3,432],
387
+ },
388
+
389
+ "beat_smplx_no_eyes": {
390
+ "pelvis":3,
391
+ "left_hip":3,
392
+ "right_hip":3,
393
+ "spine1":3,
394
+ "left_knee":3,
395
+ "right_knee":3,
396
+ "spine2":3,
397
+ "left_ankle":3,
398
+ "right_ankle":3,
399
+ "spine3":3,
400
+ "left_foot":3,
401
+ "right_foot":3,
402
+ "neck":3,
403
+ "left_collar":3,
404
+ "right_collar":3,
405
+ "head":3,
406
+ "left_shoulder":3,
407
+ "right_shoulder":3,
408
+ "left_elbow":3,
409
+ "right_elbow":3,
410
+ "left_wrist":3,
411
+ "right_wrist":3,
412
+ "jaw":3,
413
+ # "left_eye_smplhf":3,
414
+ # "right_eye_smplhf":3,
415
+ "left_index1":3,
416
+ "left_index2":3,
417
+ "left_index3":3,
418
+ "left_middle1":3,
419
+ "left_middle2":3,
420
+ "left_middle3":3,
421
+ "left_pinky1":3,
422
+ "left_pinky2":3,
423
+ "left_pinky3":3,
424
+ "left_ring1":3,
425
+ "left_ring2":3,
426
+ "left_ring3":3,
427
+ "left_thumb1":3,
428
+ "left_thumb2":3,
429
+ "left_thumb3":3,
430
+ "right_index1":3,
431
+ "right_index2":3,
432
+ "right_index3":3,
433
+ "right_middle1":3,
434
+ "right_middle2":3,
435
+ "right_middle3":3,
436
+ "right_pinky1":3,
437
+ "right_pinky2":3,
438
+ "right_pinky3":3,
439
+ "right_ring1":3,
440
+ "right_ring2":3,
441
+ "right_ring3":3,
442
+ "right_thumb1":3,
443
+ "right_thumb2":3,
444
+ "right_thumb3":3,
445
+ },
446
+
447
+ "beat_smplx_full": {
448
+ "pelvis":3,
449
+ "left_hip":3,
450
+ "right_hip":3,
451
+ "spine1":3,
452
+ "left_knee":3,
453
+ "right_knee":3,
454
+ "spine2":3,
455
+ "left_ankle":3,
456
+ "right_ankle":3,
457
+ "spine3":3,
458
+ "left_foot":3,
459
+ "right_foot":3,
460
+ "neck":3,
461
+ "left_collar":3,
462
+ "right_collar":3,
463
+ "head":3,
464
+ "left_shoulder":3,
465
+ "right_shoulder":3,
466
+ "left_elbow":3,
467
+ "right_elbow":3,
468
+ "left_wrist":3,
469
+ "right_wrist":3,
470
+ "jaw":3,
471
+ "left_eye_smplhf":3,
472
+ "right_eye_smplhf":3,
473
+ "left_index1":3,
474
+ "left_index2":3,
475
+ "left_index3":3,
476
+ "left_middle1":3,
477
+ "left_middle2":3,
478
+ "left_middle3":3,
479
+ "left_pinky1":3,
480
+ "left_pinky2":3,
481
+ "left_pinky3":3,
482
+ "left_ring1":3,
483
+ "left_ring2":3,
484
+ "left_ring3":3,
485
+ "left_thumb1":3,
486
+ "left_thumb2":3,
487
+ "left_thumb3":3,
488
+ "right_index1":3,
489
+ "right_index2":3,
490
+ "right_index3":3,
491
+ "right_middle1":3,
492
+ "right_middle2":3,
493
+ "right_middle3":3,
494
+ "right_pinky1":3,
495
+ "right_pinky2":3,
496
+ "right_pinky3":3,
497
+ "right_ring1":3,
498
+ "right_ring2":3,
499
+ "right_ring3":3,
500
+ "right_thumb1":3,
501
+ "right_thumb2":3,
502
+ "right_thumb3":3,
503
+ },
504
+
505
+ "beat_smplx_upall": {
506
+ # "pelvis":3,
507
+ # "left_hip":3,
508
+ # "right_hip":3,
509
+ "spine1":3,
510
+ # "left_knee":3,
511
+ # "right_knee":3,
512
+ "spine2":3,
513
+ # "left_ankle":3,
514
+ # "right_ankle":3,
515
+ "spine3":3,
516
+ # "left_foot":3,
517
+ # "right_foot":3,
518
+ "neck":3,
519
+ "left_collar":3,
520
+ "right_collar":3,
521
+ "head":3,
522
+ "left_shoulder":3,
523
+ "right_shoulder":3,
524
+ "left_elbow":3,
525
+ "right_elbow":3,
526
+ "left_wrist":3,
527
+ "right_wrist":3,
528
+ # "jaw":3,
529
+ # "left_eye_smplhf":3,
530
+ # "right_eye_smplhf":3,
531
+ "left_index1":3,
532
+ "left_index2":3,
533
+ "left_index3":3,
534
+ "left_middle1":3,
535
+ "left_middle2":3,
536
+ "left_middle3":3,
537
+ "left_pinky1":3,
538
+ "left_pinky2":3,
539
+ "left_pinky3":3,
540
+ "left_ring1":3,
541
+ "left_ring2":3,
542
+ "left_ring3":3,
543
+ "left_thumb1":3,
544
+ "left_thumb2":3,
545
+ "left_thumb3":3,
546
+ "right_index1":3,
547
+ "right_index2":3,
548
+ "right_index3":3,
549
+ "right_middle1":3,
550
+ "right_middle2":3,
551
+ "right_middle3":3,
552
+ "right_pinky1":3,
553
+ "right_pinky2":3,
554
+ "right_pinky3":3,
555
+ "right_ring1":3,
556
+ "right_ring2":3,
557
+ "right_ring3":3,
558
+ "right_thumb1":3,
559
+ "right_thumb2":3,
560
+ "right_thumb3":3,
561
+ },
562
+
563
+ "beat_smplx_upper": {
564
+ #"pelvis":3,
565
+ # "left_hip":3,
566
+ # "right_hip":3,
567
+ "spine1":3,
568
+ # "left_knee":3,
569
+ # "right_knee":3,
570
+ "spine2":3,
571
+ # "left_ankle":3,
572
+ # "right_ankle":3,
573
+ "spine3":3,
574
+ # "left_foot":3,
575
+ # "right_foot":3,
576
+ "neck":3,
577
+ "left_collar":3,
578
+ "right_collar":3,
579
+ "head":3,
580
+ "left_shoulder":3,
581
+ "right_shoulder":3,
582
+ "left_elbow":3,
583
+ "right_elbow":3,
584
+ "left_wrist":3,
585
+ "right_wrist":3,
586
+ # "jaw":3,
587
+ # "left_eye_smplhf":3,
588
+ # "right_eye_smplhf":3,
589
+ # "left_index1":3,
590
+ # "left_index2":3,
591
+ # "left_index3":3,
592
+ # "left_middle1":3,
593
+ # "left_middle2":3,
594
+ # "left_middle3":3,
595
+ # "left_pinky1":3,
596
+ # "left_pinky2":3,
597
+ # "left_pinky3":3,
598
+ # "left_ring1":3,
599
+ # "left_ring2":3,
600
+ # "left_ring3":3,
601
+ # "left_thumb1":3,
602
+ # "left_thumb2":3,
603
+ # "left_thumb3":3,
604
+ # "right_index1":3,
605
+ # "right_index2":3,
606
+ # "right_index3":3,
607
+ # "right_middle1":3,
608
+ # "right_middle2":3,
609
+ # "right_middle3":3,
610
+ # "right_pinky1":3,
611
+ # "right_pinky2":3,
612
+ # "right_pinky3":3,
613
+ # "right_ring1":3,
614
+ # "right_ring2":3,
615
+ # "right_ring3":3,
616
+ # "right_thumb1":3,
617
+ # "right_thumb2":3,
618
+ # "right_thumb3":3,
619
+ },
620
+
621
+ "beat_smplx_hands": {
622
+ #"pelvis":3,
623
+ # "left_hip":3,
624
+ # "right_hip":3,
625
+ # "spine1":3,
626
+ # "left_knee":3,
627
+ # "right_knee":3,
628
+ # "spine2":3,
629
+ # "left_ankle":3,
630
+ # "right_ankle":3,
631
+ # "spine3":3,
632
+ # "left_foot":3,
633
+ # "right_foot":3,
634
+ # "neck":3,
635
+ # "left_collar":3,
636
+ # "right_collar":3,
637
+ # "head":3,
638
+ # "left_shoulder":3,
639
+ # "right_shoulder":3,
640
+ # "left_elbow":3,
641
+ # "right_elbow":3,
642
+ # "left_wrist":3,
643
+ # "right_wrist":3,
644
+ # "jaw":3,
645
+ # "left_eye_smplhf":3,
646
+ # "right_eye_smplhf":3,
647
+ "left_index1":3,
648
+ "left_index2":3,
649
+ "left_index3":3,
650
+ "left_middle1":3,
651
+ "left_middle2":3,
652
+ "left_middle3":3,
653
+ "left_pinky1":3,
654
+ "left_pinky2":3,
655
+ "left_pinky3":3,
656
+ "left_ring1":3,
657
+ "left_ring2":3,
658
+ "left_ring3":3,
659
+ "left_thumb1":3,
660
+ "left_thumb2":3,
661
+ "left_thumb3":3,
662
+ "right_index1":3,
663
+ "right_index2":3,
664
+ "right_index3":3,
665
+ "right_middle1":3,
666
+ "right_middle2":3,
667
+ "right_middle3":3,
668
+ "right_pinky1":3,
669
+ "right_pinky2":3,
670
+ "right_pinky3":3,
671
+ "right_ring1":3,
672
+ "right_ring2":3,
673
+ "right_ring3":3,
674
+ "right_thumb1":3,
675
+ "right_thumb2":3,
676
+ "right_thumb3":3,
677
+ },
678
+
679
+ "beat_smplx_lower": {
680
+ "pelvis":3,
681
+ "left_hip":3,
682
+ "right_hip":3,
683
+ # "spine1":3,
684
+ "left_knee":3,
685
+ "right_knee":3,
686
+ # "spine2":3,
687
+ "left_ankle":3,
688
+ "right_ankle":3,
689
+ # "spine3":3,
690
+ "left_foot":3,
691
+ "right_foot":3,
692
+ # "neck":3,
693
+ # "left_collar":3,
694
+ # "right_collar":3,
695
+ # "head":3,
696
+ # "left_shoulder":3,
697
+ # "right_shoulder":3,
698
+ # "left_elbow":3,
699
+ # "right_elbow":3,
700
+ # "left_wrist":3,
701
+ # "right_wrist":3,
702
+ # "jaw":3,
703
+ # "left_eye_smplhf":3,
704
+ # "right_eye_smplhf":3,
705
+ # "left_index1":3,
706
+ # "left_index2":3,
707
+ # "left_index3":3,
708
+ # "left_middle1":3,
709
+ # "left_middle2":3,
710
+ # "left_middle3":3,
711
+ # "left_pinky1":3,
712
+ # "left_pinky2":3,
713
+ # "left_pinky3":3,
714
+ # "left_ring1":3,
715
+ # "left_ring2":3,
716
+ # "left_ring3":3,
717
+ # "left_thumb1":3,
718
+ # "left_thumb2":3,
719
+ # "left_thumb3":3,
720
+ # "right_index1":3,
721
+ # "right_index2":3,
722
+ # "right_index3":3,
723
+ # "right_middle1":3,
724
+ # "right_middle2":3,
725
+ # "right_middle3":3,
726
+ # "right_pinky1":3,
727
+ # "right_pinky2":3,
728
+ # "right_pinky3":3,
729
+ # "right_ring1":3,
730
+ # "right_ring2":3,
731
+ # "right_ring3":3,
732
+ # "right_thumb1":3,
733
+ # "right_thumb2":3,
734
+ # "right_thumb3":3,
735
+ },
736
+
737
+ "beat_smplx_face": {
738
+ # "pelvis":3,
739
+ # "left_hip":3,
740
+ # "right_hip":3,
741
+ # # "spine1":3,
742
+ # "left_knee":3,
743
+ # "right_knee":3,
744
+ # # "spine2":3,
745
+ # "left_ankle":3,
746
+ # "right_ankle":3,
747
+ # # "spine3":3,
748
+ # "left_foot":3,
749
+ # "right_foot":3,
750
+ # "neck":3,
751
+ # "left_collar":3,
752
+ # "right_collar":3,
753
+ # "head":3,
754
+ # "left_shoulder":3,
755
+ # "right_shoulder":3,
756
+ # "left_elbow":3,
757
+ # "right_elbow":3,
758
+ # "left_wrist":3,
759
+ # "right_wrist":3,
760
+ "jaw":3,
761
+ # "left_eye_smplhf":3,
762
+ # "right_eye_smplhf":3,
763
+ # "left_index1":3,
764
+ # "left_index2":3,
765
+ # "left_index3":3,
766
+ # "left_middle1":3,
767
+ # "left_middle2":3,
768
+ # "left_middle3":3,
769
+ # "left_pinky1":3,
770
+ # "left_pinky2":3,
771
+ # "left_pinky3":3,
772
+ # "left_ring1":3,
773
+ # "left_ring2":3,
774
+ # "left_ring3":3,
775
+ # "left_thumb1":3,
776
+ # "left_thumb2":3,
777
+ # "left_thumb3":3,
778
+ # "right_index1":3,
779
+ # "right_index2":3,
780
+ # "right_index3":3,
781
+ # "right_middle1":3,
782
+ # "right_middle2":3,
783
+ # "right_middle3":3,
784
+ # "right_pinky1":3,
785
+ # "right_pinky2":3,
786
+ # "right_pinky3":3,
787
+ # "right_ring1":3,
788
+ # "right_ring2":3,
789
+ # "right_ring3":3,
790
+ # "right_thumb1":3,
791
+ # "right_thumb2":3,
792
+ # "right_thumb3":3,
793
+ },
794
+
795
+ "beat_joints": {
796
+ 'Hips': [6,6],
797
+ 'Spine': [3,9],
798
+ 'Spine1': [3,12],
799
+ 'Spine2': [3,15],
800
+ 'Spine3': [3,18],
801
+ 'Neck': [3,21],
802
+ 'Neck1': [3,24],
803
+ 'Head': [3,27],
804
+ 'HeadEnd': [3,30],
805
+
806
+ 'RShoulder': [3,33],
807
+ 'RArm': [3,36],
808
+ 'RArm1': [3,39],
809
+ 'RHand': [3,42],
810
+ 'RHandM1': [3,45],
811
+ 'RHandM2': [3,48],
812
+ 'RHandM3': [3,51],
813
+ 'RHandM4': [3,54],
814
+
815
+ 'RHandR': [3,57],
816
+ 'RHandR1': [3,60],
817
+ 'RHandR2': [3,63],
818
+ 'RHandR3': [3,66],
819
+ 'RHandR4': [3,69],
820
+
821
+ 'RHandP': [3,72],
822
+ 'RHandP1': [3,75],
823
+ 'RHandP2': [3,78],
824
+ 'RHandP3': [3,81],
825
+ 'RHandP4': [3,84],
826
+
827
+ 'RHandI': [3,87],
828
+ 'RHandI1': [3,90],
829
+ 'RHandI2': [3,93],
830
+ 'RHandI3': [3,96],
831
+ 'RHandI4': [3,99],
832
+
833
+ 'RHandT1': [3,102],
834
+ 'RHandT2': [3,105],
835
+ 'RHandT3': [3,108],
836
+ 'RHandT4': [3,111],
837
+
838
+ 'LShoulder': [3,114],
839
+ 'LArm': [3,117],
840
+ 'LArm1': [3,120],
841
+ 'LHand': [3,123],
842
+ 'LHandM1': [3,126],
843
+ 'LHandM2': [3,129],
844
+ 'LHandM3': [3,132],
845
+ 'LHandM4': [3,135],
846
+
847
+ 'LHandR': [3,138],
848
+ 'LHandR1': [3,141],
849
+ 'LHandR2': [3,144],
850
+ 'LHandR3': [3,147],
851
+ 'LHandR4': [3,150],
852
+
853
+ 'LHandP': [3,153],
854
+ 'LHandP1': [3,156],
855
+ 'LHandP2': [3,159],
856
+ 'LHandP3': [3,162],
857
+ 'LHandP4': [3,165],
858
+
859
+ 'LHandI': [3,168],
860
+ 'LHandI1': [3,171],
861
+ 'LHandI2': [3,174],
862
+ 'LHandI3': [3,177],
863
+ 'LHandI4': [3,180],
864
+
865
+ 'LHandT1': [3,183],
866
+ 'LHandT2': [3,186],
867
+ 'LHandT3': [3,189],
868
+ 'LHandT4': [3,192],
869
+
870
+ 'RUpLeg': [3,195],
871
+ 'RLeg': [3,198],
872
+ 'RFoot': [3,201],
873
+ 'RFootF': [3,204],
874
+ 'RToeBase': [3,207],
875
+ 'RToeBaseEnd': [3,210],
876
+
877
+ 'LUpLeg': [3,213],
878
+ 'LLeg': [3,216],
879
+ 'LFoot': [3,219],
880
+ 'LFootF': [3,222],
881
+ 'LToeBase': [3,225],
882
+ 'LToeBaseEnd': [3,228],},
883
+
884
+ "beat_full":{
885
+ 'Hips': 3,
886
+ 'Spine': 3 ,
887
+ 'Spine1': 3 ,
888
+ 'Spine2': 3 ,
889
+ 'Spine3': 3 ,
890
+ 'Neck': 3 ,
891
+ 'Neck1': 3 ,
892
+ 'Head' : 3,
893
+ 'HeadEnd' : 3,
894
+ 'RShoulder': 3 ,
895
+ 'RArm': 3 ,
896
+ 'RArm1': 3 ,
897
+ 'RHand': 3 ,
898
+ 'RHandM1': 3 ,
899
+ 'RHandM2': 3 ,
900
+ 'RHandM3': 3 ,
901
+ 'RHandM4': 3 ,
902
+ 'RHandR': 3 ,
903
+ 'RHandR1': 3 ,
904
+ 'RHandR2': 3 ,
905
+ 'RHandR3': 3 ,
906
+ 'RHandR4': 3 ,
907
+ 'RHandP': 3 ,
908
+ 'RHandP1': 3 ,
909
+ 'RHandP2': 3 ,
910
+ 'RHandP3': 3 ,
911
+ 'RHandP4': 3 ,
912
+ 'RHandI': 3 ,
913
+ 'RHandI1': 3 ,
914
+ 'RHandI2': 3 ,
915
+ 'RHandI3': 3 ,
916
+ 'RHandI4': 3 ,
917
+ 'RHandT1': 3 ,
918
+ 'RHandT2': 3 ,
919
+ 'RHandT3': 3 ,
920
+ 'RHandT4': 3 ,
921
+ 'LShoulder': 3 ,
922
+ 'LArm': 3 ,
923
+ 'LArm1': 3 ,
924
+ 'LHand': 3 ,
925
+ 'LHandM1': 3 ,
926
+ 'LHandM2': 3 ,
927
+ 'LHandM3': 3 ,
928
+ 'LHandM4': 3 ,
929
+ 'LHandR': 3 ,
930
+ 'LHandR1': 3 ,
931
+ 'LHandR2': 3 ,
932
+ 'LHandR3': 3 ,
933
+ 'LHandR4': 3 ,
934
+ 'LHandP': 3 ,
935
+ 'LHandP1': 3 ,
936
+ 'LHandP2': 3 ,
937
+ 'LHandP3': 3 ,
938
+ 'LHandP4': 3 ,
939
+ 'LHandI': 3 ,
940
+ 'LHandI1': 3 ,
941
+ 'LHandI2': 3 ,
942
+ 'LHandI3': 3 ,
943
+ 'LHandI4': 3 ,
944
+ 'LHandT1': 3 ,
945
+ 'LHandT2': 3 ,
946
+ 'LHandT3': 3 ,
947
+ 'LHandT4': 3 ,
948
+ 'RUpLeg': 3,
949
+ 'RLeg': 3,
950
+ 'RFoot': 3,
951
+ 'RFootF': 3,
952
+ 'RToeBase': 3,
953
+ 'RToeBaseEnd': 3,
954
+ 'LUpLeg': 3,
955
+ 'LLeg': 3,
956
+ 'LFoot': 3,
957
+ 'LFootF': 3,
958
+ 'LToeBase': 3,
959
+ 'LToeBaseEnd': 3,
960
+ },
961
+
962
+ "japanese_joints":{
963
+ 'Hips': [6,6],
964
+ 'Spine': [6,12],
965
+ 'Spine1': [6,18],
966
+ 'Spine2': [6,24],
967
+ 'Spine3': [6,30],
968
+ 'Neck': [6,36],
969
+ 'Neck1': [6,42],
970
+ 'Head': [6,48],
971
+ 'RShoulder': [6,54],
972
+ 'RArm': [6,60],
973
+ 'RArm1': [6,66],
974
+ 'RHand': [6,72],
975
+ 'RHandM1': [6,78],
976
+ 'RHandM2': [6,84],
977
+ 'RHandM3': [6,90],
978
+ 'RHandR': [6,96],
979
+ 'RHandR1': [6,102],
980
+ 'RHandR2': [6,108],
981
+ 'RHandR3': [6,114],
982
+ 'RHandP': [6,120],
983
+ 'RHandP1': [6,126],
984
+ 'RHandP2': [6,132],
985
+ 'RHandP3': [6,138],
986
+ 'RHandI': [6,144],
987
+ 'RHandI1': [6,150],
988
+ 'RHandI2': [6,156],
989
+ 'RHandI3': [6,162],
990
+ 'RHandT1': [6,168],
991
+ 'RHandT2': [6,174],
992
+ 'RHandT3': [6,180],
993
+ 'LShoulder': [6,186],
994
+ 'LArm': [6,192],
995
+ 'LArm1': [6,198],
996
+ 'LHand': [6,204],
997
+ 'LHandM1': [6,210],
998
+ 'LHandM2': [6,216],
999
+ 'LHandM3': [6,222],
1000
+ 'LHandR': [6,228],
1001
+ 'LHandR1': [6,234],
1002
+ 'LHandR2': [6,240],
1003
+ 'LHandR3': [6,246],
1004
+ 'LHandP': [6,252],
1005
+ 'LHandP1': [6,258],
1006
+ 'LHandP2': [6,264],
1007
+ 'LHandP3': [6,270],
1008
+ 'LHandI': [6,276],
1009
+ 'LHandI1': [6,282],
1010
+ 'LHandI2': [6,288],
1011
+ 'LHandI3': [6,294],
1012
+ 'LHandT1': [6,300],
1013
+ 'LHandT2': [6,306],
1014
+ 'LHandT3': [6,312],
1015
+ 'RUpLeg': [6,318],
1016
+ 'RLeg': [6,324],
1017
+ 'RFoot': [6,330],
1018
+ 'RFootF': [6,336],
1019
+ 'RToeBase': [6,342],
1020
+ 'LUpLeg': [6,348],
1021
+ 'LLeg': [6,354],
1022
+ 'LFoot': [6,360],
1023
+ 'LFootF': [6,366],
1024
+ 'LToeBase': [6,372],},
1025
+
1026
+ "yostar":{
1027
+ 'Hips': [6,6],
1028
+ 'Spine': [3,9],
1029
+ 'Spine1': [3,12],
1030
+ 'Bone040': [3,15],
1031
+ 'Bone041': [3,18],
1032
+
1033
+ 'Bone034': [3,21],
1034
+ 'Bone035': [3,24],
1035
+ 'Bone036': [3,27],
1036
+ 'Bone037': [3,30],
1037
+ 'Bone038': [3,33],
1038
+ 'Bone039': [3,36],
1039
+
1040
+ 'RibbonL1': [3,39],
1041
+ 'RibbonL1_end': [3,42],
1042
+
1043
+ 'Chest': [3,45],
1044
+ 'L_eri': [3,48],
1045
+ 'R_eri': [3,51],
1046
+ 'Neck': [3,54],
1047
+ 'Head': [3,57],
1048
+ 'Head_end': [3,60],
1049
+
1050
+ 'RBackHair_1': [3,63],
1051
+ 'RBackHair_2': [3,66],
1052
+ 'RBackHair_3': [3,69],
1053
+ 'RBackHair_4': [3,72],
1054
+ 'RBackHair_end': [3,75],
1055
+
1056
+ 'RFrontHair': [3,78],
1057
+ 'CFrontHair_1': [3,81],
1058
+ 'CFrontHair_2': [3,84],
1059
+ 'CFrontHair_3': [3,87],
1060
+ 'CFrontHair_emd': [3,90],
1061
+
1062
+ 'LFrontHair_1': [3,93],
1063
+ 'LFrontHair_2': [3,96],
1064
+ 'LFrontHair_3': [3,99],
1065
+
1066
+ 'LBackHair_1': [3,102],
1067
+ 'LBackHair_2': [3,105],
1068
+ 'LBackHair_3': [3,108],
1069
+ 'LBackHair_4': [3,111],
1070
+ 'LBackHair_end': [3,114],
1071
+
1072
+ 'LSideHair_1': [3,117],
1073
+ 'LSideHair_2': [3,120],
1074
+ 'LSideHair_3': [3,123],
1075
+ 'LSideHair_4': [3,126],
1076
+ 'LSideHair_5': [3,129],
1077
+ 'LSideHair_6': [3,132],
1078
+ 'LSideHair_7': [3,135],
1079
+ 'LSideHair_end': [3,138],
1080
+
1081
+ 'CBackHair_1': [3,141],
1082
+ 'CBackHair_2': [3,144],
1083
+ 'CBackHair_3': [3,147],
1084
+ 'CBackHair_4': [3,150],
1085
+ 'CBackHair_end': [3,153],
1086
+
1087
+ 'RSideHair_1': [3,156],
1088
+ 'RSideHair_2': [3,159],
1089
+ 'RSideHair_3': [3,162],
1090
+ 'RSideHair_4': [3,165],
1091
+
1092
+ 'RibbonR_1': [3,168],
1093
+ 'RibbonR_2': [3,171],
1094
+ 'RibbonR_3': [3,174],
1095
+
1096
+ 'RibbonL_1': [3,177],
1097
+ 'RibbonL_2': [3,180],
1098
+ 'RibbonL_3': [3,183],
1099
+
1100
+ 'LeftEye': [3,186],
1101
+ 'LeftEye_end': [3,189],
1102
+ 'RightEye': [3,192],
1103
+ 'RightEye_end': [3,195],
1104
+
1105
+ 'LeftShoulder': [3,198],
1106
+ 'LeftArm': [3,201],
1107
+ 'LeftForearm': [3,204],
1108
+ 'LeftHand': [3,207],
1109
+ 'LeftHandThumb1': [3,210],
1110
+ 'LeftHandThumb2': [3,213],
1111
+ 'LeftHandThumb3': [3,216],
1112
+ 'LeftHandThumb_end': [3,219],
1113
+
1114
+ 'LeftHandIndex1': [3,222],
1115
+ 'LeftHandIndex2': [3,225],
1116
+ 'LeftHandIndex3': [3,228],
1117
+ 'LeftHandIndex_end': [3,231],
1118
+
1119
+ 'LeftHandMiddle1': [3,234],
1120
+ 'LeftHandMiddle2': [3,237],
1121
+ 'LeftHandMiddle3': [3,240],
1122
+ 'LeftHandMiddle_end': [3,243],
1123
+
1124
+ 'LeftHandRing1': [3,246],
1125
+ 'LeftHandRing2': [3,249],
1126
+ 'LeftHandRing3': [3,252],
1127
+ 'LeftHandRing_end': [3,255],
1128
+
1129
+ 'LeftHandPinky1': [3,258],
1130
+ 'LeftHandPinky2': [3,261],
1131
+ 'LeftHandPinky3': [3,264],
1132
+ 'LeftHandPinky_end': [3,267],
1133
+
1134
+ 'RightShoulder': [3,270],
1135
+ 'RightArm': [3,273],
1136
+ 'RightForearm': [3,276],
1137
+ 'RightHand': [3,279],
1138
+ 'RightHandThumb1': [3,282],
1139
+ 'RightHandThumb2': [3,285],
1140
+ 'RightHandThumb3': [3,288],
1141
+ 'RightHandThumb_end': [3,291],
1142
+
1143
+ 'RightHandIndex1': [3,294],
1144
+ 'RightHandIndex2': [3,297],
1145
+ 'RightHandIndex3': [3,300],
1146
+ 'RightHandIndex_end': [3,303],
1147
+
1148
+ 'RightHandMiddle1': [3,306],
1149
+ 'RightHandMiddle2': [3,309],
1150
+ 'RightHandMiddle3': [3,312],
1151
+ 'RightHandMiddle_end': [3,315],
1152
+
1153
+ 'RightHandRing1': [3,318],
1154
+ 'RightHandRing2': [3,321],
1155
+ 'RightHandRing3': [3,324],
1156
+ 'RightHandRing_end': [3,327],
1157
+
1158
+ 'RightHandPinky1': [3,330],
1159
+ 'RightHandPinky2': [3,333],
1160
+ 'RightHandPinky3': [3,336],
1161
+ 'RightHandPinky_end': [3,339],
1162
+
1163
+ 'RibbonR1': [3,342],
1164
+ 'RibbonR1_end': [3,345],
1165
+ 'RibbonR2': [3,348],
1166
+ 'RibbonR2_end': [3,351],
1167
+ 'RibbonL2': [3,354],
1168
+ 'RibbonL2_end': [3,357],
1169
+
1170
+ 'LeftUpLeg': [3,360],
1171
+ 'LeftLeg': [3,363],
1172
+ 'LeftFoot': [3,366],
1173
+ 'LeftToe': [3,369],
1174
+ 'LeftToe_end': [3,372],
1175
+
1176
+ 'RightUpLeg': [3,375],
1177
+ 'RightLEg': [3,378],
1178
+ 'RightFoot': [3,381],
1179
+ 'RightToe': [3,384],
1180
+ 'RightToe_end': [3,387],
1181
+
1182
+ 'bone_skirtF00': [3, 390],
1183
+ 'bone_skirtF01': [3, 393],
1184
+ 'bone_skirtF02': [3, 396],
1185
+ 'bone_skirtF03': [3, 399],
1186
+ 'Bone020': [3, 402],
1187
+ 'Bone026': [3, 405],
1188
+
1189
+ 'bone_skirtF_R_00': [3, 408],
1190
+ 'bone_skirtF_R_01': [3, 411],
1191
+ 'bone_skirtF_R_02': [3, 414],
1192
+ 'bone_skirtF_R_03': [3, 417],
1193
+ 'Bone019': [3, 420],
1194
+ 'Bone028': [3, 423],
1195
+
1196
+ 'bone_skirtR00': [3, 426],
1197
+ 'bone_skirtR01': [3, 429],
1198
+ 'bone_skirtR02': [3, 432],
1199
+ 'bone_skirtR03': [3, 435],
1200
+ 'Bone018': [3, 438],
1201
+ 'Bone029': [3, 441],
1202
+
1203
+ 'bone_skirtF_L_00': [3, 444],
1204
+ 'bone_skirtF_L_01': [3, 447],
1205
+ 'bone_skirtF_L_02': [3, 450],
1206
+ 'bone_skirtF_L_03': [3, 453],
1207
+ 'Bone021': [3, 456],
1208
+ 'Bone027': [3, 459],
1209
+
1210
+ 'bone_skirtL00': [3, 462],
1211
+ 'bone_skirtL01': [3, 465],
1212
+ 'bone_skirtL02': [3, 468],
1213
+ 'bone_skirtL03': [3, 471],
1214
+ 'Bone022': [3, 474],
1215
+ 'Bone033': [3, 477],
1216
+
1217
+ 'bone_skirtB_L_00': [3, 480],
1218
+ 'bone_skirtB_L_01': [3, 483],
1219
+ 'bone_skirtB_L_02': [3, 486],
1220
+ 'bone_skirtB_L_03': [3, 489],
1221
+ 'Bone023': [3, 492],
1222
+ 'Bone032': [3, 495],
1223
+
1224
+ 'bone_skirtB00': [3, 498],
1225
+ 'bone_skirtB01': [3, 501],
1226
+ 'bone_skirtB02': [3, 504],
1227
+ 'bone_skirtB03': [3, 507],
1228
+ 'Bone024': [3, 510],
1229
+ 'Bone031': [3, 513],
1230
+
1231
+ 'bone_skirtB_R_00': [3, 516],
1232
+ 'bone_skirtB_R_01': [3, 519],
1233
+ 'bone_skirtB_R_02': [3, 521],
1234
+ 'bone_skirtB_R_03': [3, 524],
1235
+ 'Bone025': [3, 527],
1236
+ 'Bone030': [3, 530],
1237
+ },
1238
+
1239
+ "yostar_fullbody_213":{
1240
+ 'Hips': 3 ,
1241
+ 'Spine': 3 ,
1242
+ 'Spine1': 3 ,
1243
+ 'Chest': 3 ,
1244
+ 'L_eri': 3 ,
1245
+ 'R_eri': 3 ,
1246
+ 'Neck': 3 ,
1247
+ 'Head': 3 ,
1248
+ 'Head_end': 3 ,
1249
+
1250
+ 'LeftEye': 3,
1251
+ 'LeftEye_end': 3,
1252
+ 'RightEye': 3,
1253
+ 'RightEye_end': 3,
1254
+
1255
+ 'LeftShoulder': 3,
1256
+ 'LeftArm': 3,
1257
+ 'LeftForearm': 3,
1258
+ 'LeftHand': 3,
1259
+ 'LeftHandThumb1': 3,
1260
+ 'LeftHandThumb2': 3,
1261
+ 'LeftHandThumb3': 3,
1262
+ 'LeftHandThumb_end': 3,
1263
+
1264
+ 'LeftHandIndex1': 3,
1265
+ 'LeftHandIndex2': 3,
1266
+ 'LeftHandIndex3': 3,
1267
+ 'LeftHandIndex_end': 3,
1268
+
1269
+ 'LeftHandMiddle1': 3,
1270
+ 'LeftHandMiddle2': 3,
1271
+ 'LeftHandMiddle3': 3,
1272
+ 'LeftHandMiddle_end': 3,
1273
+
1274
+ 'LeftHandRing1': 3,
1275
+ 'LeftHandRing2': 3,
1276
+ 'LeftHandRing3': 3,
1277
+ 'LeftHandRing_end': 3,
1278
+
1279
+ 'LeftHandPinky1': 3,
1280
+ 'LeftHandPinky2': 3,
1281
+ 'LeftHandPinky3': 3,
1282
+ 'LeftHandPinky_end':3,
1283
+
1284
+ 'RightShoulder': 3,
1285
+ 'RightArm': 3,
1286
+ 'RightForearm': 3,
1287
+ 'RightHand': 3,
1288
+ 'RightHandThumb1': 3,
1289
+ 'RightHandThumb2': 3,
1290
+ 'RightHandThumb3': 3,
1291
+ 'RightHandThumb_end': 3,
1292
+
1293
+ 'RightHandIndex1': 3,
1294
+ 'RightHandIndex2': 3,
1295
+ 'RightHandIndex3': 3,
1296
+ 'RightHandIndex_end': 3,
1297
+
1298
+ 'RightHandMiddle1': 3,
1299
+ 'RightHandMiddle2': 3,
1300
+ 'RightHandMiddle3': 3,
1301
+ 'RightHandMiddle_end': 3,
1302
+
1303
+ 'RightHandRing1': 3,
1304
+ 'RightHandRing2': 3,
1305
+ 'RightHandRing3': 3,
1306
+ 'RightHandRing_end': 3,
1307
+
1308
+ 'RightHandPinky1': 3,
1309
+ 'RightHandPinky2': 3,
1310
+ 'RightHandPinky3': 3,
1311
+ 'RightHandPinky_end': 3,
1312
+
1313
+ 'LeftUpLeg': 3,
1314
+ 'LeftLeg': 3,
1315
+ 'LeftFoot': 3,
1316
+ 'LeftToe': 3,
1317
+ 'LeftToe_end': 3,
1318
+
1319
+ 'RightUpLeg': 3,
1320
+ 'RightLEg': 3,
1321
+ 'RightFoot': 3,
1322
+ 'RightToe': 3,
1323
+ 'RightToe_end': 3,
1324
+ },
1325
+ "yostar_mainbody_48": {
1326
+ #'Hips': 3 ,
1327
+ 'Spine': 3 ,
1328
+ 'Spine1': 3 ,
1329
+ 'Chest': 3 ,
1330
+ 'L_eri': 3 ,
1331
+ 'R_eri': 3 ,
1332
+ 'Neck': 3 ,
1333
+ 'Head': 3 ,
1334
+ 'Head_end': 3 ,
1335
+
1336
+ 'LeftShoulder': 3,
1337
+ 'LeftArm': 3,
1338
+ 'LeftForearm': 3,
1339
+ 'LeftHand': 3,
1340
+
1341
+ 'RightShoulder': 3,
1342
+ 'RightArm': 3,
1343
+ 'RightForearm': 3,
1344
+ 'RightHand': 3,
1345
+ },
1346
+ "yostar_mainbody_69": {
1347
+ 'Hips': 3 ,
1348
+ 'Spine': 3 ,
1349
+ 'Spine1': 3 ,
1350
+ 'Chest': 3 ,
1351
+ 'L_eri': 3 ,
1352
+ 'R_eri': 3 ,
1353
+ 'Neck': 3 ,
1354
+ 'Head': 3 ,
1355
+ 'Head_end': 3 ,
1356
+
1357
+ 'LeftShoulder': 3,
1358
+ 'LeftArm': 3,
1359
+ 'LeftForearm': 3,
1360
+ 'LeftHand': 3,
1361
+
1362
+ 'RightShoulder': 3,
1363
+ 'RightArm': 3,
1364
+ 'RightForearm': 3,
1365
+ 'RightHand': 3,
1366
+
1367
+ 'LeftUpLeg': 3,
1368
+ 'LeftLeg': 3,
1369
+ 'LeftFoot': 3,
1370
+
1371
+ 'RightUpLeg': 3,
1372
+ 'RightLEg': 3,
1373
+ 'RightFoot': 3,
1374
+ },
1375
+
1376
+ "yostar_upbody_168": {
1377
+ #'Hips': 3 ,
1378
+ 'Spine': 3 ,
1379
+ 'Spine1': 3 ,
1380
+ 'Chest': 3 ,
1381
+ 'L_eri': 3 ,
1382
+ 'R_eri': 3 ,
1383
+ 'Neck': 3 ,
1384
+ 'Head': 3 ,
1385
+ 'Head_end': 3 ,
1386
+
1387
+ 'LeftShoulder': 3,
1388
+ 'LeftArm': 3,
1389
+ 'LeftForearm': 3,
1390
+ 'LeftHand': 3,
1391
+ 'LeftHandThumb1': 3,
1392
+ 'LeftHandThumb2': 3,
1393
+ 'LeftHandThumb3': 3,
1394
+ 'LeftHandThumb_end': 3,
1395
+
1396
+ 'LeftHandIndex1': 3,
1397
+ 'LeftHandIndex2': 3,
1398
+ 'LeftHandIndex3': 3,
1399
+ 'LeftHandIndex_end': 3,
1400
+
1401
+ 'LeftHandMiddle1': 3,
1402
+ 'LeftHandMiddle2': 3,
1403
+ 'LeftHandMiddle3': 3,
1404
+ 'LeftHandMiddle_end': 3,
1405
+
1406
+ 'LeftHandRing1': 3,
1407
+ 'LeftHandRing2': 3,
1408
+ 'LeftHandRing3': 3,
1409
+ 'LeftHandRing_end': 3,
1410
+
1411
+ 'LeftHandPinky1': 3,
1412
+ 'LeftHandPinky2': 3,
1413
+ 'LeftHandPinky3': 3,
1414
+ 'LeftHandPinky_end':3,
1415
+
1416
+ 'RightShoulder': 3,
1417
+ 'RightArm': 3,
1418
+ 'RightForearm': 3,
1419
+ 'RightHand': 3,
1420
+ 'RightHandThumb1': 3,
1421
+ 'RightHandThumb2': 3,
1422
+ 'RightHandThumb3': 3,
1423
+ 'RightHandThumb_end': 3,
1424
+
1425
+ 'RightHandIndex1': 3,
1426
+ 'RightHandIndex2': 3,
1427
+ 'RightHandIndex3': 3,
1428
+ 'RightHandIndex_end': 3,
1429
+
1430
+ 'RightHandMiddle1': 3,
1431
+ 'RightHandMiddle2': 3,
1432
+ 'RightHandMiddle3': 3,
1433
+ 'RightHandMiddle_end': 3,
1434
+
1435
+ 'RightHandRing1': 3,
1436
+ 'RightHandRing2': 3,
1437
+ 'RightHandRing3': 3,
1438
+ 'RightHandRing_end': 3,
1439
+
1440
+ 'RightHandPinky1': 3,
1441
+ 'RightHandPinky2': 3,
1442
+ 'RightHandPinky3': 3,
1443
+ 'RightHandPinky_end': 3,
1444
+ },
1445
+ "spine_neck_141":{
1446
+ 'Spine': 3 ,
1447
+ 'Neck': 3 ,
1448
+ 'Neck1': 3 ,
1449
+ 'RShoulder': 3 ,
1450
+ 'RArm': 3 ,
1451
+ 'RArm1': 3 ,
1452
+ 'RHand': 3 ,
1453
+ 'RHandM1': 3 ,
1454
+ 'RHandM2': 3 ,
1455
+ 'RHandM3': 3 ,
1456
+ 'RHandR': 3 ,
1457
+ 'RHandR1': 3 ,
1458
+ 'RHandR2': 3 ,
1459
+ 'RHandR3': 3 ,
1460
+ 'RHandP': 3 ,
1461
+ 'RHandP1': 3 ,
1462
+ 'RHandP2': 3 ,
1463
+ 'RHandP3': 3 ,
1464
+ 'RHandI': 3 ,
1465
+ 'RHandI1': 3 ,
1466
+ 'RHandI2': 3 ,
1467
+ 'RHandI3': 3 ,
1468
+ 'RHandT1': 3 ,
1469
+ 'RHandT2': 3 ,
1470
+ 'RHandT3': 3 ,
1471
+ 'LShoulder': 3 ,
1472
+ 'LArm': 3 ,
1473
+ 'LArm1': 3 ,
1474
+ 'LHand': 3 ,
1475
+ 'LHandM1': 3 ,
1476
+ 'LHandM2': 3 ,
1477
+ 'LHandM3': 3 ,
1478
+ 'LHandR': 3 ,
1479
+ 'LHandR1': 3 ,
1480
+ 'LHandR2': 3 ,
1481
+ 'LHandR3': 3 ,
1482
+ 'LHandP': 3 ,
1483
+ 'LHandP1': 3 ,
1484
+ 'LHandP2': 3 ,
1485
+ 'LHandP3': 3 ,
1486
+ 'LHandI': 3 ,
1487
+ 'LHandI1': 3 ,
1488
+ 'LHandI2': 3 ,
1489
+ 'LHandI3': 3 ,
1490
+ 'LHandT1': 3 ,
1491
+ 'LHandT2': 3 ,
1492
+ 'LHandT3': 3 ,},
1493
+ }
1494
+
1495
+
1496
+ class FIDCalculator(object):
1497
+ '''
1498
+ todo
1499
+ '''
1500
+ def __init__(self):
1501
+ self.gt_rot = None # pandas dataframe for n frames * joints * 6
1502
+ self.gt_pos = None # n frames * (joints + 13) * 3
1503
+ self.op_rot = None # pandas dataframe for n frames * joints * 6
1504
+ self.op_pos = None # n frames * (joints + 13) * 3
1505
+
1506
+
1507
+ def load(self, path, load_type, save_pos=False):
1508
+ '''
1509
+ select gt or op for load_type
1510
+ '''
1511
+ parser = BVHParser()
1512
+ parsed_data = parser.parse(path)
1513
+ if load_type == 'gt':
1514
+ self.gt_rot = parsed_data.values
1515
+ elif load_type == 'op':
1516
+ self.op_rot = parsed_data.values
1517
+ else: print('error, select gt or op for load_type')
1518
+
1519
+ if save_pos:
1520
+ mp = MocapParameterizer('position')
1521
+ positions = mp.fit_transform([parsed_data])
1522
+ if load_type == 'gt':
1523
+ self.gt_pos = positions[0].values
1524
+ elif load_type == 'op':
1525
+ self.op_pos = positions[0].values
1526
+ else: print('error, select gt or op for load_type')
1527
+
1528
+
1529
+ def _joint_selector(self, selected_joints, ori_data):
1530
+ selected_data = pd.DataFrame(columns=[])
1531
+
1532
+ for joint_name in selected_joints:
1533
+ selected_data[joint_name] = ori_data[joint_name]
1534
+ return selected_data.to_numpy()
1535
+
1536
+
1537
+ def cal_vol(self, dtype):
1538
+ if dtype == 'pos':
1539
+ gt = self.gt_pos
1540
+ op = self.op_pos
1541
+ else:
1542
+ gt = self.gt_rot
1543
+ op = self.op_rot
1544
+
1545
+ gt_v = gt.to_numpy()[1:, :] - gt.to_numpy()[0:-1, :]
1546
+ op_v = op.to_numpy()[1:, :] - op.to_numpy()[0:-1, :]
1547
+ if dtype == 'pos':
1548
+ self.gt_vol_pos = pd.DataFrame(gt_v, columns = gt.columns.tolist())
1549
+ self.op_vol_pos = pd.DataFrame(op_v, columns = gt.columns.tolist())
1550
+ else:
1551
+ self.gt_vol_rot = pd.DataFrame(gt_v, columns = gt.columns.tolist())
1552
+ self.op_vol_rot = pd.DataFrame(op_v, columns = gt.columns.tolist())
1553
+
1554
+
1555
+ @staticmethod
1556
+ def frechet_distance(samples_A, samples_B):
1557
+ A_mu = np.mean(samples_A, axis=0)
1558
+ A_sigma = np.cov(samples_A, rowvar=False)
1559
+ B_mu = np.mean(samples_B, axis=0)
1560
+ B_sigma = np.cov(samples_B, rowvar=False)
1561
+ try:
1562
+ frechet_dist = FIDCalculator.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma)
1563
+ except ValueError:
1564
+ frechet_dist = 1e+10
1565
+ return frechet_dist
1566
+
1567
+
1568
+ @staticmethod
1569
+ def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
1570
+ """ from https://github.com/mseitzer/pytorch-fid/blob/master/fid_score.py """
1571
+ """Numpy implementation of the Frechet Distance.
1572
+ The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
1573
+ and X_2 ~ N(mu_2, C_2) is
1574
+ d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
1575
+ Stable version by Dougal J. Sutherland.
1576
+ Params:
1577
+ -- mu1 : Numpy array containing the activations of a layer of the
1578
+ inception net (like returned by the function 'get_predictions')
1579
+ for generated samples.
1580
+ -- mu2 : The sample mean over activations, precalculated on an
1581
+ representative data set.
1582
+ -- sigma1: The covariance matrix over activations for generated samples.
1583
+ -- sigma2: The covariance matrix over activations, precalculated on an
1584
+ representative data set.
1585
+ Returns:
1586
+ -- : The Frechet Distance.
1587
+ """
1588
+
1589
+ mu1 = np.atleast_1d(mu1)
1590
+ mu2 = np.atleast_1d(mu2)
1591
+ #print(mu1[0], mu2[0])
1592
+ sigma1 = np.atleast_2d(sigma1)
1593
+ sigma2 = np.atleast_2d(sigma2)
1594
+ #print(sigma1[0], sigma2[0])
1595
+ assert mu1.shape == mu2.shape, \
1596
+ 'Training and test mean vectors have different lengths'
1597
+ assert sigma1.shape == sigma2.shape, \
1598
+ 'Training and test covariances have different dimensions'
1599
+
1600
+ diff = mu1 - mu2
1601
+
1602
+ # Product might be almost singular
1603
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
1604
+ #print(diff, covmean[0])
1605
+ if not np.isfinite(covmean).all():
1606
+ msg = ('fid calculation produces singular product; '
1607
+ 'adding %s to diagonal of cov estimates') % eps
1608
+ print(msg)
1609
+ offset = np.eye(sigma1.shape[0]) * eps
1610
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
1611
+
1612
+ # Numerical error might give slight imaginary component
1613
+ if np.iscomplexobj(covmean):
1614
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
1615
+ m = np.max(np.abs(covmean.imag))
1616
+ raise ValueError('Imaginary component {}'.format(m))
1617
+ covmean = covmean.real
1618
+
1619
+ tr_covmean = np.trace(covmean)
1620
+
1621
+ return (diff.dot(diff) + np.trace(sigma1) +
1622
+ np.trace(sigma2) - 2 * tr_covmean)
1623
+
1624
+
1625
+ def calculate_fid(self, cal_type, joint_type, high_level_opt):
1626
+
1627
+ if cal_type == 'pos':
1628
+ if self.gt_pos.shape != self.op_pos.shape:
1629
+ min_val = min(self.gt_pos.shape[0],self.op_pos.shape[0])
1630
+ gt = self.gt_pos[:min_val]
1631
+ op = self.op_pos[:min_val]
1632
+ else:
1633
+ gt = self.gt_pos
1634
+ op = self.op_pos
1635
+ full_body = gt.columns.tolist()
1636
+ elif cal_type == 'rot':
1637
+ if self.gt_rot.shape != self.op_rot.shape:
1638
+ min_val = min(self.gt_rot.shape[0],self.op_rot.shape[0])
1639
+ gt = self.gt_rot[:min_val]
1640
+ op = self.op_rot[:min_val]
1641
+ else:
1642
+ gt = self.gt_rot
1643
+ op = self.op_rot
1644
+ full_body_with_offset = gt.columns.tolist()
1645
+ full_body = [o for o in full_body_with_offset if ('position' not in o)]
1646
+ elif cal_type == 'pos_vol':
1647
+ assert self.gt_vol_pos.shape == self.op_vol_pos.shape
1648
+ gt = self.gt_vol_pos
1649
+ op = self.op_vol_pos
1650
+ full_body_with_offset = gt.columns.tolist()
1651
+ full_body = gt.columns.tolist()
1652
+ elif cal_type == 'rot_vol':
1653
+ assert self.gt_vol_rot.shape == self.op_vol_rot.shape
1654
+ gt = self.gt_vol_rot
1655
+ op = self.op_vol_rot
1656
+ full_body_with_offset = gt.columns.tolist()
1657
+ full_body = [o for o in full_body_with_offset if ('position' not in o)]
1658
+ #print(f'full_body contains {len(full_body)//3} joints')
1659
+
1660
+ if joint_type == 'full_upper_body':
1661
+ selected_body = [o for o in full_body if ('Leg' not in o) and ('Foot' not in o) and ('Toe' not in o)]
1662
+ elif joint_type == 'upper_body':
1663
+ selected_body = [o for o in full_body if ('Hand' not in o) and ('Leg' not in o) and ('Foot' not in o) and ('Toe' not in o)]
1664
+ elif joint_type == 'fingers':
1665
+ selected_body = [o for o in full_body if ('Hand' in o)]
1666
+ elif joint_type == 'indivdual':
1667
+ pass
1668
+ else: print('error, plz select correct joint type')
1669
+ #print(f'calculate fid for {len(selected_body)//3} joints')
1670
+
1671
+ gt = self._joint_selector(selected_body, gt)
1672
+ op = self._joint_selector(selected_body, op)
1673
+
1674
+ if high_level_opt == 'fid':
1675
+ fid = FIDCalculator.frechet_distance(gt, op)
1676
+ return fid
1677
+ elif high_level_opt == 'var':
1678
+ var_gt = gt.var()
1679
+ var_op = op.var()
1680
+ return var_gt, var_op
1681
+ elif high_level_opt == 'mean':
1682
+ mean_gt = gt.mean()
1683
+ mean_op = op.mean()
1684
+ return mean_gt, mean_op
1685
+ else: return 0
1686
+
1687
+
1688
+ def result2target_vis(pose_version, res_bvhlist, save_path, demo_name, verbose=True):
1689
+ if "trinity" in pose_version:
1690
+ ori_list = joints_list[pose_version[6:-4]]
1691
+ target_list = joints_list[pose_version[6:]]
1692
+ file_content_length = 336
1693
+ elif "beat" in pose_version or "spine_neck_141" in pose_version:
1694
+ ori_list = joints_list["beat_joints"]
1695
+ target_list = joints_list["spine_neck_141"]
1696
+ file_content_length = 431
1697
+ elif "yostar" in pose_version:
1698
+ ori_list = joints_list["yostar"]
1699
+ target_list = joints_list[pose_version]
1700
+ file_content_length = 1056
1701
+ else:
1702
+ ori_list = joints_list["japanese_joints"]
1703
+ target_list = joints_list[pose_version]
1704
+ file_content_length = 366
1705
+
1706
+ bvh_files_dirs = sorted(glob.glob(f'{res_bvhlist}*.bvh'), key=str)
1707
+ #test_seq_list = os.list_dir(demo_name).sort()
1708
+
1709
+ counter = 0
1710
+ if not os.path.exists(save_path):
1711
+ os.makedirs(save_path)
1712
+ for i, bvh_file_dir in enumerate(bvh_files_dirs):
1713
+ short_name = bvh_file_dir.split("/")[-1][11:]
1714
+ #print(short_name)
1715
+ wirte_file = open(os.path.join(save_path, f'res_{short_name}'),'w+')
1716
+ with open(f"{demo_name}{short_name}",'r') as pose_data_pre:
1717
+ pose_data_pre_file = pose_data_pre.readlines()
1718
+ for j, line in enumerate(pose_data_pre_file[0:file_content_length]):
1719
+ wirte_file.write(line)
1720
+ offset_data = pose_data_pre_file[file_content_length]
1721
+ offset_data = np.fromstring(offset_data, dtype=float, sep=' ')
1722
+ wirte_file.close()
1723
+
1724
+ wirte_file = open(os.path.join(save_path, f'res_{short_name}'),'r')
1725
+ ori_lines = wirte_file.readlines()
1726
+ with open(bvh_file_dir, 'r') as pose_data:
1727
+ pose_data_file = pose_data.readlines()
1728
+ ori_lines[file_content_length-2] = 'Frames: ' + str(len(pose_data_file)-1) + '\n'
1729
+ wirte_file.close()
1730
+
1731
+ wirte_file = open(os.path.join(save_path, f'res_{short_name}'),'w+')
1732
+ wirte_file.writelines(i for i in ori_lines[:file_content_length])
1733
+ wirte_file.close()
1734
+
1735
+ with open(os.path.join(save_path, f'res_{short_name}'),'a+') as wirte_file:
1736
+ with open(bvh_file_dir, 'r') as pose_data:
1737
+ data_each_file = []
1738
+ pose_data_file = pose_data.readlines()
1739
+ for j, line in enumerate(pose_data_file):
1740
+ if not j:
1741
+ pass
1742
+ else:
1743
+ data = np.fromstring(line, dtype=float, sep=' ')
1744
+ data_rotation = offset_data.copy()
1745
+ for iii, (k, v) in enumerate(target_list.items()): # here is 147 rotations by 3
1746
+ #print(data_rotation[ori_list[k][1]-v:ori_list[k][1]], data[iii*3:iii*3+3])
1747
+ data_rotation[ori_list[k][1]-v:ori_list[k][1]] = data[iii*3:iii*3+3]
1748
+ data_each_file.append(data_rotation)
1749
+
1750
+ for line_data in data_each_file:
1751
+ line_data = np.array2string(line_data, max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
1752
+ wirte_file.write(line_data[1:-2]+'\n')
1753
+
1754
+ counter += 1
1755
+ if verbose:
1756
+ logger.info('data_shape:', data_rotation.shape, 'process:', counter, '/', len(bvh_files_dirs))
dataloaders/mix_sep.py ADDED
@@ -0,0 +1,637 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import math
4
+ import shutil
5
+ import numpy as np
6
+ import lmdb as lmdb
7
+ import textgrid as tg
8
+ import pandas as pd
9
+ import torch
10
+ import glob
11
+ import json
12
+ from termcolor import colored
13
+ from loguru import logger
14
+ from collections import defaultdict
15
+ from torch.utils.data import Dataset
16
+ import torch.distributed as dist
17
+ #import pyarrow
18
+ import pickle
19
+ import librosa
20
+ import smplx
21
+ import glob
22
+
23
+ from .build_vocab import Vocab
24
+ from .utils.audio_features import Wav2Vec2Model
25
+ from .data_tools import joints_list
26
+ from .utils import rotation_conversions as rc
27
+ from .utils import other_tools
28
+
29
+ # ACCAD 120
30
+ # BioMotionLab_NTroje 120
31
+ # CMU 很复杂
32
+ # EKUT 100
33
+ # Eyes_Japan_Dataset 很复杂
34
+ # HumanEva 很复杂
35
+ # KIT 100
36
+ # MPI_HDM05 120
37
+ # MPI_Limits 120
38
+ # MPI_mosh 很复杂
39
+ # SFU 120
40
+ # SSM_synced 很复杂
41
+ # TCD_handMocap 很复杂
42
+ # TotalCapture 60
43
+ # Transitions_mocap 120
44
+
45
+ all_sequences = [
46
+ 'ACCAD',
47
+ 'BioMotionLab_NTroje',
48
+ 'CMU',
49
+ 'EKUT',
50
+ 'Eyes_Japan_Dataset',
51
+ 'HumanEva',
52
+ 'KIT',
53
+ 'MPI_HDM05',
54
+ 'MPI_Limits',
55
+ 'MPI_mosh',
56
+ 'SFU',
57
+ 'SSM_synced',
58
+ 'TCD_handMocap',
59
+ 'TotalCapture',
60
+ 'Transitions_mocap',
61
+ ]
62
+ amass_test_split = ['Transitions_mocap', 'SSM_synced']
63
+ amass_vald_split = ['HumanEva', 'MPI_HDM05', 'SFU', 'MPI_mosh']
64
+ amass_train_split = ['BioMotionLab_NTroje', 'Eyes_Japan_Dataset', 'TotalCapture', 'KIT', 'ACCAD', 'CMU', 'MPI_Limits',
65
+ 'TCD_handMocap', 'EKUT']
66
+
67
+ # 上面这些spilt方式是MOTION CLIP的,但是由于motionx中的framerate处理有问题,我先暂且只挑部分数据集进行训练
68
+ # 这些都是120fps的
69
+ # amass_test_split = ['SFU']
70
+ # amass_vald_split = ['MPI_Limits']
71
+ # amass_train_split = ['BioMotionLab_NTroje', 'MPI_HDM05', 'ACCAD','Transitions_mocap']
72
+
73
+
74
+ amass_splits = {
75
+ 'test': amass_test_split,
76
+ 'val': amass_vald_split,
77
+ 'train': amass_train_split
78
+ }
79
+ # assert len(amass_splits['train'] + amass_splits['test'] + amass_splits['vald']) == len(all_sequences) == 15
80
+
81
+ class CustomDataset(Dataset):
82
+ def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
83
+ self.args = args
84
+ self.loader_type = loader_type
85
+
86
+ self.rank = 0
87
+ self.ori_stride = self.args.stride
88
+ self.ori_length = self.args.pose_length
89
+ self.alignment = [0,0] # for trinity
90
+
91
+ self.ori_joint_list = joints_list[self.args.ori_joints]
92
+ self.tar_joint_list = joints_list[self.args.tar_joints]
93
+ if 'smplx' in self.args.pose_rep:
94
+ self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
95
+ self.joints = len(list(self.tar_joint_list.keys()))
96
+ for joint_name in self.tar_joint_list:
97
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
98
+ else:
99
+ self.joints = len(list(self.ori_joint_list.keys()))+1
100
+ self.joint_mask = np.zeros(self.joints*3)
101
+ for joint_name in self.tar_joint_list:
102
+ if joint_name == "Hips":
103
+ self.joint_mask[3:6] = 1
104
+ else:
105
+ self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
106
+ # select trainable joints
107
+
108
+ split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
109
+ self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
110
+ if args.additional_data and loader_type == 'train':
111
+ split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
112
+ #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
113
+ self.selected_file = pd.concat([self.selected_file, split_b])
114
+ if self.selected_file.empty:
115
+ logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
116
+ self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
117
+ self.selected_file = self.selected_file.iloc[0:8]
118
+ self.data_dir = args.data_path
119
+ self.use_amass = args.use_amass
120
+ self.beatx_during_time = 0
121
+ self.amass_during_time = 0
122
+
123
+ if loader_type == "test":
124
+ self.args.multi_length_training = [1.0]
125
+ self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
126
+ self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
127
+ if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
128
+ self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
129
+ preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
130
+
131
+ if self.args.beat_align:
132
+ if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
133
+ self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
134
+ self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
135
+
136
+ if build_cache and self.rank == 0:
137
+ self.build_cache(preloaded_dir)
138
+ self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
139
+ with self.lmdb_env.begin() as txn:
140
+ self.n_samples = txn.stat()["entries"]
141
+
142
+ self.norm = True
143
+ self.mean = np.load('./mean_std/beatx_2_330_mean.npy')
144
+ self.std = np.load('./mean_std/beatx_2_330_std.npy')
145
+
146
+ self.trans_mean = np.load('./mean_std/beatx_2_trans_mean.npy')
147
+ self.trans_std = np.load('./mean_std/beatx_2_trans_std.npy')
148
+
149
+ def load_amass(self,data):
150
+ ## 这个是用来
151
+ # 修改amass数据里面的朝向,原本在blender里面是Z轴向上,目标是Y轴向上,当时面向目前没改
152
+
153
+ data_dict = {key: data[key] for key in data}
154
+ frames = data_dict['poses'].shape[0]
155
+ b = data_dict['poses'][...,:3]
156
+ b = rc.axis_angle_to_matrix(torch.from_numpy(b))
157
+ rot_matrix = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, 1.0], [0.0, -1.0, 0.0]])
158
+ c = np.einsum('ij,kjl->kil',rot_matrix,b)
159
+ c = rc.matrix_to_axis_angle(torch.from_numpy(c))
160
+ data_dict['poses'][...,:3] = c
161
+
162
+ trans_matrix1 = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, -1.0], [0.0, 1.0, 0.0]])
163
+ data_dict['trans'] = np.einsum("bi,ij->bj",data_dict['trans'],trans_matrix1)
164
+
165
+ betas300 = np.zeros(300)
166
+ betas300[:16] = data_dict['betas']
167
+ data_dict['betas'] = betas300
168
+ data_dict["expressions"] = np.zeros((frames,100))
169
+
170
+ return data_dict
171
+
172
+
173
+ def calculate_mean_velocity(self, save_path):
174
+ self.smplx = smplx.create(
175
+ self.args.data_path_1+"smplx_models/",
176
+ model_type='smplx',
177
+ gender='NEUTRAL_2020',
178
+ use_face_contour=False,
179
+ num_betas=300,
180
+ num_expression_coeffs=100,
181
+ ext='npz',
182
+ use_pca=False,
183
+ ).cuda().eval()
184
+ dir_p = self.data_dir + self.args.pose_rep + "/"
185
+ all_list = []
186
+ from tqdm import tqdm
187
+ for tar in tqdm(os.listdir(dir_p)):
188
+ if tar.endswith(".npz"):
189
+ m_data = np.load(dir_p+tar, allow_pickle=True)
190
+ betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
191
+ n, c = poses.shape[0], poses.shape[1]
192
+ betas = betas.reshape(1, 300)
193
+ betas = np.tile(betas, (n, 1))
194
+ betas = torch.from_numpy(betas).cuda().float()
195
+ poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
196
+ exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
197
+ trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
198
+ max_length = 128
199
+ s, r = n//max_length, n%max_length
200
+ #print(n, s, r)
201
+ all_tensor = []
202
+ for i in range(s):
203
+ with torch.no_grad():
204
+ joints = self.smplx(
205
+ betas=betas[i*max_length:(i+1)*max_length],
206
+ transl=trans[i*max_length:(i+1)*max_length],
207
+ expression=exps[i*max_length:(i+1)*max_length],
208
+ jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
209
+ global_orient=poses[i*max_length:(i+1)*max_length,:3],
210
+ body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
211
+ left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
212
+ right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
213
+ return_verts=True,
214
+ return_joints=True,
215
+ leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
216
+ reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
217
+ )['joints'][:, :55, :].reshape(max_length, 55*3)
218
+ all_tensor.append(joints)
219
+ if r != 0:
220
+ with torch.no_grad():
221
+ joints = self.smplx(
222
+ betas=betas[s*max_length:s*max_length+r],
223
+ transl=trans[s*max_length:s*max_length+r],
224
+ expression=exps[s*max_length:s*max_length+r],
225
+ jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
226
+ global_orient=poses[s*max_length:s*max_length+r,:3],
227
+ body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
228
+ left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
229
+ right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
230
+ return_verts=True,
231
+ return_joints=True,
232
+ leye_pose=poses[s*max_length:s*max_length+r, 69:72],
233
+ reye_pose=poses[s*max_length:s*max_length+r, 72:75],
234
+ )['joints'][:, :55, :].reshape(r, 55*3)
235
+ all_tensor.append(joints)
236
+ joints = torch.cat(all_tensor, axis=0)
237
+ joints = joints.permute(1, 0)
238
+ dt = 1/30
239
+ # first steps is forward diff (t+1 - t) / dt
240
+ init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
241
+ # middle steps are second order (t+1 - t-1) / 2dt
242
+ middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
243
+ # last step is backward diff (t - t-1) / dt
244
+ final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
245
+ #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
246
+ vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
247
+ #print(vel_seq.shape)
248
+ #.permute(1, 0).reshape(n, 55, 3)
249
+ vel_seq_np = vel_seq.cpu().numpy()
250
+ vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
251
+ all_list.append(vel_joints_np)
252
+ avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
253
+ np.save(save_path, avg_vel)
254
+
255
+
256
+ def build_cache(self, preloaded_dir):
257
+ logger.info(f"Audio bit rate: {self.args.audio_fps}")
258
+ logger.info("Reading data '{}'...".format(self.data_dir))
259
+ logger.info("Creating the dataset cache...")
260
+ if self.args.new_cache:
261
+ if os.path.exists(preloaded_dir):
262
+ shutil.rmtree(preloaded_dir)
263
+ if os.path.exists(preloaded_dir):
264
+ logger.info("Found the cache {}".format(preloaded_dir))
265
+ elif self.loader_type == "test":
266
+ self.cache_generation(
267
+ preloaded_dir, True,
268
+ 0, 0,
269
+ is_test=True)
270
+ else:
271
+ self.cache_generation(
272
+ preloaded_dir, self.args.disable_filtering,
273
+ self.args.clean_first_seconds, self.args.clean_final_seconds,
274
+ is_test=False)
275
+ logger.info(f"BEATX during time is {self.beatx_during_time}s !")
276
+ logger.info(f"AMASS during time is {self.amass_during_time}s !")
277
+
278
+ ## 对于BEATX train ,val ,test: 69800s ,7695s, 18672s ,总计 26.7h
279
+ ##
280
+
281
+ def __len__(self):
282
+ return self.n_samples
283
+
284
+
285
+ def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
286
+ # if "wav2vec2" in self.args.audio_rep:
287
+ # self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
288
+ # self.wav2vec_model.feature_extractor._freeze_parameters()
289
+ # self.wav2vec_model = self.wav2vec_model.cuda()
290
+ # self.wav2vec_model.eval()
291
+
292
+ self.n_out_samples = 0
293
+ # create db for samples
294
+ if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
295
+ dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
296
+ n_filtered_out = defaultdict(int)
297
+
298
+ for index, file_name in self.selected_file.iterrows():
299
+ f_name = file_name["id"]
300
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
301
+ pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
302
+ pose_each_file = []
303
+ trans_each_file = []
304
+ trans_v_each_file = []
305
+ shape_each_file = []
306
+ audio_each_file = []
307
+ facial_each_file = []
308
+ word_each_file = []
309
+ emo_each_file = []
310
+ sem_each_file = []
311
+ vid_each_file = []
312
+ id_pose = f_name #1_wayne_0_1_1
313
+
314
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
315
+ if "smplx" in self.args.pose_rep:
316
+ pose_data = np.load(pose_file, allow_pickle=True)
317
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
318
+ stride = int(30/self.args.pose_fps)
319
+ pose_each_file = pose_data["poses"][::stride] * self.joint_mask
320
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
321
+ # print(pose_each_file.shape)
322
+ self.beatx_during_time += pose_each_file.shape[0]/30
323
+ trans_each_file = pose_data["trans"][::stride]
324
+ trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
325
+ trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
326
+ trans_v_each_file = np.zeros_like(trans_each_file)
327
+ trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
328
+ trans_v_each_file[0,0] = trans_v_each_file[1,0]
329
+ trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
330
+ trans_v_each_file[0,2] = trans_v_each_file[1,2]
331
+ trans_v_each_file[:,1] = trans_each_file[:,1]
332
+
333
+
334
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
335
+ if self.args.facial_rep is not None:
336
+ logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
337
+ facial_each_file = pose_data["expressions"][::stride]
338
+ if self.args.facial_norm:
339
+ facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
340
+
341
+ if self.args.id_rep is not None:
342
+ vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
343
+
344
+ filtered_result = self._sample_from_clip(
345
+ dst_lmdb_env,
346
+ pose_each_file, trans_each_file,trans_v_each_file, shape_each_file,
347
+ vid_each_file,
348
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
349
+ )
350
+ for type in filtered_result.keys():
351
+ n_filtered_out[type] += filtered_result[type]
352
+
353
+ if self.args.use_amass:
354
+ amass_dir = '/mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/AMASS_SMPLX'
355
+ for dataset in amass_splits[self.loader_type]:
356
+ search_path = os.path.join(amass_dir,dataset, '**', '*.npz')
357
+ npz_files = glob.glob(search_path, recursive=True)
358
+ for index, file_name in enumerate(npz_files):
359
+ f_name = file_name.split('/')[-1]
360
+ ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
361
+ pose_file = file_name
362
+ pose_each_file = []
363
+ trans_each_file = []
364
+ trans_v_each_file = []
365
+ shape_each_file = []
366
+ audio_each_file = []
367
+ facial_each_file = []
368
+ word_each_file = []
369
+ emo_each_file = []
370
+ sem_each_file = []
371
+ vid_each_file = []
372
+ id_pose = f_name #1_wayne_0_1_1
373
+
374
+ logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
375
+ if "smplx" in self.args.pose_rep:
376
+ pose_data = np.load(pose_file, allow_pickle=True)
377
+ if len(pose_data.files)==6:
378
+ logger.info(colored(f"# ---- state file ---- #", "red"))
379
+ continue
380
+ assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
381
+ pose_each_file = self.load_amass(pose_data)
382
+ fps = pose_data['mocap_frame_rate']
383
+ stride =round(fps/30)
384
+ pose_each_file = pose_data["poses"][::stride] * self.joint_mask
385
+ pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
386
+ trans_each_file = pose_data["trans"][::stride]
387
+
388
+
389
+ trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
390
+ trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
391
+ trans_v_each_file = np.zeros_like(trans_each_file)
392
+ trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
393
+ trans_v_each_file[0,0] = trans_v_each_file[1,0]
394
+ trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
395
+ trans_v_each_file[0,2] = trans_v_each_file[1,2]
396
+ trans_v_each_file[:,1] = trans_each_file[:,1]
397
+
398
+
399
+
400
+ shape_each_file = np.repeat(pose_data["betas"].reshape(1, -1), pose_each_file.shape[0], axis=0)
401
+
402
+ if self.args.id_rep is not None:
403
+ vid_each_file = np.repeat(np.array(int(100)-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
404
+
405
+ filtered_result = self._sample_from_clip(
406
+ dst_lmdb_env,
407
+ pose_each_file, trans_each_file,trans_v_each_file, shape_each_file,
408
+ vid_each_file,
409
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
410
+ )
411
+ for type in filtered_result.keys():
412
+ n_filtered_out[type] += filtered_result[type]
413
+
414
+
415
+ with dst_lmdb_env.begin() as txn:
416
+ logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
417
+ n_total_filtered = 0
418
+ for type, n_filtered in n_filtered_out.items():
419
+ logger.info("{}: {}".format(type, n_filtered))
420
+ n_total_filtered += n_filtered
421
+ logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
422
+ n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
423
+ dst_lmdb_env.sync()
424
+ dst_lmdb_env.close()
425
+
426
+ def _sample_from_clip(
427
+ self, dst_lmdb_env, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file,
428
+ vid_each_file,
429
+ disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
430
+ ):
431
+ """
432
+ for data cleaning, we ignore the data for first and final n s
433
+ for test, we return all data
434
+ """
435
+ # audio_start = int(self.alignment[0] * self.args.audio_fps)
436
+ # pose_start = int(self.alignment[1] * self.args.pose_fps)
437
+ #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
438
+ # audio_each_file = audio_each_file[audio_start:]
439
+ # pose_each_file = pose_each_file[pose_start:]
440
+ # trans_each_file =
441
+ #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
442
+ #print(pose_each_file.shape)
443
+ round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
444
+ #print(round_seconds_skeleton)
445
+
446
+ clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
447
+ clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
448
+ clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
449
+
450
+
451
+ for ratio in self.args.multi_length_training:
452
+ if is_test:# stride = length for test
453
+ cut_length = clip_e_f_pose - clip_s_f_pose
454
+ self.args.stride = cut_length
455
+ self.max_length = cut_length
456
+ else:
457
+ self.args.stride = int(ratio*self.ori_stride)
458
+ cut_length = int(self.ori_length*ratio)
459
+
460
+ num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
461
+ logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
462
+ logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
463
+
464
+
465
+ n_filtered_out = defaultdict(int)
466
+ sample_pose_list = []
467
+ sample_audio_list = []
468
+ sample_shape_list = []
469
+ sample_vid_list = []
470
+ sample_trans_list = []
471
+ sample_trans_v_list = []
472
+
473
+ for i in range(num_subdivision): # cut into around 2s chip, (self npose)
474
+ start_idx = clip_s_f_pose + i * self.args.stride
475
+ fin_idx = start_idx + cut_length
476
+ sample_pose = pose_each_file[start_idx:fin_idx]
477
+ sample_trans = trans_each_file[start_idx:fin_idx]
478
+ sample_trans_v = trans_v_each_file[start_idx:fin_idx]
479
+ sample_shape = shape_each_file[start_idx:fin_idx]
480
+ # print(sample_pose.shape)
481
+
482
+
483
+ sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
484
+
485
+ if sample_pose.any() != None:
486
+ # filtering motion skeleton data
487
+ sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
488
+ is_correct_motion = (sample_pose is not None)
489
+ if is_correct_motion or disable_filtering:
490
+ sample_pose_list.append(sample_pose)
491
+
492
+ sample_shape_list.append(sample_shape)
493
+
494
+ sample_vid_list.append(sample_vid)
495
+
496
+
497
+ sample_trans_list.append(sample_trans)
498
+ sample_trans_v_list.append(sample_trans_v)
499
+ else:
500
+ n_filtered_out[filtering_message] += 1
501
+
502
+ if len(sample_pose_list) > 0:
503
+ with dst_lmdb_env.begin(write=True) as txn:
504
+ for pose, shape, vid, trans,trans_v in zip(
505
+ sample_pose_list,
506
+ sample_shape_list,
507
+ sample_vid_list,
508
+ sample_trans_list,
509
+ sample_trans_v_list,
510
+ ):
511
+ k = "{:005}".format(self.n_out_samples).encode("ascii")
512
+ v = [pose , shape, vid, trans,trans_v]
513
+ v = pickle.dumps(v,5)
514
+ txn.put(k, v)
515
+ self.n_out_samples += 1
516
+ return n_filtered_out
517
+
518
+ def __getitem__(self, idx):
519
+ with self.lmdb_env.begin(write=False) as txn:
520
+ key = "{:005}".format(idx).encode("ascii")
521
+ sample = txn.get(key)
522
+ sample = pickle.loads(sample)
523
+ tar_pose, in_shape, vid, trans,trans_v = sample
524
+ tar_pose = torch.from_numpy(tar_pose).float()
525
+ tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(-1, 55, 3))
526
+ tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(-1, 55*6)
527
+
528
+ if self.norm:
529
+ tar_pose = (tar_pose - self.mean) / self.std
530
+ trans_v = (trans_v-self.trans_mean)/self.trans_std
531
+
532
+ if self.loader_type == "test":
533
+ tar_pose = tar_pose.float()
534
+ trans = torch.from_numpy(trans).float()
535
+ trans_v = torch.from_numpy(trans_v).float()
536
+ vid = torch.from_numpy(vid).float()
537
+ in_shape = torch.from_numpy(in_shape).float()
538
+ else:
539
+ in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
540
+ trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
541
+ trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float()
542
+ vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
543
+ tar_pose = tar_pose.reshape((tar_pose.shape[0], -1)).float()
544
+ tar_pose = torch.cat([tar_pose, trans_v], dim=1)
545
+ return tar_pose
546
+
547
+ class MotionPreprocessor:
548
+ def __init__(self, skeletons):
549
+ self.skeletons = skeletons
550
+ #self.mean_pose = mean_pose
551
+ self.filtering_message = "PASS"
552
+
553
+ def get(self):
554
+ assert (self.skeletons is not None)
555
+
556
+ # filtering
557
+ if self.skeletons is not None:
558
+ if self.check_pose_diff():
559
+ self.skeletons = []
560
+ self.filtering_message = "pose"
561
+ # elif self.check_spine_angle():
562
+ # self.skeletons = []
563
+ # self.filtering_message = "spine angle"
564
+ # elif self.check_static_motion():
565
+ # self.skeletons = []
566
+ # self.filtering_message = "motion"
567
+
568
+ # if self.skeletons != []:
569
+ # self.skeletons = self.skeletons.tolist()
570
+ # for i, frame in enumerate(self.skeletons):
571
+ # assert not np.isnan(self.skeletons[i]).any() # missing joints
572
+
573
+ return self.skeletons, self.filtering_message
574
+
575
+ def check_static_motion(self, verbose=True):
576
+ def get_variance(skeleton, joint_idx):
577
+ wrist_pos = skeleton[:, joint_idx]
578
+ variance = np.sum(np.var(wrist_pos, axis=0))
579
+ return variance
580
+
581
+ left_arm_var = get_variance(self.skeletons, 6)
582
+ right_arm_var = get_variance(self.skeletons, 9)
583
+
584
+ th = 0.0014 # exclude 13110
585
+ # th = 0.002 # exclude 16905
586
+ if left_arm_var < th and right_arm_var < th:
587
+ if verbose:
588
+ print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
589
+ return True
590
+ else:
591
+ if verbose:
592
+ print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
593
+ return False
594
+
595
+
596
+ def check_pose_diff(self, verbose=False):
597
+ # diff = np.abs(self.skeletons - self.mean_pose) # 186*1
598
+ # diff = np.mean(diff)
599
+
600
+ # # th = 0.017
601
+ # th = 0.02 #0.02 # exclude 3594
602
+ # if diff < th:
603
+ # if verbose:
604
+ # print("skip - check_pose_diff {:.5f}".format(diff))
605
+ # return True
606
+ # # th = 3.5 #0.02 # exclude 3594
607
+ # # if 3.5 < diff < 5:
608
+ # # if verbose:
609
+ # # print("skip - check_pose_diff {:.5f}".format(diff))
610
+ # # return True
611
+ # else:
612
+ # if verbose:
613
+ # print("pass - check_pose_diff {:.5f}".format(diff))
614
+ return False
615
+
616
+
617
+ def check_spine_angle(self, verbose=True):
618
+ def angle_between(v1, v2):
619
+ v1_u = v1 / np.linalg.norm(v1)
620
+ v2_u = v2 / np.linalg.norm(v2)
621
+ return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
622
+
623
+ angles = []
624
+ for i in range(self.skeletons.shape[0]):
625
+ spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
626
+ angle = angle_between(spine_vec, [0, -1, 0])
627
+ angles.append(angle)
628
+
629
+ if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
630
+ # if np.rad2deg(max(angles)) > 20: # exclude 8270
631
+ if verbose:
632
+ print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
633
+ return True
634
+ else:
635
+ if verbose:
636
+ print("pass - check_spine_angle {:.5f}".format(max(angles)))
637
+ return False
dataloaders/pymo/Quaternions.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class Quaternions:
4
+ """
5
+ Quaternions is a wrapper around a numpy ndarray
6
+ that allows it to act as if it were an narray of
7
+ a quaternion data type.
8
+
9
+ Therefore addition, subtraction, multiplication,
10
+ division, negation, absolute, are all defined
11
+ in terms of quaternion operations such as quaternion
12
+ multiplication.
13
+
14
+ This allows for much neater code and many routines
15
+ which conceptually do the same thing to be written
16
+ in the same way for point data and for rotation data.
17
+
18
+ The Quaternions class has been desgined such that it
19
+ should support broadcasting and slicing in all of the
20
+ usual ways.
21
+ """
22
+
23
+ def __init__(self, qs):
24
+ if isinstance(qs, np.ndarray):
25
+
26
+ if len(qs.shape) == 1: qs = np.array([qs])
27
+ self.qs = qs
28
+ return
29
+
30
+ if isinstance(qs, Quaternions):
31
+ self.qs = qs.qs
32
+ return
33
+
34
+ raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs))
35
+
36
+ def __str__(self): return "Quaternions("+ str(self.qs) + ")"
37
+ def __repr__(self): return "Quaternions("+ repr(self.qs) + ")"
38
+
39
+ """ Helper Methods for Broadcasting and Data extraction """
40
+
41
+ @classmethod
42
+ def _broadcast(cls, sqs, oqs, scalar=False):
43
+
44
+ if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1])
45
+
46
+ ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1])
47
+ os = np.array(oqs.shape)
48
+
49
+ if len(ss) != len(os):
50
+ raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
51
+
52
+ if np.all(ss == os): return sqs, oqs
53
+
54
+ if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))):
55
+ raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
56
+
57
+ sqsn, oqsn = sqs.copy(), oqs.copy()
58
+
59
+ for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a)
60
+ for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a)
61
+
62
+ return sqsn, oqsn
63
+
64
+ """ Adding Quaterions is just Defined as Multiplication """
65
+
66
+ def __add__(self, other): return self * other
67
+ def __sub__(self, other): return self / other
68
+
69
+ """ Quaterion Multiplication """
70
+
71
+ def __mul__(self, other):
72
+ """
73
+ Quaternion multiplication has three main methods.
74
+
75
+ When multiplying a Quaternions array by Quaternions
76
+ normal quaternion multiplication is performed.
77
+
78
+ When multiplying a Quaternions array by a vector
79
+ array of the same shape, where the last axis is 3,
80
+ it is assumed to be a Quaternion by 3D-Vector
81
+ multiplication and the 3D-Vectors are rotated
82
+ in space by the Quaternions.
83
+
84
+ When multipplying a Quaternions array by a scalar
85
+ or vector of different shape it is assumed to be
86
+ a Quaternions by Scalars multiplication and the
87
+ Quaternions are scaled using Slerp and the identity
88
+ quaternions.
89
+ """
90
+
91
+ """ If Quaternions type do Quaternions * Quaternions """
92
+ if isinstance(other, Quaternions):
93
+
94
+ sqs, oqs = Quaternions._broadcast(self.qs, other.qs)
95
+
96
+ q0 = sqs[...,0]; q1 = sqs[...,1];
97
+ q2 = sqs[...,2]; q3 = sqs[...,3];
98
+ r0 = oqs[...,0]; r1 = oqs[...,1];
99
+ r2 = oqs[...,2]; r3 = oqs[...,3];
100
+
101
+ qs = np.empty(sqs.shape)
102
+ qs[...,0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3
103
+ qs[...,1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2
104
+ qs[...,2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1
105
+ qs[...,3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0
106
+
107
+ return Quaternions(qs)
108
+
109
+ """ If array type do Quaternions * Vectors """
110
+ if isinstance(other, np.ndarray) and other.shape[-1] == 3:
111
+ vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1))
112
+ return (self * (vs * -self)).imaginaries
113
+
114
+ """ If float do Quaternions * Scalars """
115
+ if isinstance(other, np.ndarray) or isinstance(other, float):
116
+ return Quaternions.slerp(Quaternions.id_like(self), self, other)
117
+
118
+ raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))
119
+
120
+ def __div__(self, other):
121
+ """
122
+ When a Quaternion type is supplied, division is defined
123
+ as multiplication by the inverse of that Quaternion.
124
+
125
+ When a scalar or vector is supplied it is defined
126
+ as multiplicaion of one over the supplied value.
127
+ Essentially a scaling.
128
+ """
129
+
130
+ if isinstance(other, Quaternions): return self * (-other)
131
+ if isinstance(other, np.ndarray): return self * (1.0 / other)
132
+ if isinstance(other, float): return self * (1.0 / other)
133
+ raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))
134
+
135
+ def __eq__(self, other): return self.qs == other.qs
136
+ def __ne__(self, other): return self.qs != other.qs
137
+
138
+ def __neg__(self):
139
+ """ Invert Quaternions """
140
+ return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))
141
+
142
+ def __abs__(self):
143
+ """ Unify Quaternions To Single Pole """
144
+ qabs = self.normalized().copy()
145
+ top = np.sum(( qabs.qs) * np.array([1,0,0,0]), axis=-1)
146
+ bot = np.sum((-qabs.qs) * np.array([1,0,0,0]), axis=-1)
147
+ qabs.qs[top < bot] = -qabs.qs[top < bot]
148
+ return qabs
149
+
150
+ def __iter__(self): return iter(self.qs)
151
+ def __len__(self): return len(self.qs)
152
+
153
+ def __getitem__(self, k): return Quaternions(self.qs[k])
154
+ def __setitem__(self, k, v): self.qs[k] = v.qs
155
+
156
+ @property
157
+ def lengths(self):
158
+ return np.sum(self.qs**2.0, axis=-1)**0.5
159
+
160
+ @property
161
+ def reals(self):
162
+ return self.qs[...,0]
163
+
164
+ @property
165
+ def imaginaries(self):
166
+ return self.qs[...,1:4]
167
+
168
+ @property
169
+ def shape(self): return self.qs.shape[:-1]
170
+
171
+ def repeat(self, n, **kwargs):
172
+ return Quaternions(self.qs.repeat(n, **kwargs))
173
+
174
+ def normalized(self):
175
+ return Quaternions(self.qs / self.lengths[...,np.newaxis])
176
+
177
+ def log(self):
178
+ norm = abs(self.normalized())
179
+ imgs = norm.imaginaries
180
+ lens = np.sqrt(np.sum(imgs**2, axis=-1))
181
+ lens = np.arctan2(lens, norm.reals) / (lens + 1e-10)
182
+ return imgs * lens[...,np.newaxis]
183
+
184
+ def constrained(self, axis):
185
+
186
+ rl = self.reals
187
+ im = np.sum(axis * self.imaginaries, axis=-1)
188
+
189
+ t1 = -2 * np.arctan2(rl, im) + np.pi
190
+ t2 = -2 * np.arctan2(rl, im) - np.pi
191
+
192
+ top = Quaternions.exp(axis[np.newaxis] * (t1[:,np.newaxis] / 2.0))
193
+ bot = Quaternions.exp(axis[np.newaxis] * (t2[:,np.newaxis] / 2.0))
194
+ img = self.dot(top) > self.dot(bot)
195
+
196
+ ret = top.copy()
197
+ ret[ img] = top[ img]
198
+ ret[~img] = bot[~img]
199
+ return ret
200
+
201
+ def constrained_x(self): return self.constrained(np.array([1,0,0]))
202
+ def constrained_y(self): return self.constrained(np.array([0,1,0]))
203
+ def constrained_z(self): return self.constrained(np.array([0,0,1]))
204
+
205
+ def dot(self, q): return np.sum(self.qs * q.qs, axis=-1)
206
+
207
+ def copy(self): return Quaternions(np.copy(self.qs))
208
+
209
+ def reshape(self, s):
210
+ self.qs.reshape(s)
211
+ return self
212
+
213
+ def interpolate(self, ws):
214
+ return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws))
215
+
216
+ def euler(self, order='xyz'):
217
+
218
+ q = self.normalized().qs
219
+ q0 = q[...,0]
220
+ q1 = q[...,1]
221
+ q2 = q[...,2]
222
+ q3 = q[...,3]
223
+ es = np.zeros(self.shape + (3,))
224
+
225
+ if order == 'xyz':
226
+ es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
227
+ es[...,1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1))
228
+ es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
229
+ elif order == 'yzx':
230
+ es[...,0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)
231
+ es[...,1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0)
232
+ es[...,2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1))
233
+ else:
234
+ raise NotImplementedError('Cannot convert from ordering %s' % order)
235
+
236
+ """
237
+
238
+ # These conversion don't appear to work correctly for Maya.
239
+ # http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
240
+
241
+ if order == 'xyz':
242
+ es[...,0] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
243
+ es[...,1] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1))
244
+ es[...,2] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
245
+ elif order == 'yzx':
246
+ es[...,0] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
247
+ es[...,1] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1))
248
+ es[...,2] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
249
+ elif order == 'zxy':
250
+ es[...,0] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
251
+ es[...,1] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1))
252
+ es[...,2] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
253
+ elif order == 'xzy':
254
+ es[...,0] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
255
+ es[...,1] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1))
256
+ es[...,2] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
257
+ elif order == 'yxz':
258
+ es[...,0] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
259
+ es[...,1] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1))
260
+ es[...,2] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
261
+ elif order == 'zyx':
262
+ es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
263
+ es[...,1] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1))
264
+ es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
265
+ else:
266
+ raise KeyError('Unknown ordering %s' % order)
267
+
268
+ """
269
+
270
+ # https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp
271
+ # Use this class and convert from matrix
272
+
273
+ return es
274
+
275
+
276
+ def average(self):
277
+
278
+ if len(self.shape) == 1:
279
+
280
+ import numpy.core.umath_tests as ut
281
+ system = ut.matrix_multiply(self.qs[:,:,np.newaxis], self.qs[:,np.newaxis,:]).sum(axis=0)
282
+ w, v = np.linalg.eigh(system)
283
+ qiT_dot_qref = (self.qs[:,:,np.newaxis] * v[np.newaxis,:,:]).sum(axis=1)
284
+ return Quaternions(v[:,np.argmin((1.-qiT_dot_qref**2).sum(axis=0))])
285
+
286
+ else:
287
+
288
+ raise NotImplementedError('Cannot average multi-dimensionsal Quaternions')
289
+
290
+ def angle_axis(self):
291
+
292
+ norm = self.normalized()
293
+ s = np.sqrt(1 - (norm.reals**2.0))
294
+ s[s == 0] = 0.001
295
+
296
+ angles = 2.0 * np.arccos(norm.reals)
297
+ axis = norm.imaginaries / s[...,np.newaxis]
298
+
299
+ return angles, axis
300
+
301
+
302
+ def transforms(self):
303
+
304
+ qw = self.qs[...,0]
305
+ qx = self.qs[...,1]
306
+ qy = self.qs[...,2]
307
+ qz = self.qs[...,3]
308
+
309
+ x2 = qx + qx; y2 = qy + qy; z2 = qz + qz;
310
+ xx = qx * x2; yy = qy * y2; wx = qw * x2;
311
+ xy = qx * y2; yz = qy * z2; wy = qw * y2;
312
+ xz = qx * z2; zz = qz * z2; wz = qw * z2;
313
+
314
+ m = np.empty(self.shape + (3,3))
315
+ m[...,0,0] = 1.0 - (yy + zz)
316
+ m[...,0,1] = xy - wz
317
+ m[...,0,2] = xz + wy
318
+ m[...,1,0] = xy + wz
319
+ m[...,1,1] = 1.0 - (xx + zz)
320
+ m[...,1,2] = yz - wx
321
+ m[...,2,0] = xz - wy
322
+ m[...,2,1] = yz + wx
323
+ m[...,2,2] = 1.0 - (xx + yy)
324
+
325
+ return m
326
+
327
+ def ravel(self):
328
+ return self.qs.ravel()
329
+
330
+ @classmethod
331
+ def id(cls, n):
332
+
333
+ if isinstance(n, tuple):
334
+ qs = np.zeros(n + (4,))
335
+ qs[...,0] = 1.0
336
+ return Quaternions(qs)
337
+
338
+ if isinstance(n, int) or isinstance(n, long):
339
+ qs = np.zeros((n,4))
340
+ qs[:,0] = 1.0
341
+ return Quaternions(qs)
342
+
343
+ raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n)))
344
+
345
+ @classmethod
346
+ def id_like(cls, a):
347
+ qs = np.zeros(a.shape + (4,))
348
+ qs[...,0] = 1.0
349
+ return Quaternions(qs)
350
+
351
+ @classmethod
352
+ def exp(cls, ws):
353
+
354
+ ts = np.sum(ws**2.0, axis=-1)**0.5
355
+ ts[ts == 0] = 0.001
356
+ ls = np.sin(ts) / ts
357
+
358
+ qs = np.empty(ws.shape[:-1] + (4,))
359
+ qs[...,0] = np.cos(ts)
360
+ qs[...,1] = ws[...,0] * ls
361
+ qs[...,2] = ws[...,1] * ls
362
+ qs[...,3] = ws[...,2] * ls
363
+
364
+ return Quaternions(qs).normalized()
365
+
366
+ @classmethod
367
+ def slerp(cls, q0s, q1s, a):
368
+
369
+ fst, snd = cls._broadcast(q0s.qs, q1s.qs)
370
+ fst, a = cls._broadcast(fst, a, scalar=True)
371
+ snd, a = cls._broadcast(snd, a, scalar=True)
372
+
373
+ len = np.sum(fst * snd, axis=-1)
374
+
375
+ neg = len < 0.0
376
+ len[neg] = -len[neg]
377
+ snd[neg] = -snd[neg]
378
+
379
+ amount0 = np.zeros(a.shape)
380
+ amount1 = np.zeros(a.shape)
381
+
382
+ linear = (1.0 - len) < 0.01
383
+ omegas = np.arccos(len[~linear])
384
+ sinoms = np.sin(omegas)
385
+
386
+ amount0[ linear] = 1.0 - a[linear]
387
+ amount1[ linear] = a[linear]
388
+ amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms
389
+ amount1[~linear] = np.sin( a[~linear] * omegas) / sinoms
390
+
391
+ return Quaternions(
392
+ amount0[...,np.newaxis] * fst +
393
+ amount1[...,np.newaxis] * snd)
394
+
395
+ @classmethod
396
+ def between(cls, v0s, v1s):
397
+ a = np.cross(v0s, v1s)
398
+ w = np.sqrt((v0s**2).sum(axis=-1) * (v1s**2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1)
399
+ return Quaternions(np.concatenate([w[...,np.newaxis], a], axis=-1)).normalized()
400
+
401
+ @classmethod
402
+ def from_angle_axis(cls, angles, axis):
403
+ axis = axis / (np.sqrt(np.sum(axis**2, axis=-1)) + 1e-10)[...,np.newaxis]
404
+ sines = np.sin(angles / 2.0)[...,np.newaxis]
405
+ cosines = np.cos(angles / 2.0)[...,np.newaxis]
406
+ return Quaternions(np.concatenate([cosines, axis * sines], axis=-1))
407
+
408
+ @classmethod
409
+ def from_euler(cls, es, order='xyz', world=False):
410
+
411
+ axis = {
412
+ 'x' : np.array([1,0,0]),
413
+ 'y' : np.array([0,1,0]),
414
+ 'z' : np.array([0,0,1]),
415
+ }
416
+
417
+ q0s = Quaternions.from_angle_axis(es[...,0], axis[order[0]])
418
+ q1s = Quaternions.from_angle_axis(es[...,1], axis[order[1]])
419
+ q2s = Quaternions.from_angle_axis(es[...,2], axis[order[2]])
420
+
421
+ return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s))
422
+
423
+ @classmethod
424
+ def from_transforms(cls, ts):
425
+
426
+ d0, d1, d2 = ts[...,0,0], ts[...,1,1], ts[...,2,2]
427
+
428
+ q0 = ( d0 + d1 + d2 + 1.0) / 4.0
429
+ q1 = ( d0 - d1 - d2 + 1.0) / 4.0
430
+ q2 = (-d0 + d1 - d2 + 1.0) / 4.0
431
+ q3 = (-d0 - d1 + d2 + 1.0) / 4.0
432
+
433
+ q0 = np.sqrt(q0.clip(0,None))
434
+ q1 = np.sqrt(q1.clip(0,None))
435
+ q2 = np.sqrt(q2.clip(0,None))
436
+ q3 = np.sqrt(q3.clip(0,None))
437
+
438
+ c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3)
439
+ c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3)
440
+ c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3)
441
+ c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2)
442
+
443
+ q1[c0] *= np.sign(ts[c0,2,1] - ts[c0,1,2])
444
+ q2[c0] *= np.sign(ts[c0,0,2] - ts[c0,2,0])
445
+ q3[c0] *= np.sign(ts[c0,1,0] - ts[c0,0,1])
446
+
447
+ q0[c1] *= np.sign(ts[c1,2,1] - ts[c1,1,2])
448
+ q2[c1] *= np.sign(ts[c1,1,0] + ts[c1,0,1])
449
+ q3[c1] *= np.sign(ts[c1,0,2] + ts[c1,2,0])
450
+
451
+ q0[c2] *= np.sign(ts[c2,0,2] - ts[c2,2,0])
452
+ q1[c2] *= np.sign(ts[c2,1,0] + ts[c2,0,1])
453
+ q3[c2] *= np.sign(ts[c2,2,1] + ts[c2,1,2])
454
+
455
+ q0[c3] *= np.sign(ts[c3,1,0] - ts[c3,0,1])
456
+ q1[c3] *= np.sign(ts[c3,2,0] + ts[c3,0,2])
457
+ q2[c3] *= np.sign(ts[c3,2,1] + ts[c3,1,2])
458
+
459
+ qs = np.empty(ts.shape[:-2] + (4,))
460
+ qs[...,0] = q0
461
+ qs[...,1] = q1
462
+ qs[...,2] = q2
463
+ qs[...,3] = q3
464
+
465
+ return cls(qs)
466
+
467
+
468
+
dataloaders/pymo/__init__.py ADDED
File without changes
dataloaders/pymo/data.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class Joint():
4
+ def __init__(self, name, parent=None, children=None):
5
+ self.name = name
6
+ self.parent = parent
7
+ self.children = children
8
+
9
+ class MocapData():
10
+ def __init__(self):
11
+ self.skeleton = {}
12
+ self.values = None
13
+ self.channel_names = []
14
+ self.framerate = 0.0
15
+ self.root_name = ''
16
+
17
+ def traverse(self, j=None):
18
+ stack = [self.root_name]
19
+ while stack:
20
+ joint = stack.pop()
21
+ yield joint
22
+ for c in self.skeleton[joint]['children']:
23
+ stack.append(c)
24
+
25
+ def clone(self):
26
+ import copy
27
+ new_data = MocapData()
28
+ new_data.skeleton = copy.copy(self.skeleton)
29
+ new_data.values = copy.copy(self.values)
30
+ new_data.channel_names = copy.copy(self.channel_names)
31
+ new_data.root_name = copy.copy(self.root_name)
32
+ new_data.framerate = copy.copy(self.framerate)
33
+ return new_data
34
+
35
+ def get_all_channels(self):
36
+ '''Returns all of the channels parsed from the file as a 2D numpy array'''
37
+
38
+ frames = [f[1] for f in self.values]
39
+ return np.asarray([[channel[2] for channel in frame] for frame in frames])
40
+
41
+ def get_skeleton_tree(self):
42
+ tree = []
43
+ root_key = [j for j in self.skeleton if self.skeleton[j]['parent']==None][0]
44
+
45
+ root_joint = Joint(root_key)
46
+
47
+ def get_empty_channels(self):
48
+ #TODO
49
+ pass
50
+
51
+ def get_constant_channels(self):
52
+ #TODO
53
+ pass
dataloaders/pymo/features.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ A set of mocap feature extraction functions
3
+
4
+ Created by Omid Alemi | Nov 17 2017
5
+
6
+ '''
7
+ import numpy as np
8
+ import pandas as pd
9
+ import peakutils
10
+ import matplotlib.pyplot as plt
11
+
12
+ def get_foot_contact_idxs(signal, t=0.02, min_dist=120):
13
+ up_idxs = peakutils.indexes(signal, thres=t/max(signal), min_dist=min_dist)
14
+ down_idxs = peakutils.indexes(-signal, thres=t/min(signal), min_dist=min_dist)
15
+
16
+ return [up_idxs, down_idxs]
17
+
18
+
19
+ def create_foot_contact_signal(mocap_track, col_name, start=1, t=0.02, min_dist=120):
20
+ signal = mocap_track.values[col_name].values
21
+ idxs = get_foot_contact_idxs(signal, t, min_dist)
22
+
23
+ step_signal = []
24
+
25
+ c = start
26
+ for f in range(len(signal)):
27
+ if f in idxs[1]:
28
+ c = 0
29
+ elif f in idxs[0]:
30
+ c = 1
31
+
32
+ step_signal.append(c)
33
+
34
+ return step_signal
35
+
36
+ def plot_foot_up_down(mocap_track, col_name, t=0.02, min_dist=120):
37
+
38
+ signal = mocap_track.values[col_name].values
39
+ idxs = get_foot_contact_idxs(signal, t, min_dist)
40
+
41
+ plt.plot(mocap_track.values.index, signal)
42
+ plt.plot(mocap_track.values.index[idxs[0]], signal[idxs[0]], 'ro')
43
+ plt.plot(mocap_track.values.index[idxs[1]], signal[idxs[1]], 'go')
dataloaders/pymo/mocapplayer/data-template.js ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ var dataBuffer = `$$DATA$$`;
2
+
3
+ start(dataBuffer);
dataloaders/pymo/mocapplayer/js/skeletonFactory.js ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bm_v = new THREE.MeshPhongMaterial({
2
+ color: 0x08519c,
3
+ emissive: 0x08306b,
4
+ specular: 0x08519c,
5
+ shininess: 10,
6
+ side: THREE.DoubleSide
7
+ });
8
+
9
+ jm_v = new THREE.MeshPhongMaterial({
10
+ color: 0x08306b,
11
+ emissive: 0x000000,
12
+ specular: 0x111111,
13
+ shininess: 90,
14
+ side: THREE.DoubleSide
15
+ });
16
+
17
+ bm_a = new THREE.MeshPhongMaterial({
18
+ color: 0x980043,
19
+ emissive: 0x67001f,
20
+ specular: 0x6a51a3,
21
+ shininess: 10,
22
+ side: THREE.DoubleSide
23
+ });
24
+
25
+ jm_a = new THREE.MeshPhongMaterial({
26
+ color: 0x67001f,
27
+ emissive: 0x000000,
28
+ specular: 0x111111,
29
+ shininess: 90,
30
+ side: THREE.DoubleSide
31
+ });
32
+
33
+ bm_b = new THREE.MeshPhongMaterial({
34
+ color: 0x3f007d,
35
+ emissive: 0x3f007d,
36
+ specular: 0x807dba,
37
+ shininess: 2,
38
+ side: THREE.DoubleSide
39
+ });
40
+
41
+ jm_b = new THREE.MeshPhongMaterial({
42
+ color: 0x3f007d,
43
+ emissive: 0x000000,
44
+ specular: 0x807dba,
45
+ shininess: 90,
46
+ side: THREE.DoubleSide
47
+ });
48
+
49
+ //------------------
50
+
51
+
52
+ jointmaterial = new THREE.MeshLambertMaterial({
53
+ color: 0xc57206,
54
+ emissive: 0x271c18,
55
+ side: THREE.DoubleSide,
56
+ // shading: THREE.FlatShading,
57
+ wireframe: false,
58
+ shininess: 90,
59
+ });
60
+
61
+ bonematerial = new THREE.MeshPhongMaterial({
62
+ color: 0xbd9a6d,
63
+ emissive: 0x271c18,
64
+ side: THREE.DoubleSide,
65
+ // shading: THREE.FlatShading,
66
+ wireframe: false
67
+ });
68
+
69
+ jointmaterial2 = new THREE.MeshPhongMaterial({
70
+ color: 0x1562a2,
71
+ emissive: 0x000000,
72
+ specular: 0x111111,
73
+ shininess: 30,
74
+ side: THREE.DoubleSide
75
+ });
76
+
77
+ bonematerial2 = new THREE.MeshPhongMaterial({
78
+ color: 0x552211,
79
+ emissive: 0x882211,
80
+ // emissive: 0x000000,
81
+ specular: 0x111111,
82
+ shininess: 30,
83
+ side: THREE.DoubleSide
84
+ });
85
+
86
+ bonematerial3 = new THREE.MeshPhongMaterial({
87
+ color: 0x176793,
88
+ emissive: 0x000000,
89
+ specular: 0x111111,
90
+ shininess: 90,
91
+ side: THREE.DoubleSide
92
+ });
93
+
94
+
95
+
96
+ jointmaterial4 = new THREE.MeshPhongMaterial({
97
+ color: 0xFF8A00,
98
+ emissive: 0x000000,
99
+ specular: 0x111111,
100
+ shininess: 90,
101
+ side: THREE.DoubleSide
102
+ });
103
+
104
+
105
+ bonematerial4 = new THREE.MeshPhongMaterial({
106
+ color: 0x53633D,
107
+ emissive: 0x000000,
108
+ specular: 0xFFC450,
109
+ shininess: 90,
110
+ side: THREE.DoubleSide
111
+ });
112
+
113
+
114
+
115
+ bonematerial44 = new THREE.MeshPhongMaterial({
116
+ color: 0x582A72,
117
+ emissive: 0x000000,
118
+ specular: 0xFFC450,
119
+ shininess: 90,
120
+ side: THREE.DoubleSide
121
+ });
122
+
123
+ jointmaterial5 = new THREE.MeshPhongMaterial({
124
+ color: 0xAA5533,
125
+ emissive: 0x000000,
126
+ specular: 0x111111,
127
+ shininess: 30,
128
+ side: THREE.DoubleSide
129
+ });
130
+
131
+ bonematerial5 = new THREE.MeshPhongMaterial({
132
+ color: 0x552211,
133
+ emissive: 0x772211,
134
+ specular: 0x111111,
135
+ shininess: 30,
136
+ side: THREE.DoubleSide
137
+ });
138
+
139
+
140
+ markermaterial = new THREE.MeshPhongMaterial({
141
+ color: 0xc57206,
142
+ emissive: 0x271c18,
143
+ side: THREE.DoubleSide,
144
+ // shading: THREE.FlatShading,
145
+ wireframe: false,
146
+ shininess: 20,
147
+ });
148
+
149
+ markermaterial2 = new THREE.MeshPhongMaterial({
150
+ color: 0x1562a2,
151
+ emissive: 0x271c18,
152
+ side: THREE.DoubleSide,
153
+ // shading: THREE.FlatShading,
154
+ wireframe: false,
155
+ shininess: 20,
156
+ });
157
+
158
+ markermaterial3 = new THREE.MeshPhongMaterial({
159
+ color: 0x555555,
160
+ emissive: 0x999999,
161
+ side: THREE.DoubleSide,
162
+ // shading: THREE.FlatShading,
163
+ wireframe: false,
164
+ shininess: 20,
165
+ });
166
+
167
+
168
+ var makeMarkerGeometry_Sphere10 = function(markerName, scale) {
169
+ return new THREE.SphereGeometry(10, 60, 60);
170
+ };
171
+
172
+ var makeMarkerGeometry_Sphere3 = function(markerName, scale) {
173
+ return new THREE.SphereGeometry(3, 60, 60);
174
+ };
175
+
176
+ var makeMarkerGeometry_SphereX = function(markerName, scale) {
177
+ return new THREE.SphereGeometry(5, 60, 60);
178
+ };
179
+
180
+ var makeJointGeometry_SphereX = function(X) {
181
+ return function(jointName, scale) {
182
+ return new THREE.SphereGeometry(X, 60, 60);
183
+ };
184
+ };
185
+
186
+
187
+ var makeJointGeometry_Sphere1 = function(jointName, scale) {
188
+ return new THREE.SphereGeometry(2 / scale, 60, 60);
189
+ };
190
+
191
+ var makeJointGeometry_Sphere2 = function(jointName, scale) {
192
+ return new THREE.SphereGeometry(1 / scale, 60, 60);
193
+ };
194
+
195
+ var makeJointGeometry_Dode = function(jointName, scale) {
196
+ return new THREE.DodecahedronGeometry(1 / scale, 0);
197
+ };
198
+
199
+ var makeBoneGeometry_Cylinder1 = function(joint1Name, joint2Name, length, scale) {
200
+ return new THREE.CylinderGeometry(1.5 / scale, 0.7 / scale, length, 40);
201
+ };
202
+
203
+ var makeBoneGeometry_Cylinder2 = function(joint1Name, joint2Name, length, scale) {
204
+ // if (joint1Name.includes("LeftHip"))
205
+ // length = 400;
206
+ return new THREE.CylinderGeometry(1.5 / scale, 0.2 / scale, length, 40);
207
+ };
208
+
209
+ var makeBoneGeometry_Cylinder3 = function(joint1Name, joint2Name, length, scale) {
210
+ var c1 = new THREE.CylinderGeometry(1.5 / scale, 0.2 / scale, length / 1, 20);
211
+ var c2 = new THREE.CylinderGeometry(0.2 / scale, 1.5 / scale, length / 1, 40);
212
+
213
+ var material = new THREE.MeshPhongMaterial({
214
+ color: 0xF7FE2E
215
+ });
216
+ var mmesh = new THREE.Mesh(c1, material);
217
+ mmesh.updateMatrix();
218
+ c2.merge(mmesh.geometry, mmesh.matrix);
219
+ return c2;
220
+ };
221
+
222
+ var makeBoneGeometry_Box1 = function(joint1Name, joint2Name, length, scale) {
223
+ return new THREE.BoxGeometry(1 / scale, length, 1 / scale, 40);
224
+ };
225
+
226
+
227
+ var makeJointGeometry_Empty = function(jointName, scale) {
228
+ return new THREE.SphereGeometry(0.001, 60, 60);
229
+ };
230
+
231
+ var makeBoneGeometry_Empty = function(joint1Name, joint2Name, length, scale) {
232
+ return new THREE.CylinderGeometry(0.001, 0.001, 0.001, 40);
233
+ };
dataloaders/pymo/mocapplayer/libs/jquery.min.js ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ /*! jQuery v2.2.3 | (c) jQuery Foundation | jquery.org/license */
2
+ !function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=a.document,e=c.slice,f=c.concat,g=c.push,h=c.indexOf,i={},j=i.toString,k=i.hasOwnProperty,l={},m="2.2.3",n=function(a,b){return new n.fn.init(a,b)},o=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,p=/^-ms-/,q=/-([\da-z])/gi,r=function(a,b){return b.toUpperCase()};n.fn=n.prototype={jquery:m,constructor:n,selector:"",length:0,toArray:function(){return e.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:e.call(this)},pushStack:function(a){var b=n.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a){return n.each(this,a)},map:function(a){return this.pushStack(n.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(e.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor()},push:g,sort:c.sort,splice:c.splice},n.extend=n.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||n.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(a=arguments[h]))for(b in a)c=g[b],d=a[b],g!==d&&(j&&d&&(n.isPlainObject(d)||(e=n.isArray(d)))?(e?(e=!1,f=c&&n.isArray(c)?c:[]):f=c&&n.isPlainObject(c)?c:{},g[b]=n.extend(j,f,d)):void 0!==d&&(g[b]=d));return g},n.extend({expando:"jQuery"+(m+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===n.type(a)},isArray:Array.isArray,isWindow:function(a){return null!=a&&a===a.window},isNumeric:function(a){var b=a&&a.toString();return!n.isArray(a)&&b-parseFloat(b)+1>=0},isPlainObject:function(a){var b;if("object"!==n.type(a)||a.nodeType||n.isWindow(a))return!1;if(a.constructor&&!k.call(a,"constructor")&&!k.call(a.constructor.prototype||{},"isPrototypeOf"))return!1;for(b in a);return void 0===b||k.call(a,b)},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?i[j.call(a)]||"object":typeof a},globalEval:function(a){var b,c=eval;a=n.trim(a),a&&(1===a.indexOf("use strict")?(b=d.createElement("script"),b.text=a,d.head.appendChild(b).parentNode.removeChild(b)):c(a))},camelCase:function(a){return a.replace(p,"ms-").replace(q,r)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b){var c,d=0;if(s(a)){for(c=a.length;c>d;d++)if(b.call(a[d],d,a[d])===!1)break}else for(d in a)if(b.call(a[d],d,a[d])===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(o,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(s(Object(a))?n.merge(c,"string"==typeof a?[a]:a):g.call(c,a)),c},inArray:function(a,b,c){return null==b?-1:h.call(b,a,c)},merge:function(a,b){for(var c=+b.length,d=0,e=a.length;c>d;d++)a[e++]=b[d];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,e,g=0,h=[];if(s(a))for(d=a.length;d>g;g++)e=b(a[g],g,c),null!=e&&h.push(e);else for(g in a)e=b(a[g],g,c),null!=e&&h.push(e);return f.apply([],h)},guid:1,proxy:function(a,b){var c,d,f;return"string"==typeof b&&(c=a[b],b=a,a=c),n.isFunction(a)?(d=e.call(arguments,2),f=function(){return a.apply(b||this,d.concat(e.call(arguments)))},f.guid=a.guid=a.guid||n.guid++,f):void 0},now:Date.now,support:l}),"function"==typeof Symbol&&(n.fn[Symbol.iterator]=c[Symbol.iterator]),n.each("Boolean Number String Function Array Date RegExp Object Error Symbol".split(" "),function(a,b){i["[object "+b+"]"]=b.toLowerCase()});function s(a){var b=!!a&&"length"in a&&a.length,c=n.type(a);return"function"===c||n.isWindow(a)?!1:"array"===c||0===b||"number"==typeof b&&b>0&&b-1 in a}var t=function(a){var b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u="sizzle"+1*new Date,v=a.document,w=0,x=0,y=ga(),z=ga(),A=ga(),B=function(a,b){return a===b&&(l=!0),0},C=1<<31,D={}.hasOwnProperty,E=[],F=E.pop,G=E.push,H=E.push,I=E.slice,J=function(a,b){for(var c=0,d=a.length;d>c;c++)if(a[c]===b)return c;return-1},K="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",L="[\\x20\\t\\r\\n\\f]",M="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",N="\\["+L+"*("+M+")(?:"+L+"*([*^$|!~]?=)"+L+"*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|("+M+"))|)"+L+"*\\]",O=":("+M+")(?:\\((('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|((?:\\\\.|[^\\\\()[\\]]|"+N+")*)|.*)\\)|)",P=new RegExp(L+"+","g"),Q=new RegExp("^"+L+"+|((?:^|[^\\\\])(?:\\\\.)*)"+L+"+$","g"),R=new RegExp("^"+L+"*,"+L+"*"),S=new RegExp("^"+L+"*([>+~]|"+L+")"+L+"*"),T=new RegExp("="+L+"*([^\\]'\"]*?)"+L+"*\\]","g"),U=new RegExp(O),V=new RegExp("^"+M+"$"),W={ID:new RegExp("^#("+M+")"),CLASS:new RegExp("^\\.("+M+")"),TAG:new RegExp("^("+M+"|[*])"),ATTR:new RegExp("^"+N),PSEUDO:new RegExp("^"+O),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+L+"*(even|odd|(([+-]|)(\\d*)n|)"+L+"*(?:([+-]|)"+L+"*(\\d+)|))"+L+"*\\)|)","i"),bool:new RegExp("^(?:"+K+")$","i"),needsContext:new RegExp("^"+L+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+L+"*((?:-\\d)?\\d*)"+L+"*\\)|)(?=[^-]|$)","i")},X=/^(?:input|select|textarea|button)$/i,Y=/^h\d$/i,Z=/^[^{]+\{\s*\[native \w/,$=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,_=/[+~]/,aa=/'|\\/g,ba=new RegExp("\\\\([\\da-f]{1,6}"+L+"?|("+L+")|.)","ig"),ca=function(a,b,c){var d="0x"+b-65536;return d!==d||c?b:0>d?String.fromCharCode(d+65536):String.fromCharCode(d>>10|55296,1023&d|56320)},da=function(){m()};try{H.apply(E=I.call(v.childNodes),v.childNodes),E[v.childNodes.length].nodeType}catch(ea){H={apply:E.length?function(a,b){G.apply(a,I.call(b))}:function(a,b){var c=a.length,d=0;while(a[c++]=b[d++]);a.length=c-1}}}function fa(a,b,d,e){var f,h,j,k,l,o,r,s,w=b&&b.ownerDocument,x=b?b.nodeType:9;if(d=d||[],"string"!=typeof a||!a||1!==x&&9!==x&&11!==x)return d;if(!e&&((b?b.ownerDocument||b:v)!==n&&m(b),b=b||n,p)){if(11!==x&&(o=$.exec(a)))if(f=o[1]){if(9===x){if(!(j=b.getElementById(f)))return d;if(j.id===f)return d.push(j),d}else if(w&&(j=w.getElementById(f))&&t(b,j)&&j.id===f)return d.push(j),d}else{if(o[2])return H.apply(d,b.getElementsByTagName(a)),d;if((f=o[3])&&c.getElementsByClassName&&b.getElementsByClassName)return H.apply(d,b.getElementsByClassName(f)),d}if(c.qsa&&!A[a+" "]&&(!q||!q.test(a))){if(1!==x)w=b,s=a;else if("object"!==b.nodeName.toLowerCase()){(k=b.getAttribute("id"))?k=k.replace(aa,"\\$&"):b.setAttribute("id",k=u),r=g(a),h=r.length,l=V.test(k)?"#"+k:"[id='"+k+"']";while(h--)r[h]=l+" "+qa(r[h]);s=r.join(","),w=_.test(a)&&oa(b.parentNode)||b}if(s)try{return H.apply(d,w.querySelectorAll(s)),d}catch(y){}finally{k===u&&b.removeAttribute("id")}}}return i(a.replace(Q,"$1"),b,d,e)}function ga(){var a=[];function b(c,e){return a.push(c+" ")>d.cacheLength&&delete b[a.shift()],b[c+" "]=e}return b}function ha(a){return a[u]=!0,a}function ia(a){var b=n.createElement("div");try{return!!a(b)}catch(c){return!1}finally{b.parentNode&&b.parentNode.removeChild(b),b=null}}function ja(a,b){var c=a.split("|"),e=c.length;while(e--)d.attrHandle[c[e]]=b}function ka(a,b){var c=b&&a,d=c&&1===a.nodeType&&1===b.nodeType&&(~b.sourceIndex||C)-(~a.sourceIndex||C);if(d)return d;if(c)while(c=c.nextSibling)if(c===b)return-1;return a?1:-1}function la(a){return function(b){var c=b.nodeName.toLowerCase();return"input"===c&&b.type===a}}function ma(a){return function(b){var c=b.nodeName.toLowerCase();return("input"===c||"button"===c)&&b.type===a}}function na(a){return ha(function(b){return b=+b,ha(function(c,d){var e,f=a([],c.length,b),g=f.length;while(g--)c[e=f[g]]&&(c[e]=!(d[e]=c[e]))})})}function oa(a){return a&&"undefined"!=typeof a.getElementsByTagName&&a}c=fa.support={},f=fa.isXML=function(a){var b=a&&(a.ownerDocument||a).documentElement;return b?"HTML"!==b.nodeName:!1},m=fa.setDocument=function(a){var b,e,g=a?a.ownerDocument||a:v;return g!==n&&9===g.nodeType&&g.documentElement?(n=g,o=n.documentElement,p=!f(n),(e=n.defaultView)&&e.top!==e&&(e.addEventListener?e.addEventListener("unload",da,!1):e.attachEvent&&e.attachEvent("onunload",da)),c.attributes=ia(function(a){return a.className="i",!a.getAttribute("className")}),c.getElementsByTagName=ia(function(a){return a.appendChild(n.createComment("")),!a.getElementsByTagName("*").length}),c.getElementsByClassName=Z.test(n.getElementsByClassName),c.getById=ia(function(a){return o.appendChild(a).id=u,!n.getElementsByName||!n.getElementsByName(u).length}),c.getById?(d.find.ID=function(a,b){if("undefined"!=typeof b.getElementById&&p){var c=b.getElementById(a);return c?[c]:[]}},d.filter.ID=function(a){var b=a.replace(ba,ca);return function(a){return a.getAttribute("id")===b}}):(delete d.find.ID,d.filter.ID=function(a){var b=a.replace(ba,ca);return function(a){var c="undefined"!=typeof a.getAttributeNode&&a.getAttributeNode("id");return c&&c.value===b}}),d.find.TAG=c.getElementsByTagName?function(a,b){return"undefined"!=typeof b.getElementsByTagName?b.getElementsByTagName(a):c.qsa?b.querySelectorAll(a):void 0}:function(a,b){var c,d=[],e=0,f=b.getElementsByTagName(a);if("*"===a){while(c=f[e++])1===c.nodeType&&d.push(c);return d}return f},d.find.CLASS=c.getElementsByClassName&&function(a,b){return"undefined"!=typeof b.getElementsByClassName&&p?b.getElementsByClassName(a):void 0},r=[],q=[],(c.qsa=Z.test(n.querySelectorAll))&&(ia(function(a){o.appendChild(a).innerHTML="<a id='"+u+"'></a><select id='"+u+"-\r\\' msallowcapture=''><option selected=''></option></select>",a.querySelectorAll("[msallowcapture^='']").length&&q.push("[*^$]="+L+"*(?:''|\"\")"),a.querySelectorAll("[selected]").length||q.push("\\["+L+"*(?:value|"+K+")"),a.querySelectorAll("[id~="+u+"-]").length||q.push("~="),a.querySelectorAll(":checked").length||q.push(":checked"),a.querySelectorAll("a#"+u+"+*").length||q.push(".#.+[+~]")}),ia(function(a){var b=n.createElement("input");b.setAttribute("type","hidden"),a.appendChild(b).setAttribute("name","D"),a.querySelectorAll("[name=d]").length&&q.push("name"+L+"*[*^$|!~]?="),a.querySelectorAll(":enabled").length||q.push(":enabled",":disabled"),a.querySelectorAll("*,:x"),q.push(",.*:")})),(c.matchesSelector=Z.test(s=o.matches||o.webkitMatchesSelector||o.mozMatchesSelector||o.oMatchesSelector||o.msMatchesSelector))&&ia(function(a){c.disconnectedMatch=s.call(a,"div"),s.call(a,"[s!='']:x"),r.push("!=",O)}),q=q.length&&new RegExp(q.join("|")),r=r.length&&new RegExp(r.join("|")),b=Z.test(o.compareDocumentPosition),t=b||Z.test(o.contains)?function(a,b){var c=9===a.nodeType?a.documentElement:a,d=b&&b.parentNode;return a===d||!(!d||1!==d.nodeType||!(c.contains?c.contains(d):a.compareDocumentPosition&&16&a.compareDocumentPosition(d)))}:function(a,b){if(b)while(b=b.parentNode)if(b===a)return!0;return!1},B=b?function(a,b){if(a===b)return l=!0,0;var d=!a.compareDocumentPosition-!b.compareDocumentPosition;return d?d:(d=(a.ownerDocument||a)===(b.ownerDocument||b)?a.compareDocumentPosition(b):1,1&d||!c.sortDetached&&b.compareDocumentPosition(a)===d?a===n||a.ownerDocument===v&&t(v,a)?-1:b===n||b.ownerDocument===v&&t(v,b)?1:k?J(k,a)-J(k,b):0:4&d?-1:1)}:function(a,b){if(a===b)return l=!0,0;var c,d=0,e=a.parentNode,f=b.parentNode,g=[a],h=[b];if(!e||!f)return a===n?-1:b===n?1:e?-1:f?1:k?J(k,a)-J(k,b):0;if(e===f)return ka(a,b);c=a;while(c=c.parentNode)g.unshift(c);c=b;while(c=c.parentNode)h.unshift(c);while(g[d]===h[d])d++;return d?ka(g[d],h[d]):g[d]===v?-1:h[d]===v?1:0},n):n},fa.matches=function(a,b){return fa(a,null,null,b)},fa.matchesSelector=function(a,b){if((a.ownerDocument||a)!==n&&m(a),b=b.replace(T,"='$1']"),c.matchesSelector&&p&&!A[b+" "]&&(!r||!r.test(b))&&(!q||!q.test(b)))try{var d=s.call(a,b);if(d||c.disconnectedMatch||a.document&&11!==a.document.nodeType)return d}catch(e){}return fa(b,n,null,[a]).length>0},fa.contains=function(a,b){return(a.ownerDocument||a)!==n&&m(a),t(a,b)},fa.attr=function(a,b){(a.ownerDocument||a)!==n&&m(a);var e=d.attrHandle[b.toLowerCase()],f=e&&D.call(d.attrHandle,b.toLowerCase())?e(a,b,!p):void 0;return void 0!==f?f:c.attributes||!p?a.getAttribute(b):(f=a.getAttributeNode(b))&&f.specified?f.value:null},fa.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)},fa.uniqueSort=function(a){var b,d=[],e=0,f=0;if(l=!c.detectDuplicates,k=!c.sortStable&&a.slice(0),a.sort(B),l){while(b=a[f++])b===a[f]&&(e=d.push(f));while(e--)a.splice(d[e],1)}return k=null,a},e=fa.getText=function(a){var b,c="",d=0,f=a.nodeType;if(f){if(1===f||9===f||11===f){if("string"==typeof a.textContent)return a.textContent;for(a=a.firstChild;a;a=a.nextSibling)c+=e(a)}else if(3===f||4===f)return a.nodeValue}else while(b=a[d++])c+=e(b);return c},d=fa.selectors={cacheLength:50,createPseudo:ha,match:W,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(a){return a[1]=a[1].replace(ba,ca),a[3]=(a[3]||a[4]||a[5]||"").replace(ba,ca),"~="===a[2]&&(a[3]=" "+a[3]+" "),a.slice(0,4)},CHILD:function(a){return a[1]=a[1].toLowerCase(),"nth"===a[1].slice(0,3)?(a[3]||fa.error(a[0]),a[4]=+(a[4]?a[5]+(a[6]||1):2*("even"===a[3]||"odd"===a[3])),a[5]=+(a[7]+a[8]||"odd"===a[3])):a[3]&&fa.error(a[0]),a},PSEUDO:function(a){var b,c=!a[6]&&a[2];return W.CHILD.test(a[0])?null:(a[3]?a[2]=a[4]||a[5]||"":c&&U.test(c)&&(b=g(c,!0))&&(b=c.indexOf(")",c.length-b)-c.length)&&(a[0]=a[0].slice(0,b),a[2]=c.slice(0,b)),a.slice(0,3))}},filter:{TAG:function(a){var b=a.replace(ba,ca).toLowerCase();return"*"===a?function(){return!0}:function(a){return a.nodeName&&a.nodeName.toLowerCase()===b}},CLASS:function(a){var b=y[a+" "];return b||(b=new RegExp("(^|"+L+")"+a+"("+L+"|$)"))&&y(a,function(a){return b.test("string"==typeof a.className&&a.className||"undefined"!=typeof a.getAttribute&&a.getAttribute("class")||"")})},ATTR:function(a,b,c){return function(d){var e=fa.attr(d,a);return null==e?"!="===b:b?(e+="","="===b?e===c:"!="===b?e!==c:"^="===b?c&&0===e.indexOf(c):"*="===b?c&&e.indexOf(c)>-1:"$="===b?c&&e.slice(-c.length)===c:"~="===b?(" "+e.replace(P," ")+" ").indexOf(c)>-1:"|="===b?e===c||e.slice(0,c.length+1)===c+"-":!1):!0}},CHILD:function(a,b,c,d,e){var f="nth"!==a.slice(0,3),g="last"!==a.slice(-4),h="of-type"===b;return 1===d&&0===e?function(a){return!!a.parentNode}:function(b,c,i){var j,k,l,m,n,o,p=f!==g?"nextSibling":"previousSibling",q=b.parentNode,r=h&&b.nodeName.toLowerCase(),s=!i&&!h,t=!1;if(q){if(f){while(p){m=b;while(m=m[p])if(h?m.nodeName.toLowerCase()===r:1===m.nodeType)return!1;o=p="only"===a&&!o&&"nextSibling"}return!0}if(o=[g?q.firstChild:q.lastChild],g&&s){m=q,l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),j=k[a]||[],n=j[0]===w&&j[1],t=n&&j[2],m=n&&q.childNodes[n];while(m=++n&&m&&m[p]||(t=n=0)||o.pop())if(1===m.nodeType&&++t&&m===b){k[a]=[w,n,t];break}}else if(s&&(m=b,l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),j=k[a]||[],n=j[0]===w&&j[1],t=n),t===!1)while(m=++n&&m&&m[p]||(t=n=0)||o.pop())if((h?m.nodeName.toLowerCase()===r:1===m.nodeType)&&++t&&(s&&(l=m[u]||(m[u]={}),k=l[m.uniqueID]||(l[m.uniqueID]={}),k[a]=[w,t]),m===b))break;return t-=e,t===d||t%d===0&&t/d>=0}}},PSEUDO:function(a,b){var c,e=d.pseudos[a]||d.setFilters[a.toLowerCase()]||fa.error("unsupported pseudo: "+a);return e[u]?e(b):e.length>1?(c=[a,a,"",b],d.setFilters.hasOwnProperty(a.toLowerCase())?ha(function(a,c){var d,f=e(a,b),g=f.length;while(g--)d=J(a,f[g]),a[d]=!(c[d]=f[g])}):function(a){return e(a,0,c)}):e}},pseudos:{not:ha(function(a){var b=[],c=[],d=h(a.replace(Q,"$1"));return d[u]?ha(function(a,b,c,e){var f,g=d(a,null,e,[]),h=a.length;while(h--)(f=g[h])&&(a[h]=!(b[h]=f))}):function(a,e,f){return b[0]=a,d(b,null,f,c),b[0]=null,!c.pop()}}),has:ha(function(a){return function(b){return fa(a,b).length>0}}),contains:ha(function(a){return a=a.replace(ba,ca),function(b){return(b.textContent||b.innerText||e(b)).indexOf(a)>-1}}),lang:ha(function(a){return V.test(a||"")||fa.error("unsupported lang: "+a),a=a.replace(ba,ca).toLowerCase(),function(b){var c;do if(c=p?b.lang:b.getAttribute("xml:lang")||b.getAttribute("lang"))return c=c.toLowerCase(),c===a||0===c.indexOf(a+"-");while((b=b.parentNode)&&1===b.nodeType);return!1}}),target:function(b){var c=a.location&&a.location.hash;return c&&c.slice(1)===b.id},root:function(a){return a===o},focus:function(a){return a===n.activeElement&&(!n.hasFocus||n.hasFocus())&&!!(a.type||a.href||~a.tabIndex)},enabled:function(a){return a.disabled===!1},disabled:function(a){return a.disabled===!0},checked:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&!!a.checked||"option"===b&&!!a.selected},selected:function(a){return a.parentNode&&a.parentNode.selectedIndex,a.selected===!0},empty:function(a){for(a=a.firstChild;a;a=a.nextSibling)if(a.nodeType<6)return!1;return!0},parent:function(a){return!d.pseudos.empty(a)},header:function(a){return Y.test(a.nodeName)},input:function(a){return X.test(a.nodeName)},button:function(a){var b=a.nodeName.toLowerCase();return"input"===b&&"button"===a.type||"button"===b},text:function(a){var b;return"input"===a.nodeName.toLowerCase()&&"text"===a.type&&(null==(b=a.getAttribute("type"))||"text"===b.toLowerCase())},first:na(function(){return[0]}),last:na(function(a,b){return[b-1]}),eq:na(function(a,b,c){return[0>c?c+b:c]}),even:na(function(a,b){for(var c=0;b>c;c+=2)a.push(c);return a}),odd:na(function(a,b){for(var c=1;b>c;c+=2)a.push(c);return a}),lt:na(function(a,b,c){for(var d=0>c?c+b:c;--d>=0;)a.push(d);return a}),gt:na(function(a,b,c){for(var d=0>c?c+b:c;++d<b;)a.push(d);return a})}},d.pseudos.nth=d.pseudos.eq;for(b in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})d.pseudos[b]=la(b);for(b in{submit:!0,reset:!0})d.pseudos[b]=ma(b);function pa(){}pa.prototype=d.filters=d.pseudos,d.setFilters=new pa,g=fa.tokenize=function(a,b){var c,e,f,g,h,i,j,k=z[a+" "];if(k)return b?0:k.slice(0);h=a,i=[],j=d.preFilter;while(h){c&&!(e=R.exec(h))||(e&&(h=h.slice(e[0].length)||h),i.push(f=[])),c=!1,(e=S.exec(h))&&(c=e.shift(),f.push({value:c,type:e[0].replace(Q," ")}),h=h.slice(c.length));for(g in d.filter)!(e=W[g].exec(h))||j[g]&&!(e=j[g](e))||(c=e.shift(),f.push({value:c,type:g,matches:e}),h=h.slice(c.length));if(!c)break}return b?h.length:h?fa.error(a):z(a,i).slice(0)};function qa(a){for(var b=0,c=a.length,d="";c>b;b++)d+=a[b].value;return d}function ra(a,b,c){var d=b.dir,e=c&&"parentNode"===d,f=x++;return b.first?function(b,c,f){while(b=b[d])if(1===b.nodeType||e)return a(b,c,f)}:function(b,c,g){var h,i,j,k=[w,f];if(g){while(b=b[d])if((1===b.nodeType||e)&&a(b,c,g))return!0}else while(b=b[d])if(1===b.nodeType||e){if(j=b[u]||(b[u]={}),i=j[b.uniqueID]||(j[b.uniqueID]={}),(h=i[d])&&h[0]===w&&h[1]===f)return k[2]=h[2];if(i[d]=k,k[2]=a(b,c,g))return!0}}}function sa(a){return a.length>1?function(b,c,d){var e=a.length;while(e--)if(!a[e](b,c,d))return!1;return!0}:a[0]}function ta(a,b,c){for(var d=0,e=b.length;e>d;d++)fa(a,b[d],c);return c}function ua(a,b,c,d,e){for(var f,g=[],h=0,i=a.length,j=null!=b;i>h;h++)(f=a[h])&&(c&&!c(f,d,e)||(g.push(f),j&&b.push(h)));return g}function va(a,b,c,d,e,f){return d&&!d[u]&&(d=va(d)),e&&!e[u]&&(e=va(e,f)),ha(function(f,g,h,i){var j,k,l,m=[],n=[],o=g.length,p=f||ta(b||"*",h.nodeType?[h]:h,[]),q=!a||!f&&b?p:ua(p,m,a,h,i),r=c?e||(f?a:o||d)?[]:g:q;if(c&&c(q,r,h,i),d){j=ua(r,n),d(j,[],h,i),k=j.length;while(k--)(l=j[k])&&(r[n[k]]=!(q[n[k]]=l))}if(f){if(e||a){if(e){j=[],k=r.length;while(k--)(l=r[k])&&j.push(q[k]=l);e(null,r=[],j,i)}k=r.length;while(k--)(l=r[k])&&(j=e?J(f,l):m[k])>-1&&(f[j]=!(g[j]=l))}}else r=ua(r===g?r.splice(o,r.length):r),e?e(null,g,r,i):H.apply(g,r)})}function wa(a){for(var b,c,e,f=a.length,g=d.relative[a[0].type],h=g||d.relative[" "],i=g?1:0,k=ra(function(a){return a===b},h,!0),l=ra(function(a){return J(b,a)>-1},h,!0),m=[function(a,c,d){var e=!g&&(d||c!==j)||((b=c).nodeType?k(a,c,d):l(a,c,d));return b=null,e}];f>i;i++)if(c=d.relative[a[i].type])m=[ra(sa(m),c)];else{if(c=d.filter[a[i].type].apply(null,a[i].matches),c[u]){for(e=++i;f>e;e++)if(d.relative[a[e].type])break;return va(i>1&&sa(m),i>1&&qa(a.slice(0,i-1).concat({value:" "===a[i-2].type?"*":""})).replace(Q,"$1"),c,e>i&&wa(a.slice(i,e)),f>e&&wa(a=a.slice(e)),f>e&&qa(a))}m.push(c)}return sa(m)}function xa(a,b){var c=b.length>0,e=a.length>0,f=function(f,g,h,i,k){var l,o,q,r=0,s="0",t=f&&[],u=[],v=j,x=f||e&&d.find.TAG("*",k),y=w+=null==v?1:Math.random()||.1,z=x.length;for(k&&(j=g===n||g||k);s!==z&&null!=(l=x[s]);s++){if(e&&l){o=0,g||l.ownerDocument===n||(m(l),h=!p);while(q=a[o++])if(q(l,g||n,h)){i.push(l);break}k&&(w=y)}c&&((l=!q&&l)&&r--,f&&t.push(l))}if(r+=s,c&&s!==r){o=0;while(q=b[o++])q(t,u,g,h);if(f){if(r>0)while(s--)t[s]||u[s]||(u[s]=F.call(i));u=ua(u)}H.apply(i,u),k&&!f&&u.length>0&&r+b.length>1&&fa.uniqueSort(i)}return k&&(w=y,j=v),t};return c?ha(f):f}return h=fa.compile=function(a,b){var c,d=[],e=[],f=A[a+" "];if(!f){b||(b=g(a)),c=b.length;while(c--)f=wa(b[c]),f[u]?d.push(f):e.push(f);f=A(a,xa(e,d)),f.selector=a}return f},i=fa.select=function(a,b,e,f){var i,j,k,l,m,n="function"==typeof a&&a,o=!f&&g(a=n.selector||a);if(e=e||[],1===o.length){if(j=o[0]=o[0].slice(0),j.length>2&&"ID"===(k=j[0]).type&&c.getById&&9===b.nodeType&&p&&d.relative[j[1].type]){if(b=(d.find.ID(k.matches[0].replace(ba,ca),b)||[])[0],!b)return e;n&&(b=b.parentNode),a=a.slice(j.shift().value.length)}i=W.needsContext.test(a)?0:j.length;while(i--){if(k=j[i],d.relative[l=k.type])break;if((m=d.find[l])&&(f=m(k.matches[0].replace(ba,ca),_.test(j[0].type)&&oa(b.parentNode)||b))){if(j.splice(i,1),a=f.length&&qa(j),!a)return H.apply(e,f),e;break}}}return(n||h(a,o))(f,b,!p,e,!b||_.test(a)&&oa(b.parentNode)||b),e},c.sortStable=u.split("").sort(B).join("")===u,c.detectDuplicates=!!l,m(),c.sortDetached=ia(function(a){return 1&a.compareDocumentPosition(n.createElement("div"))}),ia(function(a){return a.innerHTML="<a href='#'></a>","#"===a.firstChild.getAttribute("href")})||ja("type|href|height|width",function(a,b,c){return c?void 0:a.getAttribute(b,"type"===b.toLowerCase()?1:2)}),c.attributes&&ia(function(a){return a.innerHTML="<input/>",a.firstChild.setAttribute("value",""),""===a.firstChild.getAttribute("value")})||ja("value",function(a,b,c){return c||"input"!==a.nodeName.toLowerCase()?void 0:a.defaultValue}),ia(function(a){return null==a.getAttribute("disabled")})||ja(K,function(a,b,c){var d;return c?void 0:a[b]===!0?b.toLowerCase():(d=a.getAttributeNode(b))&&d.specified?d.value:null}),fa}(a);n.find=t,n.expr=t.selectors,n.expr[":"]=n.expr.pseudos,n.uniqueSort=n.unique=t.uniqueSort,n.text=t.getText,n.isXMLDoc=t.isXML,n.contains=t.contains;var u=function(a,b,c){var d=[],e=void 0!==c;while((a=a[b])&&9!==a.nodeType)if(1===a.nodeType){if(e&&n(a).is(c))break;d.push(a)}return d},v=function(a,b){for(var c=[];a;a=a.nextSibling)1===a.nodeType&&a!==b&&c.push(a);return c},w=n.expr.match.needsContext,x=/^<([\w-]+)\s*\/?>(?:<\/\1>|)$/,y=/^.[^:#\[\.,]*$/;function z(a,b,c){if(n.isFunction(b))return n.grep(a,function(a,d){return!!b.call(a,d,a)!==c});if(b.nodeType)return n.grep(a,function(a){return a===b!==c});if("string"==typeof b){if(y.test(b))return n.filter(b,a,c);b=n.filter(b,a)}return n.grep(a,function(a){return h.call(b,a)>-1!==c})}n.filter=function(a,b,c){var d=b[0];return c&&(a=":not("+a+")"),1===b.length&&1===d.nodeType?n.find.matchesSelector(d,a)?[d]:[]:n.find.matches(a,n.grep(b,function(a){return 1===a.nodeType}))},n.fn.extend({find:function(a){var b,c=this.length,d=[],e=this;if("string"!=typeof a)return this.pushStack(n(a).filter(function(){for(b=0;c>b;b++)if(n.contains(e[b],this))return!0}));for(b=0;c>b;b++)n.find(a,e[b],d);return d=this.pushStack(c>1?n.unique(d):d),d.selector=this.selector?this.selector+" "+a:a,d},filter:function(a){return this.pushStack(z(this,a||[],!1))},not:function(a){return this.pushStack(z(this,a||[],!0))},is:function(a){return!!z(this,"string"==typeof a&&w.test(a)?n(a):a||[],!1).length}});var A,B=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,C=n.fn.init=function(a,b,c){var e,f;if(!a)return this;if(c=c||A,"string"==typeof a){if(e="<"===a[0]&&">"===a[a.length-1]&&a.length>=3?[null,a,null]:B.exec(a),!e||!e[1]&&b)return!b||b.jquery?(b||c).find(a):this.constructor(b).find(a);if(e[1]){if(b=b instanceof n?b[0]:b,n.merge(this,n.parseHTML(e[1],b&&b.nodeType?b.ownerDocument||b:d,!0)),x.test(e[1])&&n.isPlainObject(b))for(e in b)n.isFunction(this[e])?this[e](b[e]):this.attr(e,b[e]);return this}return f=d.getElementById(e[2]),f&&f.parentNode&&(this.length=1,this[0]=f),this.context=d,this.selector=a,this}return a.nodeType?(this.context=this[0]=a,this.length=1,this):n.isFunction(a)?void 0!==c.ready?c.ready(a):a(n):(void 0!==a.selector&&(this.selector=a.selector,this.context=a.context),n.makeArray(a,this))};C.prototype=n.fn,A=n(d);var D=/^(?:parents|prev(?:Until|All))/,E={children:!0,contents:!0,next:!0,prev:!0};n.fn.extend({has:function(a){var b=n(a,this),c=b.length;return this.filter(function(){for(var a=0;c>a;a++)if(n.contains(this,b[a]))return!0})},closest:function(a,b){for(var c,d=0,e=this.length,f=[],g=w.test(a)||"string"!=typeof a?n(a,b||this.context):0;e>d;d++)for(c=this[d];c&&c!==b;c=c.parentNode)if(c.nodeType<11&&(g?g.index(c)>-1:1===c.nodeType&&n.find.matchesSelector(c,a))){f.push(c);break}return this.pushStack(f.length>1?n.uniqueSort(f):f)},index:function(a){return a?"string"==typeof a?h.call(n(a),this[0]):h.call(this,a.jquery?a[0]:a):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(a,b){return this.pushStack(n.uniqueSort(n.merge(this.get(),n(a,b))))},addBack:function(a){return this.add(null==a?this.prevObject:this.prevObject.filter(a))}});function F(a,b){while((a=a[b])&&1!==a.nodeType);return a}n.each({parent:function(a){var b=a.parentNode;return b&&11!==b.nodeType?b:null},parents:function(a){return u(a,"parentNode")},parentsUntil:function(a,b,c){return u(a,"parentNode",c)},next:function(a){return F(a,"nextSibling")},prev:function(a){return F(a,"previousSibling")},nextAll:function(a){return u(a,"nextSibling")},prevAll:function(a){return u(a,"previousSibling")},nextUntil:function(a,b,c){return u(a,"nextSibling",c)},prevUntil:function(a,b,c){return u(a,"previousSibling",c)},siblings:function(a){return v((a.parentNode||{}).firstChild,a)},children:function(a){return v(a.firstChild)},contents:function(a){return a.contentDocument||n.merge([],a.childNodes)}},function(a,b){n.fn[a]=function(c,d){var e=n.map(this,b,c);return"Until"!==a.slice(-5)&&(d=c),d&&"string"==typeof d&&(e=n.filter(d,e)),this.length>1&&(E[a]||n.uniqueSort(e),D.test(a)&&e.reverse()),this.pushStack(e)}});var G=/\S+/g;function H(a){var b={};return n.each(a.match(G)||[],function(a,c){b[c]=!0}),b}n.Callbacks=function(a){a="string"==typeof a?H(a):n.extend({},a);var b,c,d,e,f=[],g=[],h=-1,i=function(){for(e=a.once,d=b=!0;g.length;h=-1){c=g.shift();while(++h<f.length)f[h].apply(c[0],c[1])===!1&&a.stopOnFalse&&(h=f.length,c=!1)}a.memory||(c=!1),b=!1,e&&(f=c?[]:"")},j={add:function(){return f&&(c&&!b&&(h=f.length-1,g.push(c)),function d(b){n.each(b,function(b,c){n.isFunction(c)?a.unique&&j.has(c)||f.push(c):c&&c.length&&"string"!==n.type(c)&&d(c)})}(arguments),c&&!b&&i()),this},remove:function(){return n.each(arguments,function(a,b){var c;while((c=n.inArray(b,f,c))>-1)f.splice(c,1),h>=c&&h--}),this},has:function(a){return a?n.inArray(a,f)>-1:f.length>0},empty:function(){return f&&(f=[]),this},disable:function(){return e=g=[],f=c="",this},disabled:function(){return!f},lock:function(){return e=g=[],c||(f=c=""),this},locked:function(){return!!e},fireWith:function(a,c){return e||(c=c||[],c=[a,c.slice?c.slice():c],g.push(c),b||i()),this},fire:function(){return j.fireWith(this,arguments),this},fired:function(){return!!d}};return j},n.extend({Deferred:function(a){var b=[["resolve","done",n.Callbacks("once memory"),"resolved"],["reject","fail",n.Callbacks("once memory"),"rejected"],["notify","progress",n.Callbacks("memory")]],c="pending",d={state:function(){return c},always:function(){return e.done(arguments).fail(arguments),this},then:function(){var a=arguments;return n.Deferred(function(c){n.each(b,function(b,f){var g=n.isFunction(a[b])&&a[b];e[f[1]](function(){var a=g&&g.apply(this,arguments);a&&n.isFunction(a.promise)?a.promise().progress(c.notify).done(c.resolve).fail(c.reject):c[f[0]+"With"](this===d?c.promise():this,g?[a]:arguments)})}),a=null}).promise()},promise:function(a){return null!=a?n.extend(a,d):d}},e={};return d.pipe=d.then,n.each(b,function(a,f){var g=f[2],h=f[3];d[f[1]]=g.add,h&&g.add(function(){c=h},b[1^a][2].disable,b[2][2].lock),e[f[0]]=function(){return e[f[0]+"With"](this===e?d:this,arguments),this},e[f[0]+"With"]=g.fireWith}),d.promise(e),a&&a.call(e,e),e},when:function(a){var b=0,c=e.call(arguments),d=c.length,f=1!==d||a&&n.isFunction(a.promise)?d:0,g=1===f?a:n.Deferred(),h=function(a,b,c){return function(d){b[a]=this,c[a]=arguments.length>1?e.call(arguments):d,c===i?g.notifyWith(b,c):--f||g.resolveWith(b,c)}},i,j,k;if(d>1)for(i=new Array(d),j=new Array(d),k=new Array(d);d>b;b++)c[b]&&n.isFunction(c[b].promise)?c[b].promise().progress(h(b,j,i)).done(h(b,k,c)).fail(g.reject):--f;return f||g.resolveWith(k,c),g.promise()}});var I;n.fn.ready=function(a){return n.ready.promise().done(a),this},n.extend({isReady:!1,readyWait:1,holdReady:function(a){a?n.readyWait++:n.ready(!0)},ready:function(a){(a===!0?--n.readyWait:n.isReady)||(n.isReady=!0,a!==!0&&--n.readyWait>0||(I.resolveWith(d,[n]),n.fn.triggerHandler&&(n(d).triggerHandler("ready"),n(d).off("ready"))))}});function J(){d.removeEventListener("DOMContentLoaded",J),a.removeEventListener("load",J),n.ready()}n.ready.promise=function(b){return I||(I=n.Deferred(),"complete"===d.readyState||"loading"!==d.readyState&&!d.documentElement.doScroll?a.setTimeout(n.ready):(d.addEventListener("DOMContentLoaded",J),a.addEventListener("load",J))),I.promise(b)},n.ready.promise();var K=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===n.type(c)){e=!0;for(h in c)K(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,n.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(n(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},L=function(a){return 1===a.nodeType||9===a.nodeType||!+a.nodeType};function M(){this.expando=n.expando+M.uid++}M.uid=1,M.prototype={register:function(a,b){var c=b||{};return a.nodeType?a[this.expando]=c:Object.defineProperty(a,this.expando,{value:c,writable:!0,configurable:!0}),a[this.expando]},cache:function(a){if(!L(a))return{};var b=a[this.expando];return b||(b={},L(a)&&(a.nodeType?a[this.expando]=b:Object.defineProperty(a,this.expando,{value:b,configurable:!0}))),b},set:function(a,b,c){var d,e=this.cache(a);if("string"==typeof b)e[b]=c;else for(d in b)e[d]=b[d];return e},get:function(a,b){return void 0===b?this.cache(a):a[this.expando]&&a[this.expando][b]},access:function(a,b,c){var d;return void 0===b||b&&"string"==typeof b&&void 0===c?(d=this.get(a,b),void 0!==d?d:this.get(a,n.camelCase(b))):(this.set(a,b,c),void 0!==c?c:b)},remove:function(a,b){var c,d,e,f=a[this.expando];if(void 0!==f){if(void 0===b)this.register(a);else{n.isArray(b)?d=b.concat(b.map(n.camelCase)):(e=n.camelCase(b),b in f?d=[b,e]:(d=e,d=d in f?[d]:d.match(G)||[])),c=d.length;while(c--)delete f[d[c]]}(void 0===b||n.isEmptyObject(f))&&(a.nodeType?a[this.expando]=void 0:delete a[this.expando])}},hasData:function(a){var b=a[this.expando];return void 0!==b&&!n.isEmptyObject(b)}};var N=new M,O=new M,P=/^(?:\{[\w\W]*\}|\[[\w\W]*\])$/,Q=/[A-Z]/g;function R(a,b,c){var d;if(void 0===c&&1===a.nodeType)if(d="data-"+b.replace(Q,"-$&").toLowerCase(),c=a.getAttribute(d),"string"==typeof c){try{c="true"===c?!0:"false"===c?!1:"null"===c?null:+c+""===c?+c:P.test(c)?n.parseJSON(c):c;
3
+ }catch(e){}O.set(a,b,c)}else c=void 0;return c}n.extend({hasData:function(a){return O.hasData(a)||N.hasData(a)},data:function(a,b,c){return O.access(a,b,c)},removeData:function(a,b){O.remove(a,b)},_data:function(a,b,c){return N.access(a,b,c)},_removeData:function(a,b){N.remove(a,b)}}),n.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=O.get(f),1===f.nodeType&&!N.get(f,"hasDataAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=n.camelCase(d.slice(5)),R(f,d,e[d])));N.set(f,"hasDataAttrs",!0)}return e}return"object"==typeof a?this.each(function(){O.set(this,a)}):K(this,function(b){var c,d;if(f&&void 0===b){if(c=O.get(f,a)||O.get(f,a.replace(Q,"-$&").toLowerCase()),void 0!==c)return c;if(d=n.camelCase(a),c=O.get(f,d),void 0!==c)return c;if(c=R(f,d,void 0),void 0!==c)return c}else d=n.camelCase(a),this.each(function(){var c=O.get(this,d);O.set(this,d,b),a.indexOf("-")>-1&&void 0!==c&&O.set(this,a,b)})},null,b,arguments.length>1,null,!0)},removeData:function(a){return this.each(function(){O.remove(this,a)})}}),n.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=N.get(a,b),c&&(!d||n.isArray(c)?d=N.access(a,b,n.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=n.queue(a,b),d=c.length,e=c.shift(),f=n._queueHooks(a,b),g=function(){n.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return N.get(a,c)||N.access(a,c,{empty:n.Callbacks("once memory").add(function(){N.remove(a,[b+"queue",c])})})}}),n.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?n.queue(this[0],a):void 0===b?this:this.each(function(){var c=n.queue(this,a,b);n._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&n.dequeue(this,a)})},dequeue:function(a){return this.each(function(){n.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=n.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=N.get(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),U=["Top","Right","Bottom","Left"],V=function(a,b){return a=b||a,"none"===n.css(a,"display")||!n.contains(a.ownerDocument,a)};function W(a,b,c,d){var e,f=1,g=20,h=d?function(){return d.cur()}:function(){return n.css(a,b,"")},i=h(),j=c&&c[3]||(n.cssNumber[b]?"":"px"),k=(n.cssNumber[b]||"px"!==j&&+i)&&T.exec(n.css(a,b));if(k&&k[3]!==j){j=j||k[3],c=c||[],k=+i||1;do f=f||".5",k/=f,n.style(a,b,k+j);while(f!==(f=h()/i)&&1!==f&&--g)}return c&&(k=+k||+i||0,e=c[1]?k+(c[1]+1)*c[2]:+c[2],d&&(d.unit=j,d.start=k,d.end=e)),e}var X=/^(?:checkbox|radio)$/i,Y=/<([\w:-]+)/,Z=/^$|\/(?:java|ecma)script/i,$={option:[1,"<select multiple='multiple'>","</select>"],thead:[1,"<table>","</table>"],col:[2,"<table><colgroup>","</colgroup></table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],_default:[0,"",""]};$.optgroup=$.option,$.tbody=$.tfoot=$.colgroup=$.caption=$.thead,$.th=$.td;function _(a,b){var c="undefined"!=typeof a.getElementsByTagName?a.getElementsByTagName(b||"*"):"undefined"!=typeof a.querySelectorAll?a.querySelectorAll(b||"*"):[];return void 0===b||b&&n.nodeName(a,b)?n.merge([a],c):c}function aa(a,b){for(var c=0,d=a.length;d>c;c++)N.set(a[c],"globalEval",!b||N.get(b[c],"globalEval"))}var ba=/<|&#?\w+;/;function ca(a,b,c,d,e){for(var f,g,h,i,j,k,l=b.createDocumentFragment(),m=[],o=0,p=a.length;p>o;o++)if(f=a[o],f||0===f)if("object"===n.type(f))n.merge(m,f.nodeType?[f]:f);else if(ba.test(f)){g=g||l.appendChild(b.createElement("div")),h=(Y.exec(f)||["",""])[1].toLowerCase(),i=$[h]||$._default,g.innerHTML=i[1]+n.htmlPrefilter(f)+i[2],k=i[0];while(k--)g=g.lastChild;n.merge(m,g.childNodes),g=l.firstChild,g.textContent=""}else m.push(b.createTextNode(f));l.textContent="",o=0;while(f=m[o++])if(d&&n.inArray(f,d)>-1)e&&e.push(f);else if(j=n.contains(f.ownerDocument,f),g=_(l.appendChild(f),"script"),j&&aa(g),c){k=0;while(f=g[k++])Z.test(f.type||"")&&c.push(f)}return l}!function(){var a=d.createDocumentFragment(),b=a.appendChild(d.createElement("div")),c=d.createElement("input");c.setAttribute("type","radio"),c.setAttribute("checked","checked"),c.setAttribute("name","t"),b.appendChild(c),l.checkClone=b.cloneNode(!0).cloneNode(!0).lastChild.checked,b.innerHTML="<textarea>x</textarea>",l.noCloneChecked=!!b.cloneNode(!0).lastChild.defaultValue}();var da=/^key/,ea=/^(?:mouse|pointer|contextmenu|drag|drop)|click/,fa=/^([^.]*)(?:\.(.+)|)/;function ga(){return!0}function ha(){return!1}function ia(){try{return d.activeElement}catch(a){}}function ja(a,b,c,d,e,f){var g,h;if("object"==typeof b){"string"!=typeof c&&(d=d||c,c=void 0);for(h in b)ja(a,h,c,d,b[h],f);return a}if(null==d&&null==e?(e=c,d=c=void 0):null==e&&("string"==typeof c?(e=d,d=void 0):(e=d,d=c,c=void 0)),e===!1)e=ha;else if(!e)return a;return 1===f&&(g=e,e=function(a){return n().off(a),g.apply(this,arguments)},e.guid=g.guid||(g.guid=n.guid++)),a.each(function(){n.event.add(this,b,e,d,c)})}n.event={global:{},add:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,o,p,q,r=N.get(a);if(r){c.handler&&(f=c,c=f.handler,e=f.selector),c.guid||(c.guid=n.guid++),(i=r.events)||(i=r.events={}),(g=r.handle)||(g=r.handle=function(b){return"undefined"!=typeof n&&n.event.triggered!==b.type?n.event.dispatch.apply(a,arguments):void 0}),b=(b||"").match(G)||[""],j=b.length;while(j--)h=fa.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o&&(l=n.event.special[o]||{},o=(e?l.delegateType:l.bindType)||o,l=n.event.special[o]||{},k=n.extend({type:o,origType:q,data:d,handler:c,guid:c.guid,selector:e,needsContext:e&&n.expr.match.needsContext.test(e),namespace:p.join(".")},f),(m=i[o])||(m=i[o]=[],m.delegateCount=0,l.setup&&l.setup.call(a,d,p,g)!==!1||a.addEventListener&&a.addEventListener(o,g)),l.add&&(l.add.call(a,k),k.handler.guid||(k.handler.guid=c.guid)),e?m.splice(m.delegateCount++,0,k):m.push(k),n.event.global[o]=!0)}},remove:function(a,b,c,d,e){var f,g,h,i,j,k,l,m,o,p,q,r=N.hasData(a)&&N.get(a);if(r&&(i=r.events)){b=(b||"").match(G)||[""],j=b.length;while(j--)if(h=fa.exec(b[j])||[],o=q=h[1],p=(h[2]||"").split(".").sort(),o){l=n.event.special[o]||{},o=(d?l.delegateType:l.bindType)||o,m=i[o]||[],h=h[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),g=f=m.length;while(f--)k=m[f],!e&&q!==k.origType||c&&c.guid!==k.guid||h&&!h.test(k.namespace)||d&&d!==k.selector&&("**"!==d||!k.selector)||(m.splice(f,1),k.selector&&m.delegateCount--,l.remove&&l.remove.call(a,k));g&&!m.length&&(l.teardown&&l.teardown.call(a,p,r.handle)!==!1||n.removeEvent(a,o,r.handle),delete i[o])}else for(o in i)n.event.remove(a,o+b[j],c,d,!0);n.isEmptyObject(i)&&N.remove(a,"handle events")}},dispatch:function(a){a=n.event.fix(a);var b,c,d,f,g,h=[],i=e.call(arguments),j=(N.get(this,"events")||{})[a.type]||[],k=n.event.special[a.type]||{};if(i[0]=a,a.delegateTarget=this,!k.preDispatch||k.preDispatch.call(this,a)!==!1){h=n.event.handlers.call(this,a,j),b=0;while((f=h[b++])&&!a.isPropagationStopped()){a.currentTarget=f.elem,c=0;while((g=f.handlers[c++])&&!a.isImmediatePropagationStopped())a.rnamespace&&!a.rnamespace.test(g.namespace)||(a.handleObj=g,a.data=g.data,d=((n.event.special[g.origType]||{}).handle||g.handler).apply(f.elem,i),void 0!==d&&(a.result=d)===!1&&(a.preventDefault(),a.stopPropagation()))}return k.postDispatch&&k.postDispatch.call(this,a),a.result}},handlers:function(a,b){var c,d,e,f,g=[],h=b.delegateCount,i=a.target;if(h&&i.nodeType&&("click"!==a.type||isNaN(a.button)||a.button<1))for(;i!==this;i=i.parentNode||this)if(1===i.nodeType&&(i.disabled!==!0||"click"!==a.type)){for(d=[],c=0;h>c;c++)f=b[c],e=f.selector+" ",void 0===d[e]&&(d[e]=f.needsContext?n(e,this).index(i)>-1:n.find(e,this,null,[i]).length),d[e]&&d.push(f);d.length&&g.push({elem:i,handlers:d})}return h<b.length&&g.push({elem:this,handlers:b.slice(h)}),g},props:"altKey bubbles cancelable ctrlKey currentTarget detail eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){return null==a.which&&(a.which=null!=b.charCode?b.charCode:b.keyCode),a}},mouseHooks:{props:"button buttons clientX clientY offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,b){var c,e,f,g=b.button;return null==a.pageX&&null!=b.clientX&&(c=a.target.ownerDocument||d,e=c.documentElement,f=c.body,a.pageX=b.clientX+(e&&e.scrollLeft||f&&f.scrollLeft||0)-(e&&e.clientLeft||f&&f.clientLeft||0),a.pageY=b.clientY+(e&&e.scrollTop||f&&f.scrollTop||0)-(e&&e.clientTop||f&&f.clientTop||0)),a.which||void 0===g||(a.which=1&g?1:2&g?3:4&g?2:0),a}},fix:function(a){if(a[n.expando])return a;var b,c,e,f=a.type,g=a,h=this.fixHooks[f];h||(this.fixHooks[f]=h=ea.test(f)?this.mouseHooks:da.test(f)?this.keyHooks:{}),e=h.props?this.props.concat(h.props):this.props,a=new n.Event(g),b=e.length;while(b--)c=e[b],a[c]=g[c];return a.target||(a.target=d),3===a.target.nodeType&&(a.target=a.target.parentNode),h.filter?h.filter(a,g):a},special:{load:{noBubble:!0},focus:{trigger:function(){return this!==ia()&&this.focus?(this.focus(),!1):void 0},delegateType:"focusin"},blur:{trigger:function(){return this===ia()&&this.blur?(this.blur(),!1):void 0},delegateType:"focusout"},click:{trigger:function(){return"checkbox"===this.type&&this.click&&n.nodeName(this,"input")?(this.click(),!1):void 0},_default:function(a){return n.nodeName(a.target,"a")}},beforeunload:{postDispatch:function(a){void 0!==a.result&&a.originalEvent&&(a.originalEvent.returnValue=a.result)}}}},n.removeEvent=function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c)},n.Event=function(a,b){return this instanceof n.Event?(a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||void 0===a.defaultPrevented&&a.returnValue===!1?ga:ha):this.type=a,b&&n.extend(this,b),this.timeStamp=a&&a.timeStamp||n.now(),void(this[n.expando]=!0)):new n.Event(a,b)},n.Event.prototype={constructor:n.Event,isDefaultPrevented:ha,isPropagationStopped:ha,isImmediatePropagationStopped:ha,preventDefault:function(){var a=this.originalEvent;this.isDefaultPrevented=ga,a&&a.preventDefault()},stopPropagation:function(){var a=this.originalEvent;this.isPropagationStopped=ga,a&&a.stopPropagation()},stopImmediatePropagation:function(){var a=this.originalEvent;this.isImmediatePropagationStopped=ga,a&&a.stopImmediatePropagation(),this.stopPropagation()}},n.each({mouseenter:"mouseover",mouseleave:"mouseout",pointerenter:"pointerover",pointerleave:"pointerout"},function(a,b){n.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c,d=this,e=a.relatedTarget,f=a.handleObj;return e&&(e===d||n.contains(d,e))||(a.type=f.origType,c=f.handler.apply(this,arguments),a.type=b),c}}}),n.fn.extend({on:function(a,b,c,d){return ja(this,a,b,c,d)},one:function(a,b,c,d){return ja(this,a,b,c,d,1)},off:function(a,b,c){var d,e;if(a&&a.preventDefault&&a.handleObj)return d=a.handleObj,n(a.delegateTarget).off(d.namespace?d.origType+"."+d.namespace:d.origType,d.selector,d.handler),this;if("object"==typeof a){for(e in a)this.off(e,b,a[e]);return this}return b!==!1&&"function"!=typeof b||(c=b,b=void 0),c===!1&&(c=ha),this.each(function(){n.event.remove(this,a,c,b)})}});var ka=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:-]+)[^>]*)\/>/gi,la=/<script|<style|<link/i,ma=/checked\s*(?:[^=]|=\s*.checked.)/i,na=/^true\/(.*)/,oa=/^\s*<!(?:\[CDATA\[|--)|(?:\]\]|--)>\s*$/g;function pa(a,b){return n.nodeName(a,"table")&&n.nodeName(11!==b.nodeType?b:b.firstChild,"tr")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function qa(a){return a.type=(null!==a.getAttribute("type"))+"/"+a.type,a}function ra(a){var b=na.exec(a.type);return b?a.type=b[1]:a.removeAttribute("type"),a}function sa(a,b){var c,d,e,f,g,h,i,j;if(1===b.nodeType){if(N.hasData(a)&&(f=N.access(a),g=N.set(b,f),j=f.events)){delete g.handle,g.events={};for(e in j)for(c=0,d=j[e].length;d>c;c++)n.event.add(b,e,j[e][c])}O.hasData(a)&&(h=O.access(a),i=n.extend({},h),O.set(b,i))}}function ta(a,b){var c=b.nodeName.toLowerCase();"input"===c&&X.test(a.type)?b.checked=a.checked:"input"!==c&&"textarea"!==c||(b.defaultValue=a.defaultValue)}function ua(a,b,c,d){b=f.apply([],b);var e,g,h,i,j,k,m=0,o=a.length,p=o-1,q=b[0],r=n.isFunction(q);if(r||o>1&&"string"==typeof q&&!l.checkClone&&ma.test(q))return a.each(function(e){var f=a.eq(e);r&&(b[0]=q.call(this,e,f.html())),ua(f,b,c,d)});if(o&&(e=ca(b,a[0].ownerDocument,!1,a,d),g=e.firstChild,1===e.childNodes.length&&(e=g),g||d)){for(h=n.map(_(e,"script"),qa),i=h.length;o>m;m++)j=e,m!==p&&(j=n.clone(j,!0,!0),i&&n.merge(h,_(j,"script"))),c.call(a[m],j,m);if(i)for(k=h[h.length-1].ownerDocument,n.map(h,ra),m=0;i>m;m++)j=h[m],Z.test(j.type||"")&&!N.access(j,"globalEval")&&n.contains(k,j)&&(j.src?n._evalUrl&&n._evalUrl(j.src):n.globalEval(j.textContent.replace(oa,"")))}return a}function va(a,b,c){for(var d,e=b?n.filter(b,a):a,f=0;null!=(d=e[f]);f++)c||1!==d.nodeType||n.cleanData(_(d)),d.parentNode&&(c&&n.contains(d.ownerDocument,d)&&aa(_(d,"script")),d.parentNode.removeChild(d));return a}n.extend({htmlPrefilter:function(a){return a.replace(ka,"<$1></$2>")},clone:function(a,b,c){var d,e,f,g,h=a.cloneNode(!0),i=n.contains(a.ownerDocument,a);if(!(l.noCloneChecked||1!==a.nodeType&&11!==a.nodeType||n.isXMLDoc(a)))for(g=_(h),f=_(a),d=0,e=f.length;e>d;d++)ta(f[d],g[d]);if(b)if(c)for(f=f||_(a),g=g||_(h),d=0,e=f.length;e>d;d++)sa(f[d],g[d]);else sa(a,h);return g=_(h,"script"),g.length>0&&aa(g,!i&&_(a,"script")),h},cleanData:function(a){for(var b,c,d,e=n.event.special,f=0;void 0!==(c=a[f]);f++)if(L(c)){if(b=c[N.expando]){if(b.events)for(d in b.events)e[d]?n.event.remove(c,d):n.removeEvent(c,d,b.handle);c[N.expando]=void 0}c[O.expando]&&(c[O.expando]=void 0)}}}),n.fn.extend({domManip:ua,detach:function(a){return va(this,a,!0)},remove:function(a){return va(this,a)},text:function(a){return K(this,function(a){return void 0===a?n.text(this):this.empty().each(function(){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||(this.textContent=a)})},null,a,arguments.length)},append:function(){return ua(this,arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=pa(this,a);b.appendChild(a)}})},prepend:function(){return ua(this,arguments,function(a){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var b=pa(this,a);b.insertBefore(a,b.firstChild)}})},before:function(){return ua(this,arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this)})},after:function(){return ua(this,arguments,function(a){this.parentNode&&this.parentNode.insertBefore(a,this.nextSibling)})},empty:function(){for(var a,b=0;null!=(a=this[b]);b++)1===a.nodeType&&(n.cleanData(_(a,!1)),a.textContent="");return this},clone:function(a,b){return a=null==a?!1:a,b=null==b?a:b,this.map(function(){return n.clone(this,a,b)})},html:function(a){return K(this,function(a){var b=this[0]||{},c=0,d=this.length;if(void 0===a&&1===b.nodeType)return b.innerHTML;if("string"==typeof a&&!la.test(a)&&!$[(Y.exec(a)||["",""])[1].toLowerCase()]){a=n.htmlPrefilter(a);try{for(;d>c;c++)b=this[c]||{},1===b.nodeType&&(n.cleanData(_(b,!1)),b.innerHTML=a);b=0}catch(e){}}b&&this.empty().append(a)},null,a,arguments.length)},replaceWith:function(){var a=[];return ua(this,arguments,function(b){var c=this.parentNode;n.inArray(this,a)<0&&(n.cleanData(_(this)),c&&c.replaceChild(b,this))},a)}}),n.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){n.fn[a]=function(a){for(var c,d=[],e=n(a),f=e.length-1,h=0;f>=h;h++)c=h===f?this:this.clone(!0),n(e[h])[b](c),g.apply(d,c.get());return this.pushStack(d)}});var wa,xa={HTML:"block",BODY:"block"};function ya(a,b){var c=n(b.createElement(a)).appendTo(b.body),d=n.css(c[0],"display");return c.detach(),d}function za(a){var b=d,c=xa[a];return c||(c=ya(a,b),"none"!==c&&c||(wa=(wa||n("<iframe frameborder='0' width='0' height='0'/>")).appendTo(b.documentElement),b=wa[0].contentDocument,b.write(),b.close(),c=ya(a,b),wa.detach()),xa[a]=c),c}var Aa=/^margin/,Ba=new RegExp("^("+S+")(?!px)[a-z%]+$","i"),Ca=function(b){var c=b.ownerDocument.defaultView;return c&&c.opener||(c=a),c.getComputedStyle(b)},Da=function(a,b,c,d){var e,f,g={};for(f in b)g[f]=a.style[f],a.style[f]=b[f];e=c.apply(a,d||[]);for(f in b)a.style[f]=g[f];return e},Ea=d.documentElement;!function(){var b,c,e,f,g=d.createElement("div"),h=d.createElement("div");if(h.style){h.style.backgroundClip="content-box",h.cloneNode(!0).style.backgroundClip="",l.clearCloneStyle="content-box"===h.style.backgroundClip,g.style.cssText="border:0;width:8px;height:0;top:0;left:-9999px;padding:0;margin-top:1px;position:absolute",g.appendChild(h);function i(){h.style.cssText="-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;position:relative;display:block;margin:auto;border:1px;padding:1px;top:1%;width:50%",h.innerHTML="",Ea.appendChild(g);var d=a.getComputedStyle(h);b="1%"!==d.top,f="2px"===d.marginLeft,c="4px"===d.width,h.style.marginRight="50%",e="4px"===d.marginRight,Ea.removeChild(g)}n.extend(l,{pixelPosition:function(){return i(),b},boxSizingReliable:function(){return null==c&&i(),c},pixelMarginRight:function(){return null==c&&i(),e},reliableMarginLeft:function(){return null==c&&i(),f},reliableMarginRight:function(){var b,c=h.appendChild(d.createElement("div"));return c.style.cssText=h.style.cssText="-webkit-box-sizing:content-box;box-sizing:content-box;display:block;margin:0;border:0;padding:0",c.style.marginRight=c.style.width="0",h.style.width="1px",Ea.appendChild(g),b=!parseFloat(a.getComputedStyle(c).marginRight),Ea.removeChild(g),h.removeChild(c),b}})}}();function Fa(a,b,c){var d,e,f,g,h=a.style;return c=c||Ca(a),g=c?c.getPropertyValue(b)||c[b]:void 0,""!==g&&void 0!==g||n.contains(a.ownerDocument,a)||(g=n.style(a,b)),c&&!l.pixelMarginRight()&&Ba.test(g)&&Aa.test(b)&&(d=h.width,e=h.minWidth,f=h.maxWidth,h.minWidth=h.maxWidth=h.width=g,g=c.width,h.width=d,h.minWidth=e,h.maxWidth=f),void 0!==g?g+"":g}function Ga(a,b){return{get:function(){return a()?void delete this.get:(this.get=b).apply(this,arguments)}}}var Ha=/^(none|table(?!-c[ea]).+)/,Ia={position:"absolute",visibility:"hidden",display:"block"},Ja={letterSpacing:"0",fontWeight:"400"},Ka=["Webkit","O","Moz","ms"],La=d.createElement("div").style;function Ma(a){if(a in La)return a;var b=a[0].toUpperCase()+a.slice(1),c=Ka.length;while(c--)if(a=Ka[c]+b,a in La)return a}function Na(a,b,c){var d=T.exec(b);return d?Math.max(0,d[2]-(c||0))+(d[3]||"px"):b}function Oa(a,b,c,d,e){for(var f=c===(d?"border":"content")?4:"width"===b?1:0,g=0;4>f;f+=2)"margin"===c&&(g+=n.css(a,c+U[f],!0,e)),d?("content"===c&&(g-=n.css(a,"padding"+U[f],!0,e)),"margin"!==c&&(g-=n.css(a,"border"+U[f]+"Width",!0,e))):(g+=n.css(a,"padding"+U[f],!0,e),"padding"!==c&&(g+=n.css(a,"border"+U[f]+"Width",!0,e)));return g}function Pa(b,c,e){var f=!0,g="width"===c?b.offsetWidth:b.offsetHeight,h=Ca(b),i="border-box"===n.css(b,"boxSizing",!1,h);if(d.msFullscreenElement&&a.top!==a&&b.getClientRects().length&&(g=Math.round(100*b.getBoundingClientRect()[c])),0>=g||null==g){if(g=Fa(b,c,h),(0>g||null==g)&&(g=b.style[c]),Ba.test(g))return g;f=i&&(l.boxSizingReliable()||g===b.style[c]),g=parseFloat(g)||0}return g+Oa(b,c,e||(i?"border":"content"),f,h)+"px"}function Qa(a,b){for(var c,d,e,f=[],g=0,h=a.length;h>g;g++)d=a[g],d.style&&(f[g]=N.get(d,"olddisplay"),c=d.style.display,b?(f[g]||"none"!==c||(d.style.display=""),""===d.style.display&&V(d)&&(f[g]=N.access(d,"olddisplay",za(d.nodeName)))):(e=V(d),"none"===c&&e||N.set(d,"olddisplay",e?c:n.css(d,"display"))));for(g=0;h>g;g++)d=a[g],d.style&&(b&&"none"!==d.style.display&&""!==d.style.display||(d.style.display=b?f[g]||"":"none"));return a}n.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=Fa(a,"opacity");return""===c?"1":c}}}},cssNumber:{animationIterationCount:!0,columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":"cssFloat"},style:function(a,b,c,d){if(a&&3!==a.nodeType&&8!==a.nodeType&&a.style){var e,f,g,h=n.camelCase(b),i=a.style;return b=n.cssProps[h]||(n.cssProps[h]=Ma(h)||h),g=n.cssHooks[b]||n.cssHooks[h],void 0===c?g&&"get"in g&&void 0!==(e=g.get(a,!1,d))?e:i[b]:(f=typeof c,"string"===f&&(e=T.exec(c))&&e[1]&&(c=W(a,b,e),f="number"),null!=c&&c===c&&("number"===f&&(c+=e&&e[3]||(n.cssNumber[h]?"":"px")),l.clearCloneStyle||""!==c||0!==b.indexOf("background")||(i[b]="inherit"),g&&"set"in g&&void 0===(c=g.set(a,c,d))||(i[b]=c)),void 0)}},css:function(a,b,c,d){var e,f,g,h=n.camelCase(b);return b=n.cssProps[h]||(n.cssProps[h]=Ma(h)||h),g=n.cssHooks[b]||n.cssHooks[h],g&&"get"in g&&(e=g.get(a,!0,c)),void 0===e&&(e=Fa(a,b,d)),"normal"===e&&b in Ja&&(e=Ja[b]),""===c||c?(f=parseFloat(e),c===!0||isFinite(f)?f||0:e):e}}),n.each(["height","width"],function(a,b){n.cssHooks[b]={get:function(a,c,d){return c?Ha.test(n.css(a,"display"))&&0===a.offsetWidth?Da(a,Ia,function(){return Pa(a,b,d)}):Pa(a,b,d):void 0},set:function(a,c,d){var e,f=d&&Ca(a),g=d&&Oa(a,b,d,"border-box"===n.css(a,"boxSizing",!1,f),f);return g&&(e=T.exec(c))&&"px"!==(e[3]||"px")&&(a.style[b]=c,c=n.css(a,b)),Na(a,c,g)}}}),n.cssHooks.marginLeft=Ga(l.reliableMarginLeft,function(a,b){return b?(parseFloat(Fa(a,"marginLeft"))||a.getBoundingClientRect().left-Da(a,{marginLeft:0},function(){return a.getBoundingClientRect().left}))+"px":void 0}),n.cssHooks.marginRight=Ga(l.reliableMarginRight,function(a,b){return b?Da(a,{display:"inline-block"},Fa,[a,"marginRight"]):void 0}),n.each({margin:"",padding:"",border:"Width"},function(a,b){n.cssHooks[a+b]={expand:function(c){for(var d=0,e={},f="string"==typeof c?c.split(" "):[c];4>d;d++)e[a+U[d]+b]=f[d]||f[d-2]||f[0];return e}},Aa.test(a)||(n.cssHooks[a+b].set=Na)}),n.fn.extend({css:function(a,b){return K(this,function(a,b,c){var d,e,f={},g=0;if(n.isArray(b)){for(d=Ca(a),e=b.length;e>g;g++)f[b[g]]=n.css(a,b[g],!1,d);return f}return void 0!==c?n.style(a,b,c):n.css(a,b)},a,b,arguments.length>1)},show:function(){return Qa(this,!0)},hide:function(){return Qa(this)},toggle:function(a){return"boolean"==typeof a?a?this.show():this.hide():this.each(function(){V(this)?n(this).show():n(this).hide()})}});function Ra(a,b,c,d,e){return new Ra.prototype.init(a,b,c,d,e)}n.Tween=Ra,Ra.prototype={constructor:Ra,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||n.easing._default,this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(n.cssNumber[c]?"":"px")},cur:function(){var a=Ra.propHooks[this.prop];return a&&a.get?a.get(this):Ra.propHooks._default.get(this)},run:function(a){var b,c=Ra.propHooks[this.prop];return this.options.duration?this.pos=b=n.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Ra.propHooks._default.set(this),this}},Ra.prototype.init.prototype=Ra.prototype,Ra.propHooks={_default:{get:function(a){var b;return 1!==a.elem.nodeType||null!=a.elem[a.prop]&&null==a.elem.style[a.prop]?a.elem[a.prop]:(b=n.css(a.elem,a.prop,""),b&&"auto"!==b?b:0)},set:function(a){n.fx.step[a.prop]?n.fx.step[a.prop](a):1!==a.elem.nodeType||null==a.elem.style[n.cssProps[a.prop]]&&!n.cssHooks[a.prop]?a.elem[a.prop]=a.now:n.style(a.elem,a.prop,a.now+a.unit)}}},Ra.propHooks.scrollTop=Ra.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},n.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2},_default:"swing"},n.fx=Ra.prototype.init,n.fx.step={};var Sa,Ta,Ua=/^(?:toggle|show|hide)$/,Va=/queueHooks$/;function Wa(){return a.setTimeout(function(){Sa=void 0}),Sa=n.now()}function Xa(a,b){var c,d=0,e={height:a};for(b=b?1:0;4>d;d+=2-b)c=U[d],e["margin"+c]=e["padding"+c]=a;return b&&(e.opacity=e.width=a),e}function Ya(a,b,c){for(var d,e=(_a.tweeners[b]||[]).concat(_a.tweeners["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function Za(a,b,c){var d,e,f,g,h,i,j,k,l=this,m={},o=a.style,p=a.nodeType&&V(a),q=N.get(a,"fxshow");c.queue||(h=n._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,l.always(function(){l.always(function(){h.unqueued--,n.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[o.overflow,o.overflowX,o.overflowY],j=n.css(a,"display"),k="none"===j?N.get(a,"olddisplay")||za(a.nodeName):j,"inline"===k&&"none"===n.css(a,"float")&&(o.display="inline-block")),c.overflow&&(o.overflow="hidden",l.always(function(){o.overflow=c.overflow[0],o.overflowX=c.overflow[1],o.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],Ua.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(p?"hide":"show")){if("show"!==e||!q||void 0===q[d])continue;p=!0}m[d]=q&&q[d]||n.style(a,d)}else j=void 0;if(n.isEmptyObject(m))"inline"===("none"===j?za(a.nodeName):j)&&(o.display=j);else{q?"hidden"in q&&(p=q.hidden):q=N.access(a,"fxshow",{}),f&&(q.hidden=!p),p?n(a).show():l.done(function(){n(a).hide()}),l.done(function(){var b;N.remove(a,"fxshow");for(b in m)n.style(a,b,m[b])});for(d in m)g=Ya(p?q[d]:0,d,l),d in q||(q[d]=g.start,p&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function $a(a,b){var c,d,e,f,g;for(c in a)if(d=n.camelCase(c),e=b[d],f=a[c],n.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=n.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function _a(a,b,c){var d,e,f=0,g=_a.prefilters.length,h=n.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=Sa||Wa(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h.promise({elem:a,props:n.extend({},b),opts:n.extend(!0,{specialEasing:{},easing:n.easing._default},c),originalProperties:b,originalOptions:c,startTime:Sa||Wa(),duration:c.duration,tweens:[],createTween:function(b,c){var d=n.Tween(a,j.opts,b,c,j.opts.specialEasing[b]||j.opts.easing);return j.tweens.push(d),d},stop:function(b){var c=0,d=b?j.tweens.length:0;if(e)return this;for(e=!0;d>c;c++)j.tweens[c].run(1);return b?(h.notifyWith(a,[j,1,0]),h.resolveWith(a,[j,b])):h.rejectWith(a,[j,b]),this}}),k=j.props;for($a(k,j.opts.specialEasing);g>f;f++)if(d=_a.prefilters[f].call(j,a,k,j.opts))return n.isFunction(d.stop)&&(n._queueHooks(j.elem,j.opts.queue).stop=n.proxy(d.stop,d)),d;return n.map(k,Ya,j),n.isFunction(j.opts.start)&&j.opts.start.call(a,j),n.fx.timer(n.extend(i,{elem:a,anim:j,queue:j.opts.queue})),j.progress(j.opts.progress).done(j.opts.done,j.opts.complete).fail(j.opts.fail).always(j.opts.always)}n.Animation=n.extend(_a,{tweeners:{"*":[function(a,b){var c=this.createTween(a,b);return W(c.elem,a,T.exec(b),c),c}]},tweener:function(a,b){n.isFunction(a)?(b=a,a=["*"]):a=a.match(G);for(var c,d=0,e=a.length;e>d;d++)c=a[d],_a.tweeners[c]=_a.tweeners[c]||[],_a.tweeners[c].unshift(b)},prefilters:[Za],prefilter:function(a,b){b?_a.prefilters.unshift(a):_a.prefilters.push(a)}}),n.speed=function(a,b,c){var d=a&&"object"==typeof a?n.extend({},a):{complete:c||!c&&b||n.isFunction(a)&&a,duration:a,easing:c&&b||b&&!n.isFunction(b)&&b};return d.duration=n.fx.off?0:"number"==typeof d.duration?d.duration:d.duration in n.fx.speeds?n.fx.speeds[d.duration]:n.fx.speeds._default,null!=d.queue&&d.queue!==!0||(d.queue="fx"),d.old=d.complete,d.complete=function(){n.isFunction(d.old)&&d.old.call(this),d.queue&&n.dequeue(this,d.queue)},d},n.fn.extend({fadeTo:function(a,b,c,d){return this.filter(V).css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){var e=n.isEmptyObject(a),f=n.speed(b,c,d),g=function(){var b=_a(this,n.extend({},a),f);(e||N.get(this,"finish"))&&b.stop(!0)};return g.finish=g,e||f.queue===!1?this.each(g):this.queue(f.queue,g)},stop:function(a,b,c){var d=function(a){var b=a.stop;delete a.stop,b(c)};return"string"!=typeof a&&(c=b,b=a,a=void 0),b&&a!==!1&&this.queue(a||"fx",[]),this.each(function(){var b=!0,e=null!=a&&a+"queueHooks",f=n.timers,g=N.get(this);if(e)g[e]&&g[e].stop&&d(g[e]);else for(e in g)g[e]&&g[e].stop&&Va.test(e)&&d(g[e]);for(e=f.length;e--;)f[e].elem!==this||null!=a&&f[e].queue!==a||(f[e].anim.stop(c),b=!1,f.splice(e,1));!b&&c||n.dequeue(this,a)})},finish:function(a){return a!==!1&&(a=a||"fx"),this.each(function(){var b,c=N.get(this),d=c[a+"queue"],e=c[a+"queueHooks"],f=n.timers,g=d?d.length:0;for(c.finish=!0,n.queue(this,a,[]),e&&e.stop&&e.stop.call(this,!0),b=f.length;b--;)f[b].elem===this&&f[b].queue===a&&(f[b].anim.stop(!0),f.splice(b,1));for(b=0;g>b;b++)d[b]&&d[b].finish&&d[b].finish.call(this);delete c.finish})}}),n.each(["toggle","show","hide"],function(a,b){var c=n.fn[b];n.fn[b]=function(a,d,e){return null==a||"boolean"==typeof a?c.apply(this,arguments):this.animate(Xa(b,!0),a,d,e)}}),n.each({slideDown:Xa("show"),slideUp:Xa("hide"),slideToggle:Xa("toggle"),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){n.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),n.timers=[],n.fx.tick=function(){var a,b=0,c=n.timers;for(Sa=n.now();b<c.length;b++)a=c[b],a()||c[b]!==a||c.splice(b--,1);c.length||n.fx.stop(),Sa=void 0},n.fx.timer=function(a){n.timers.push(a),a()?n.fx.start():n.timers.pop()},n.fx.interval=13,n.fx.start=function(){Ta||(Ta=a.setInterval(n.fx.tick,n.fx.interval))},n.fx.stop=function(){a.clearInterval(Ta),Ta=null},n.fx.speeds={slow:600,fast:200,_default:400},n.fn.delay=function(b,c){return b=n.fx?n.fx.speeds[b]||b:b,c=c||"fx",this.queue(c,function(c,d){var e=a.setTimeout(c,b);d.stop=function(){a.clearTimeout(e)}})},function(){var a=d.createElement("input"),b=d.createElement("select"),c=b.appendChild(d.createElement("option"));a.type="checkbox",l.checkOn=""!==a.value,l.optSelected=c.selected,b.disabled=!0,l.optDisabled=!c.disabled,a=d.createElement("input"),a.value="t",a.type="radio",l.radioValue="t"===a.value}();var ab,bb=n.expr.attrHandle;n.fn.extend({attr:function(a,b){return K(this,n.attr,a,b,arguments.length>1)},removeAttr:function(a){return this.each(function(){n.removeAttr(this,a)})}}),n.extend({attr:function(a,b,c){var d,e,f=a.nodeType;if(3!==f&&8!==f&&2!==f)return"undefined"==typeof a.getAttribute?n.prop(a,b,c):(1===f&&n.isXMLDoc(a)||(b=b.toLowerCase(),e=n.attrHooks[b]||(n.expr.match.bool.test(b)?ab:void 0)),void 0!==c?null===c?void n.removeAttr(a,b):e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:(a.setAttribute(b,c+""),c):e&&"get"in e&&null!==(d=e.get(a,b))?d:(d=n.find.attr(a,b),null==d?void 0:d))},attrHooks:{type:{set:function(a,b){if(!l.radioValue&&"radio"===b&&n.nodeName(a,"input")){var c=a.value;return a.setAttribute("type",b),c&&(a.value=c),b}}}},removeAttr:function(a,b){var c,d,e=0,f=b&&b.match(G);if(f&&1===a.nodeType)while(c=f[e++])d=n.propFix[c]||c,n.expr.match.bool.test(c)&&(a[d]=!1),a.removeAttribute(c)}}),ab={set:function(a,b,c){return b===!1?n.removeAttr(a,c):a.setAttribute(c,c),c}},n.each(n.expr.match.bool.source.match(/\w+/g),function(a,b){var c=bb[b]||n.find.attr;bb[b]=function(a,b,d){var e,f;return d||(f=bb[b],bb[b]=e,e=null!=c(a,b,d)?b.toLowerCase():null,bb[b]=f),e}});var cb=/^(?:input|select|textarea|button)$/i,db=/^(?:a|area)$/i;n.fn.extend({prop:function(a,b){return K(this,n.prop,a,b,arguments.length>1)},removeProp:function(a){return this.each(function(){delete this[n.propFix[a]||a]})}}),n.extend({prop:function(a,b,c){var d,e,f=a.nodeType;if(3!==f&&8!==f&&2!==f)return 1===f&&n.isXMLDoc(a)||(b=n.propFix[b]||b,
4
+ e=n.propHooks[b]),void 0!==c?e&&"set"in e&&void 0!==(d=e.set(a,c,b))?d:a[b]=c:e&&"get"in e&&null!==(d=e.get(a,b))?d:a[b]},propHooks:{tabIndex:{get:function(a){var b=n.find.attr(a,"tabindex");return b?parseInt(b,10):cb.test(a.nodeName)||db.test(a.nodeName)&&a.href?0:-1}}},propFix:{"for":"htmlFor","class":"className"}}),l.optSelected||(n.propHooks.selected={get:function(a){var b=a.parentNode;return b&&b.parentNode&&b.parentNode.selectedIndex,null},set:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex)}}),n.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){n.propFix[this.toLowerCase()]=this});var eb=/[\t\r\n\f]/g;function fb(a){return a.getAttribute&&a.getAttribute("class")||""}n.fn.extend({addClass:function(a){var b,c,d,e,f,g,h,i=0;if(n.isFunction(a))return this.each(function(b){n(this).addClass(a.call(this,b,fb(this)))});if("string"==typeof a&&a){b=a.match(G)||[];while(c=this[i++])if(e=fb(c),d=1===c.nodeType&&(" "+e+" ").replace(eb," ")){g=0;while(f=b[g++])d.indexOf(" "+f+" ")<0&&(d+=f+" ");h=n.trim(d),e!==h&&c.setAttribute("class",h)}}return this},removeClass:function(a){var b,c,d,e,f,g,h,i=0;if(n.isFunction(a))return this.each(function(b){n(this).removeClass(a.call(this,b,fb(this)))});if(!arguments.length)return this.attr("class","");if("string"==typeof a&&a){b=a.match(G)||[];while(c=this[i++])if(e=fb(c),d=1===c.nodeType&&(" "+e+" ").replace(eb," ")){g=0;while(f=b[g++])while(d.indexOf(" "+f+" ")>-1)d=d.replace(" "+f+" "," ");h=n.trim(d),e!==h&&c.setAttribute("class",h)}}return this},toggleClass:function(a,b){var c=typeof a;return"boolean"==typeof b&&"string"===c?b?this.addClass(a):this.removeClass(a):n.isFunction(a)?this.each(function(c){n(this).toggleClass(a.call(this,c,fb(this),b),b)}):this.each(function(){var b,d,e,f;if("string"===c){d=0,e=n(this),f=a.match(G)||[];while(b=f[d++])e.hasClass(b)?e.removeClass(b):e.addClass(b)}else void 0!==a&&"boolean"!==c||(b=fb(this),b&&N.set(this,"__className__",b),this.setAttribute&&this.setAttribute("class",b||a===!1?"":N.get(this,"__className__")||""))})},hasClass:function(a){var b,c,d=0;b=" "+a+" ";while(c=this[d++])if(1===c.nodeType&&(" "+fb(c)+" ").replace(eb," ").indexOf(b)>-1)return!0;return!1}});var gb=/\r/g,hb=/[\x20\t\r\n\f]+/g;n.fn.extend({val:function(a){var b,c,d,e=this[0];{if(arguments.length)return d=n.isFunction(a),this.each(function(c){var e;1===this.nodeType&&(e=d?a.call(this,c,n(this).val()):a,null==e?e="":"number"==typeof e?e+="":n.isArray(e)&&(e=n.map(e,function(a){return null==a?"":a+""})),b=n.valHooks[this.type]||n.valHooks[this.nodeName.toLowerCase()],b&&"set"in b&&void 0!==b.set(this,e,"value")||(this.value=e))});if(e)return b=n.valHooks[e.type]||n.valHooks[e.nodeName.toLowerCase()],b&&"get"in b&&void 0!==(c=b.get(e,"value"))?c:(c=e.value,"string"==typeof c?c.replace(gb,""):null==c?"":c)}}}),n.extend({valHooks:{option:{get:function(a){var b=n.find.attr(a,"value");return null!=b?b:n.trim(n.text(a)).replace(hb," ")}},select:{get:function(a){for(var b,c,d=a.options,e=a.selectedIndex,f="select-one"===a.type||0>e,g=f?null:[],h=f?e+1:d.length,i=0>e?h:f?e:0;h>i;i++)if(c=d[i],(c.selected||i===e)&&(l.optDisabled?!c.disabled:null===c.getAttribute("disabled"))&&(!c.parentNode.disabled||!n.nodeName(c.parentNode,"optgroup"))){if(b=n(c).val(),f)return b;g.push(b)}return g},set:function(a,b){var c,d,e=a.options,f=n.makeArray(b),g=e.length;while(g--)d=e[g],(d.selected=n.inArray(n.valHooks.option.get(d),f)>-1)&&(c=!0);return c||(a.selectedIndex=-1),f}}}}),n.each(["radio","checkbox"],function(){n.valHooks[this]={set:function(a,b){return n.isArray(b)?a.checked=n.inArray(n(a).val(),b)>-1:void 0}},l.checkOn||(n.valHooks[this].get=function(a){return null===a.getAttribute("value")?"on":a.value})});var ib=/^(?:focusinfocus|focusoutblur)$/;n.extend(n.event,{trigger:function(b,c,e,f){var g,h,i,j,l,m,o,p=[e||d],q=k.call(b,"type")?b.type:b,r=k.call(b,"namespace")?b.namespace.split("."):[];if(h=i=e=e||d,3!==e.nodeType&&8!==e.nodeType&&!ib.test(q+n.event.triggered)&&(q.indexOf(".")>-1&&(r=q.split("."),q=r.shift(),r.sort()),l=q.indexOf(":")<0&&"on"+q,b=b[n.expando]?b:new n.Event(q,"object"==typeof b&&b),b.isTrigger=f?2:3,b.namespace=r.join("."),b.rnamespace=b.namespace?new RegExp("(^|\\.)"+r.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,b.result=void 0,b.target||(b.target=e),c=null==c?[b]:n.makeArray(c,[b]),o=n.event.special[q]||{},f||!o.trigger||o.trigger.apply(e,c)!==!1)){if(!f&&!o.noBubble&&!n.isWindow(e)){for(j=o.delegateType||q,ib.test(j+q)||(h=h.parentNode);h;h=h.parentNode)p.push(h),i=h;i===(e.ownerDocument||d)&&p.push(i.defaultView||i.parentWindow||a)}g=0;while((h=p[g++])&&!b.isPropagationStopped())b.type=g>1?j:o.bindType||q,m=(N.get(h,"events")||{})[b.type]&&N.get(h,"handle"),m&&m.apply(h,c),m=l&&h[l],m&&m.apply&&L(h)&&(b.result=m.apply(h,c),b.result===!1&&b.preventDefault());return b.type=q,f||b.isDefaultPrevented()||o._default&&o._default.apply(p.pop(),c)!==!1||!L(e)||l&&n.isFunction(e[q])&&!n.isWindow(e)&&(i=e[l],i&&(e[l]=null),n.event.triggered=q,e[q](),n.event.triggered=void 0,i&&(e[l]=i)),b.result}},simulate:function(a,b,c){var d=n.extend(new n.Event,c,{type:a,isSimulated:!0});n.event.trigger(d,null,b),d.isDefaultPrevented()&&c.preventDefault()}}),n.fn.extend({trigger:function(a,b){return this.each(function(){n.event.trigger(a,b,this)})},triggerHandler:function(a,b){var c=this[0];return c?n.event.trigger(a,b,c,!0):void 0}}),n.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){n.fn[b]=function(a,c){return arguments.length>0?this.on(b,null,a,c):this.trigger(b)}}),n.fn.extend({hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),l.focusin="onfocusin"in a,l.focusin||n.each({focus:"focusin",blur:"focusout"},function(a,b){var c=function(a){n.event.simulate(b,a.target,n.event.fix(a))};n.event.special[b]={setup:function(){var d=this.ownerDocument||this,e=N.access(d,b);e||d.addEventListener(a,c,!0),N.access(d,b,(e||0)+1)},teardown:function(){var d=this.ownerDocument||this,e=N.access(d,b)-1;e?N.access(d,b,e):(d.removeEventListener(a,c,!0),N.remove(d,b))}}});var jb=a.location,kb=n.now(),lb=/\?/;n.parseJSON=function(a){return JSON.parse(a+"")},n.parseXML=function(b){var c;if(!b||"string"!=typeof b)return null;try{c=(new a.DOMParser).parseFromString(b,"text/xml")}catch(d){c=void 0}return c&&!c.getElementsByTagName("parsererror").length||n.error("Invalid XML: "+b),c};var mb=/#.*$/,nb=/([?&])_=[^&]*/,ob=/^(.*?):[ \t]*([^\r\n]*)$/gm,pb=/^(?:about|app|app-storage|.+-extension|file|res|widget):$/,qb=/^(?:GET|HEAD)$/,rb=/^\/\//,sb={},tb={},ub="*/".concat("*"),vb=d.createElement("a");vb.href=jb.href;function wb(a){return function(b,c){"string"!=typeof b&&(c=b,b="*");var d,e=0,f=b.toLowerCase().match(G)||[];if(n.isFunction(c))while(d=f[e++])"+"===d[0]?(d=d.slice(1)||"*",(a[d]=a[d]||[]).unshift(c)):(a[d]=a[d]||[]).push(c)}}function xb(a,b,c,d){var e={},f=a===tb;function g(h){var i;return e[h]=!0,n.each(a[h]||[],function(a,h){var j=h(b,c,d);return"string"!=typeof j||f||e[j]?f?!(i=j):void 0:(b.dataTypes.unshift(j),g(j),!1)}),i}return g(b.dataTypes[0])||!e["*"]&&g("*")}function yb(a,b){var c,d,e=n.ajaxSettings.flatOptions||{};for(c in b)void 0!==b[c]&&((e[c]?a:d||(d={}))[c]=b[c]);return d&&n.extend(!0,a,d),a}function zb(a,b,c){var d,e,f,g,h=a.contents,i=a.dataTypes;while("*"===i[0])i.shift(),void 0===d&&(d=a.mimeType||b.getResponseHeader("Content-Type"));if(d)for(e in h)if(h[e]&&h[e].test(d)){i.unshift(e);break}if(i[0]in c)f=i[0];else{for(e in c){if(!i[0]||a.converters[e+" "+i[0]]){f=e;break}g||(g=e)}f=f||g}return f?(f!==i[0]&&i.unshift(f),c[f]):void 0}function Ab(a,b,c,d){var e,f,g,h,i,j={},k=a.dataTypes.slice();if(k[1])for(g in a.converters)j[g.toLowerCase()]=a.converters[g];f=k.shift();while(f)if(a.responseFields[f]&&(c[a.responseFields[f]]=b),!i&&d&&a.dataFilter&&(b=a.dataFilter(b,a.dataType)),i=f,f=k.shift())if("*"===f)f=i;else if("*"!==i&&i!==f){if(g=j[i+" "+f]||j["* "+f],!g)for(e in j)if(h=e.split(" "),h[1]===f&&(g=j[i+" "+h[0]]||j["* "+h[0]])){g===!0?g=j[e]:j[e]!==!0&&(f=h[0],k.unshift(h[1]));break}if(g!==!0)if(g&&a["throws"])b=g(b);else try{b=g(b)}catch(l){return{state:"parsererror",error:g?l:"No conversion from "+i+" to "+f}}}return{state:"success",data:b}}n.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:jb.href,type:"GET",isLocal:pb.test(jb.protocol),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":ub,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/\bxml\b/,html:/\bhtml/,json:/\bjson\b/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":n.parseJSON,"text xml":n.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(a,b){return b?yb(yb(a,n.ajaxSettings),b):yb(n.ajaxSettings,a)},ajaxPrefilter:wb(sb),ajaxTransport:wb(tb),ajax:function(b,c){"object"==typeof b&&(c=b,b=void 0),c=c||{};var e,f,g,h,i,j,k,l,m=n.ajaxSetup({},c),o=m.context||m,p=m.context&&(o.nodeType||o.jquery)?n(o):n.event,q=n.Deferred(),r=n.Callbacks("once memory"),s=m.statusCode||{},t={},u={},v=0,w="canceled",x={readyState:0,getResponseHeader:function(a){var b;if(2===v){if(!h){h={};while(b=ob.exec(g))h[b[1].toLowerCase()]=b[2]}b=h[a.toLowerCase()]}return null==b?null:b},getAllResponseHeaders:function(){return 2===v?g:null},setRequestHeader:function(a,b){var c=a.toLowerCase();return v||(a=u[c]=u[c]||a,t[a]=b),this},overrideMimeType:function(a){return v||(m.mimeType=a),this},statusCode:function(a){var b;if(a)if(2>v)for(b in a)s[b]=[s[b],a[b]];else x.always(a[x.status]);return this},abort:function(a){var b=a||w;return e&&e.abort(b),z(0,b),this}};if(q.promise(x).complete=r.add,x.success=x.done,x.error=x.fail,m.url=((b||m.url||jb.href)+"").replace(mb,"").replace(rb,jb.protocol+"//"),m.type=c.method||c.type||m.method||m.type,m.dataTypes=n.trim(m.dataType||"*").toLowerCase().match(G)||[""],null==m.crossDomain){j=d.createElement("a");try{j.href=m.url,j.href=j.href,m.crossDomain=vb.protocol+"//"+vb.host!=j.protocol+"//"+j.host}catch(y){m.crossDomain=!0}}if(m.data&&m.processData&&"string"!=typeof m.data&&(m.data=n.param(m.data,m.traditional)),xb(sb,m,c,x),2===v)return x;k=n.event&&m.global,k&&0===n.active++&&n.event.trigger("ajaxStart"),m.type=m.type.toUpperCase(),m.hasContent=!qb.test(m.type),f=m.url,m.hasContent||(m.data&&(f=m.url+=(lb.test(f)?"&":"?")+m.data,delete m.data),m.cache===!1&&(m.url=nb.test(f)?f.replace(nb,"$1_="+kb++):f+(lb.test(f)?"&":"?")+"_="+kb++)),m.ifModified&&(n.lastModified[f]&&x.setRequestHeader("If-Modified-Since",n.lastModified[f]),n.etag[f]&&x.setRequestHeader("If-None-Match",n.etag[f])),(m.data&&m.hasContent&&m.contentType!==!1||c.contentType)&&x.setRequestHeader("Content-Type",m.contentType),x.setRequestHeader("Accept",m.dataTypes[0]&&m.accepts[m.dataTypes[0]]?m.accepts[m.dataTypes[0]]+("*"!==m.dataTypes[0]?", "+ub+"; q=0.01":""):m.accepts["*"]);for(l in m.headers)x.setRequestHeader(l,m.headers[l]);if(m.beforeSend&&(m.beforeSend.call(o,x,m)===!1||2===v))return x.abort();w="abort";for(l in{success:1,error:1,complete:1})x[l](m[l]);if(e=xb(tb,m,c,x)){if(x.readyState=1,k&&p.trigger("ajaxSend",[x,m]),2===v)return x;m.async&&m.timeout>0&&(i=a.setTimeout(function(){x.abort("timeout")},m.timeout));try{v=1,e.send(t,z)}catch(y){if(!(2>v))throw y;z(-1,y)}}else z(-1,"No Transport");function z(b,c,d,h){var j,l,t,u,w,y=c;2!==v&&(v=2,i&&a.clearTimeout(i),e=void 0,g=h||"",x.readyState=b>0?4:0,j=b>=200&&300>b||304===b,d&&(u=zb(m,x,d)),u=Ab(m,u,x,j),j?(m.ifModified&&(w=x.getResponseHeader("Last-Modified"),w&&(n.lastModified[f]=w),w=x.getResponseHeader("etag"),w&&(n.etag[f]=w)),204===b||"HEAD"===m.type?y="nocontent":304===b?y="notmodified":(y=u.state,l=u.data,t=u.error,j=!t)):(t=y,!b&&y||(y="error",0>b&&(b=0))),x.status=b,x.statusText=(c||y)+"",j?q.resolveWith(o,[l,y,x]):q.rejectWith(o,[x,y,t]),x.statusCode(s),s=void 0,k&&p.trigger(j?"ajaxSuccess":"ajaxError",[x,m,j?l:t]),r.fireWith(o,[x,y]),k&&(p.trigger("ajaxComplete",[x,m]),--n.active||n.event.trigger("ajaxStop")))}return x},getJSON:function(a,b,c){return n.get(a,b,c,"json")},getScript:function(a,b){return n.get(a,void 0,b,"script")}}),n.each(["get","post"],function(a,b){n[b]=function(a,c,d,e){return n.isFunction(c)&&(e=e||d,d=c,c=void 0),n.ajax(n.extend({url:a,type:b,dataType:e,data:c,success:d},n.isPlainObject(a)&&a))}}),n._evalUrl=function(a){return n.ajax({url:a,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})},n.fn.extend({wrapAll:function(a){var b;return n.isFunction(a)?this.each(function(b){n(this).wrapAll(a.call(this,b))}):(this[0]&&(b=n(a,this[0].ownerDocument).eq(0).clone(!0),this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstElementChild)a=a.firstElementChild;return a}).append(this)),this)},wrapInner:function(a){return n.isFunction(a)?this.each(function(b){n(this).wrapInner(a.call(this,b))}):this.each(function(){var b=n(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=n.isFunction(a);return this.each(function(c){n(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){n.nodeName(this,"body")||n(this).replaceWith(this.childNodes)}).end()}}),n.expr.filters.hidden=function(a){return!n.expr.filters.visible(a)},n.expr.filters.visible=function(a){return a.offsetWidth>0||a.offsetHeight>0||a.getClientRects().length>0};var Bb=/%20/g,Cb=/\[\]$/,Db=/\r?\n/g,Eb=/^(?:submit|button|image|reset|file)$/i,Fb=/^(?:input|select|textarea|keygen)/i;function Gb(a,b,c,d){var e;if(n.isArray(b))n.each(b,function(b,e){c||Cb.test(a)?d(a,e):Gb(a+"["+("object"==typeof e&&null!=e?b:"")+"]",e,c,d)});else if(c||"object"!==n.type(b))d(a,b);else for(e in b)Gb(a+"["+e+"]",b[e],c,d)}n.param=function(a,b){var c,d=[],e=function(a,b){b=n.isFunction(b)?b():null==b?"":b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};if(void 0===b&&(b=n.ajaxSettings&&n.ajaxSettings.traditional),n.isArray(a)||a.jquery&&!n.isPlainObject(a))n.each(a,function(){e(this.name,this.value)});else for(c in a)Gb(c,a[c],b,e);return d.join("&").replace(Bb,"+")},n.fn.extend({serialize:function(){return n.param(this.serializeArray())},serializeArray:function(){return this.map(function(){var a=n.prop(this,"elements");return a?n.makeArray(a):this}).filter(function(){var a=this.type;return this.name&&!n(this).is(":disabled")&&Fb.test(this.nodeName)&&!Eb.test(a)&&(this.checked||!X.test(a))}).map(function(a,b){var c=n(this).val();return null==c?null:n.isArray(c)?n.map(c,function(a){return{name:b.name,value:a.replace(Db,"\r\n")}}):{name:b.name,value:c.replace(Db,"\r\n")}}).get()}}),n.ajaxSettings.xhr=function(){try{return new a.XMLHttpRequest}catch(b){}};var Hb={0:200,1223:204},Ib=n.ajaxSettings.xhr();l.cors=!!Ib&&"withCredentials"in Ib,l.ajax=Ib=!!Ib,n.ajaxTransport(function(b){var c,d;return l.cors||Ib&&!b.crossDomain?{send:function(e,f){var g,h=b.xhr();if(h.open(b.type,b.url,b.async,b.username,b.password),b.xhrFields)for(g in b.xhrFields)h[g]=b.xhrFields[g];b.mimeType&&h.overrideMimeType&&h.overrideMimeType(b.mimeType),b.crossDomain||e["X-Requested-With"]||(e["X-Requested-With"]="XMLHttpRequest");for(g in e)h.setRequestHeader(g,e[g]);c=function(a){return function(){c&&(c=d=h.onload=h.onerror=h.onabort=h.onreadystatechange=null,"abort"===a?h.abort():"error"===a?"number"!=typeof h.status?f(0,"error"):f(h.status,h.statusText):f(Hb[h.status]||h.status,h.statusText,"text"!==(h.responseType||"text")||"string"!=typeof h.responseText?{binary:h.response}:{text:h.responseText},h.getAllResponseHeaders()))}},h.onload=c(),d=h.onerror=c("error"),void 0!==h.onabort?h.onabort=d:h.onreadystatechange=function(){4===h.readyState&&a.setTimeout(function(){c&&d()})},c=c("abort");try{h.send(b.hasContent&&b.data||null)}catch(i){if(c)throw i}},abort:function(){c&&c()}}:void 0}),n.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/\b(?:java|ecma)script\b/},converters:{"text script":function(a){return n.globalEval(a),a}}}),n.ajaxPrefilter("script",function(a){void 0===a.cache&&(a.cache=!1),a.crossDomain&&(a.type="GET")}),n.ajaxTransport("script",function(a){if(a.crossDomain){var b,c;return{send:function(e,f){b=n("<script>").prop({charset:a.scriptCharset,src:a.url}).on("load error",c=function(a){b.remove(),c=null,a&&f("error"===a.type?404:200,a.type)}),d.head.appendChild(b[0])},abort:function(){c&&c()}}}});var Jb=[],Kb=/(=)\?(?=&|$)|\?\?/;n.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var a=Jb.pop()||n.expando+"_"+kb++;return this[a]=!0,a}}),n.ajaxPrefilter("json jsonp",function(b,c,d){var e,f,g,h=b.jsonp!==!1&&(Kb.test(b.url)?"url":"string"==typeof b.data&&0===(b.contentType||"").indexOf("application/x-www-form-urlencoded")&&Kb.test(b.data)&&"data");return h||"jsonp"===b.dataTypes[0]?(e=b.jsonpCallback=n.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,h?b[h]=b[h].replace(Kb,"$1"+e):b.jsonp!==!1&&(b.url+=(lb.test(b.url)?"&":"?")+b.jsonp+"="+e),b.converters["script json"]=function(){return g||n.error(e+" was not called"),g[0]},b.dataTypes[0]="json",f=a[e],a[e]=function(){g=arguments},d.always(function(){void 0===f?n(a).removeProp(e):a[e]=f,b[e]&&(b.jsonpCallback=c.jsonpCallback,Jb.push(e)),g&&n.isFunction(f)&&f(g[0]),g=f=void 0}),"script"):void 0}),n.parseHTML=function(a,b,c){if(!a||"string"!=typeof a)return null;"boolean"==typeof b&&(c=b,b=!1),b=b||d;var e=x.exec(a),f=!c&&[];return e?[b.createElement(e[1])]:(e=ca([a],b,f),f&&f.length&&n(f).remove(),n.merge([],e.childNodes))};var Lb=n.fn.load;n.fn.load=function(a,b,c){if("string"!=typeof a&&Lb)return Lb.apply(this,arguments);var d,e,f,g=this,h=a.indexOf(" ");return h>-1&&(d=n.trim(a.slice(h)),a=a.slice(0,h)),n.isFunction(b)?(c=b,b=void 0):b&&"object"==typeof b&&(e="POST"),g.length>0&&n.ajax({url:a,type:e||"GET",dataType:"html",data:b}).done(function(a){f=arguments,g.html(d?n("<div>").append(n.parseHTML(a)).find(d):a)}).always(c&&function(a,b){g.each(function(){c.apply(this,f||[a.responseText,b,a])})}),this},n.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(a,b){n.fn[b]=function(a){return this.on(b,a)}}),n.expr.filters.animated=function(a){return n.grep(n.timers,function(b){return a===b.elem}).length};function Mb(a){return n.isWindow(a)?a:9===a.nodeType&&a.defaultView}n.offset={setOffset:function(a,b,c){var d,e,f,g,h,i,j,k=n.css(a,"position"),l=n(a),m={};"static"===k&&(a.style.position="relative"),h=l.offset(),f=n.css(a,"top"),i=n.css(a,"left"),j=("absolute"===k||"fixed"===k)&&(f+i).indexOf("auto")>-1,j?(d=l.position(),g=d.top,e=d.left):(g=parseFloat(f)||0,e=parseFloat(i)||0),n.isFunction(b)&&(b=b.call(a,c,n.extend({},h))),null!=b.top&&(m.top=b.top-h.top+g),null!=b.left&&(m.left=b.left-h.left+e),"using"in b?b.using.call(a,m):l.css(m)}},n.fn.extend({offset:function(a){if(arguments.length)return void 0===a?this:this.each(function(b){n.offset.setOffset(this,a,b)});var b,c,d=this[0],e={top:0,left:0},f=d&&d.ownerDocument;if(f)return b=f.documentElement,n.contains(b,d)?(e=d.getBoundingClientRect(),c=Mb(f),{top:e.top+c.pageYOffset-b.clientTop,left:e.left+c.pageXOffset-b.clientLeft}):e},position:function(){if(this[0]){var a,b,c=this[0],d={top:0,left:0};return"fixed"===n.css(c,"position")?b=c.getBoundingClientRect():(a=this.offsetParent(),b=this.offset(),n.nodeName(a[0],"html")||(d=a.offset()),d.top+=n.css(a[0],"borderTopWidth",!0),d.left+=n.css(a[0],"borderLeftWidth",!0)),{top:b.top-d.top-n.css(c,"marginTop",!0),left:b.left-d.left-n.css(c,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var a=this.offsetParent;while(a&&"static"===n.css(a,"position"))a=a.offsetParent;return a||Ea})}}),n.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(a,b){var c="pageYOffset"===b;n.fn[a]=function(d){return K(this,function(a,d,e){var f=Mb(a);return void 0===e?f?f[b]:a[d]:void(f?f.scrollTo(c?f.pageXOffset:e,c?e:f.pageYOffset):a[d]=e)},a,d,arguments.length)}}),n.each(["top","left"],function(a,b){n.cssHooks[b]=Ga(l.pixelPosition,function(a,c){return c?(c=Fa(a,b),Ba.test(c)?n(a).position()[b]+"px":c):void 0})}),n.each({Height:"height",Width:"width"},function(a,b){n.each({padding:"inner"+a,content:b,"":"outer"+a},function(c,d){n.fn[d]=function(d,e){var f=arguments.length&&(c||"boolean"!=typeof d),g=c||(d===!0||e===!0?"margin":"border");return K(this,function(b,c,d){var e;return n.isWindow(b)?b.document.documentElement["client"+a]:9===b.nodeType?(e=b.documentElement,Math.max(b.body["scroll"+a],e["scroll"+a],b.body["offset"+a],e["offset"+a],e["client"+a])):void 0===d?n.css(b,c,g):n.style(b,c,d,g)},b,f?d:void 0,f,null)}})}),n.fn.extend({bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return 1===arguments.length?this.off(a,"**"):this.off(b,a||"**",c)},size:function(){return this.length}}),n.fn.andSelf=n.fn.addBack,"function"==typeof define&&define.amd&&define("jquery",[],function(){return n});var Nb=a.jQuery,Ob=a.$;return n.noConflict=function(b){return a.$===n&&(a.$=Ob),b&&a.jQuery===n&&(a.jQuery=Nb),n},b||(a.jQuery=a.$=n),n});
dataloaders/pymo/mocapplayer/libs/math.min.js ADDED
The diff for this file is too large to render. See raw diff
 
dataloaders/pymo/mocapplayer/libs/mocapjs.js ADDED
@@ -0,0 +1,1312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ * The MIT License (MIT)
3
+ *
4
+ * Copyright (c) 2016 Omid Alemi
5
+ *
6
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ * of this software and associated documentation files (the "Software"), to deal
8
+ * in the Software without restriction, including without limitation the rights
9
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ * copies of the Software, and to permit persons to whom the Software is
11
+ * furnished to do so, subject to the following conditions:
12
+ *
13
+ * The above copyright notice and this permission notice shall be included in all
14
+ * copies or substantial portions of the Software.
15
+ *
16
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ * SOFTWARE.
23
+ *
24
+ */
25
+ /******/ (function(modules) { // webpackBootstrap
26
+ /******/ // The module cache
27
+ /******/ var installedModules = {};
28
+ /******/
29
+ /******/ // The require function
30
+ /******/ function __webpack_require__(moduleId) {
31
+ /******/
32
+ /******/ // Check if module is in cache
33
+ /******/ if(installedModules[moduleId])
34
+ /******/ return installedModules[moduleId].exports;
35
+ /******/
36
+ /******/ // Create a new module (and put it into the cache)
37
+ /******/ var module = installedModules[moduleId] = {
38
+ /******/ exports: {},
39
+ /******/ id: moduleId,
40
+ /******/ loaded: false
41
+ /******/ };
42
+ /******/
43
+ /******/ // Execute the module function
44
+ /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
45
+ /******/
46
+ /******/ // Flag the module as loaded
47
+ /******/ module.loaded = true;
48
+ /******/
49
+ /******/ // Return the exports of the module
50
+ /******/ return module.exports;
51
+ /******/ }
52
+ /******/
53
+ /******/
54
+ /******/ // expose the modules object (__webpack_modules__)
55
+ /******/ __webpack_require__.m = modules;
56
+ /******/
57
+ /******/ // expose the module cache
58
+ /******/ __webpack_require__.c = installedModules;
59
+ /******/
60
+ /******/ // __webpack_public_path__
61
+ /******/ __webpack_require__.p = "";
62
+ /******/
63
+ /******/ // Load entry module and return exports
64
+ /******/ return __webpack_require__(0);
65
+ /******/ })
66
+ /************************************************************************/
67
+ /******/ ([
68
+ /* 0 */
69
+ /***/ function(module, exports, __webpack_require__) {
70
+
71
+ BVHCharacter = __webpack_require__(1);
72
+ C3DCharacter = __webpack_require__(5);
73
+ MocapParsers = __webpack_require__(2);
74
+
75
+ /***/ },
76
+ /* 1 */
77
+ /***/ function(module, exports, __webpack_require__) {
78
+
79
+ var parsers = __webpack_require__(2);
80
+
81
+ var BVHCharacter = BVHCharacter || {};
82
+
83
+
84
+ BVHCharacter = function(n, jm, bm, jg, bg) {
85
+ this.name = n;
86
+
87
+ this.jointMaterial = jm;
88
+ this.boneMaterial = bm;
89
+ this.makeJointGeometryFCN = jg;
90
+ this.makeBoneGeometryFCN = bg;
91
+
92
+ this.bvh = [];
93
+ this.skeleton = new THREE.Group();
94
+
95
+ this.skelScale = 1;
96
+ this.jointMeshes = [];
97
+ this.boneMeshes = [];
98
+ this.rootMeshes = [];
99
+
100
+ this.originPosition = new THREE.Vector3(0, 0, 0);
101
+
102
+ this.ready = false;
103
+ this.frameTime = 1 / 30;
104
+ this.frameCount = 0;
105
+ this.animIndex = 0;
106
+ this.animStartTimeRef = 0;
107
+ this.animOffset = 0;
108
+ this.playing = true;
109
+
110
+ this.debug = true;
111
+ this.useWorker = true;
112
+
113
+ this.webSocket = [];
114
+ this.streamProtocol = "BVHStream";
115
+ this.keepStreamedFrames = true;
116
+ this.isStreaming = false;
117
+
118
+ var self = this;
119
+
120
+ //
121
+
122
+ this.log = function(m) {
123
+ if (self.debug)
124
+ console.log(self.name + ": " + m.toString());
125
+ };
126
+
127
+ this.loadFromURL = function(url, callback) {
128
+ self.log("Loading the mocap file ...");
129
+ //Pace.start();
130
+ reader = new parsers.bvhParser(this.name + "READER");
131
+ this.url = url;
132
+ reader.load(url, self.createSkel, self.fillFrames);
133
+
134
+ this.callb = callback;
135
+ };
136
+
137
+ this.fillFrames = function() {
138
+ // self.log("Ready!");
139
+ self.ready = true;
140
+ self.playing = true;
141
+
142
+ if (self.callb)
143
+ self.callb();
144
+ }
145
+
146
+ this.createSkel = function(data) {
147
+ self.bvh = data;
148
+ self.frameCount = data.frameCount;
149
+ self.frameTime = data.frameTime;
150
+
151
+ self.log("Mocap file loaded.");
152
+
153
+ self.log("Creating the WebGL Joints.");
154
+ self.buildSkelJoints(self.bvh.getSkeleton(), 0);
155
+
156
+ self.log("Creating the WebGL Bones.");
157
+ self.buildSkelBones(self.jointMeshes[0]);
158
+
159
+ self.skeleton.add(self.jointMeshes[0]);
160
+ self.setSkeletonScale(self.skelScale);
161
+ self.setSkelUp();
162
+ };
163
+
164
+
165
+ // Beginning of the Stream Code
166
+ this.onHeaderReceived = function(data) {
167
+ self.log("Loading the mocap header (skeleton) from the stream...");
168
+ headerReader = new parsers.bvhStreamParser();
169
+ headerReader.readHeader(data, self.createSkel);
170
+
171
+ if (self.callb)
172
+ self.callb();
173
+
174
+ Pace.stop();
175
+ }
176
+
177
+ this.onDataChunckReceived = function(rawFrames) {
178
+ var aa = [];
179
+
180
+ for (f = 1; f < rawFrames.length; f++) {
181
+ var parts = rawFrames[f].trim().split(" ");
182
+ for (var j = 0; j < parts.length; j++)
183
+ parts[j] = +parts[j];
184
+ aa.push(parts);
185
+ }
186
+ diff = self.bvh.fillFrameArray(aa);
187
+ self.frameCount = self.bvh.frameArray.length;
188
+
189
+
190
+ if (!self.playing) {
191
+ self.animStartTimeRef = Date.now();
192
+ // self.animOffset -= rawFrames.length;
193
+ }
194
+ /*
195
+ // else
196
+ // self.animOffset = self.animIndex;
197
+ if (diff > 0)
198
+ self.animOffset -= rawFrames.length + 1;
199
+ // self.animIndex -= rawFrames.length; //math.max(0,math.min(rawFrames.length, self.bvh.bufferSize));
200
+ */
201
+ self.fillFrames();
202
+ Pace.stop();
203
+ }
204
+
205
+ this.loadFromStream = function(url, callback) {
206
+ self.log("Connecting to the stream server...");
207
+ self.isStreaming = true;
208
+ this.callb = callback;
209
+ self.webSocket = new WebSocket(url);
210
+
211
+ self.webSocket.onerror = function(event) {
212
+ self.log("Error connecting to the stream server " + event.origin);
213
+ };
214
+
215
+ self.webSocket.onopen = function(event) {
216
+ self.log("Connected to the stream server " + event.origin);
217
+ Pace.stop();
218
+ };
219
+
220
+ self.webSocket.onmessage = function(event) {
221
+ // I'm not doing much of a type and content checking here. Let's just trust the sender for now!
222
+ // Protocol for header:
223
+ // $HEADER$
224
+ // BVH...
225
+ // Protocl for data chunk with id#:
226
+ // $FRAMES$id#$
227
+
228
+ var messageLines = event.data.split('\n');
229
+
230
+ // self.log("Received somthing!");
231
+ // self.log("The first line is : " + messageLines[0]);
232
+
233
+ if (messageLines.length < 1)
234
+ return;
235
+
236
+ if (messageLines[0] == "$HEADER$") {
237
+ self.onHeaderReceived(event.data);
238
+
239
+ } else if (messageLines[0].startsWith("$FRAMES$")) {
240
+ chunckID = parseInt(messageLines[0].split("$")[2]);
241
+ self.onDataChunckReceived(messageLines, chunckID);
242
+ }
243
+ };
244
+
245
+ };
246
+
247
+ this.requestFrames = function(i) {
248
+ self.webSocket.send("$GETFRAMES" + i + "$");
249
+ }
250
+
251
+ // End of the Stream Code
252
+
253
+ this.setOriginPosition = function(x, y, z) {
254
+ self.originPosition.set(x, y, z);
255
+ };
256
+
257
+ this.setSkeletonScale = function(s) {
258
+ self.rootMeshes.forEach(function(c) {
259
+ c.scale.set(s, s, s);
260
+ });
261
+ self.jointMeshes[0].scale.set(s, s, s);
262
+ self.jointMeshes[0].position.multiplyScalar(s);
263
+ };
264
+
265
+ this.buildSkelJoints = function(joint, parent) {
266
+ var jointMesh = new THREE.Mesh(self.makeJointGeometryFCN(joint.name, self.skelScale), self.jointMaterial);
267
+ jointMesh.bvhIndex = joint.jointIndex;
268
+ jointMesh.offsetVec = new THREE.Vector3(joint.offset[0], joint.offset[1], joint.offset[2]);
269
+ jointMesh.name = joint.name;
270
+ jointMesh.jointparent = parent;
271
+ var a, b, c;
272
+ if (!joint.isEndSite()) {
273
+ a = joint.channelNames[joint.channelNames.length - 3][0];
274
+ b = joint.channelNames[joint.channelNames.length - 2][0];
275
+ c = joint.channelNames[joint.channelNames.length - 1][0];
276
+ }
277
+ jointMesh.rotOrder = a + b + c;
278
+ self.jointMeshes.push(jointMesh);
279
+
280
+ jointMesh.position.set(jointMesh.offsetVec.x, jointMesh.offsetVec.y, jointMesh.offsetVec.z);
281
+
282
+ // var axisHelper = new THREE.AxisHelper( 10 / self.skelScale );
283
+ // jointMesh.add( axisHelper );
284
+
285
+
286
+ joint.children.forEach(function(child) {
287
+ jointMesh.add(self.buildSkelJoints(child, 1));
288
+ });
289
+
290
+ return jointMesh;
291
+ };
292
+
293
+ this.buildSkelBones = function(rootJointMesh) {
294
+ rootJointMesh.traverse(function(childJointMesh) {
295
+ if (childJointMesh.parent !== null)
296
+ {
297
+ if (typeof childJointMesh.bvhIndex === "undefined")
298
+ return;
299
+ // move origin (.translate)
300
+ // rotate
301
+ // translate (offset + position)
302
+ h = math.abs(childJointMesh.offsetVec.length());
303
+ var bgeometry = self.makeBoneGeometryFCN(childJointMesh.parent.name, childJointMesh.name, h, self.skelScale);
304
+
305
+ //BEGIN - Universal
306
+ if (childJointMesh.offsetVec.y !== 0)
307
+ // bgeometry.translate(0, Math.sign(childJointMesh.offsetVec.y) * h / 2, 0);
308
+ bgeometry.translate(0, -h/2, 0);
309
+ else
310
+ bgeometry.translate(0, -h / 2, 0);
311
+
312
+
313
+ dx = Math.atan2(childJointMesh.offsetVec.z,childJointMesh.offsetVec.y);
314
+ dy = Math.atan2(childJointMesh.offsetVec.x,childJointMesh.offsetVec.z);
315
+ dz = Math.atan2(childJointMesh.offsetVec.x,childJointMesh.offsetVec.y);
316
+
317
+
318
+ osx = math.sign(childJointMesh.offsetVec.x) === 0 ? 0: math.sign(childJointMesh.offsetVec.x);
319
+ osy = math.sign(childJointMesh.offsetVec.y) === 0 ? 0: math.sign(childJointMesh.offsetVec.y);
320
+ osz = math.sign(childJointMesh.offsetVec.z) === 0 ? 0: math.sign(childJointMesh.offsetVec.z);
321
+
322
+ osxy = math.sign(childJointMesh.offsetVec.x) === 0 ? 0: math.sign(childJointMesh.offsetVec.y);
323
+ osyx = math.sign(childJointMesh.offsetVec.y) === 0 ? 0: math.sign(childJointMesh.offsetVec.x);
324
+ osyz = math.sign(childJointMesh.offsetVec.y) === 0 ? 0: math.sign(childJointMesh.offsetVec.z);
325
+ oszy = math.sign(childJointMesh.offsetVec.z) === 0 ? 0: math.sign(childJointMesh.offsetVec.y);
326
+
327
+
328
+ if (osz <0)
329
+ bgeometry.rotateZ(1*(math.pi-dz));
330
+ else if (osz === 0)
331
+ bgeometry.rotateZ(1*(math.pi-dz));
332
+ // console.log();
333
+ else if (osz > 0)
334
+ bgeometry.rotateZ(1*(2*math.pi-dz));
335
+
336
+
337
+ if (oszy >0)
338
+ bgeometry.rotateX(-1 *(2*math.pi-dx));
339
+ else if (childJointMesh.offsetVec.z === 0)
340
+ // bgeometry.rotateX(-1*(math.pi-dx));
341
+ console.log();
342
+ else if (oszy < 0)
343
+ bgeometry.rotateX(-1*(2*math.pi-dx));
344
+
345
+ // bgeometry.rotateY(math.pi-dy);
346
+
347
+ //END - Universal
348
+
349
+ var boneMesh = new THREE.Mesh(bgeometry, self.boneMaterial);
350
+
351
+ boneMesh.joint = childJointMesh.parent;
352
+ boneMesh.name = childJointMesh.parent.name + " > " + childJointMesh.name;
353
+
354
+ childJointMesh.parent.add(boneMesh);
355
+ self.boneMeshes.push(boneMesh);
356
+ }
357
+ });
358
+ };
359
+
360
+ this.animFrame = function(frame) {
361
+ var torad = Math.PI / 180;
362
+
363
+ if (frame >= self.frameCount) {
364
+ self.playing = false;
365
+ return;
366
+ }
367
+
368
+
369
+ this.jointMeshes[0].traverse(function(joint) {
370
+
371
+ if (typeof joint.bvhIndex === "undefined") {
372
+ return;
373
+ }
374
+
375
+
376
+ var bj = self.bvh.jointArray[joint.bvhIndex];
377
+ var offsetVec = joint.offsetVec;
378
+
379
+ var thisEuler = [];
380
+
381
+
382
+ thisEuler = new THREE.Euler(
383
+ (bj.channels[frame][bj.rotationIndex.x] * torad),
384
+ (bj.channels[frame][bj.rotationIndex.y] * torad),
385
+ (bj.channels[frame][bj.rotationIndex.z] * torad), joint.rotOrder);
386
+
387
+
388
+ joint.localRotMat = new THREE.Matrix4();
389
+ joint.localRotMat.makeRotationFromEuler(thisEuler);
390
+ joint.rotation.setFromRotationMatrix(joint.localRotMat);
391
+
392
+ if (joint.jointparent !== 0) {
393
+ // joint.position.set(offsetVec.x, offsetVec.y, offsetVec.z);
394
+ } else { // root
395
+ joint.position.set(
396
+ bj.channels[frame][bj.positionIndex.x] * self.skelScale + self.originPosition.x,
397
+ bj.channels[frame][bj.positionIndex.y] * self.skelScale + self.originPosition.y,
398
+ bj.channels[frame][bj.positionIndex.z] * self.skelScale + self.originPosition.z);
399
+ }
400
+ });
401
+
402
+ if (self.isStreaming) {
403
+ self.bvh.consumeFrames(frame);
404
+ self.frameCount = self.bvh.frameArray.length;
405
+ // console.log(self.frameCount);
406
+ if (self.frameCount <= 0)
407
+ self.playing = false;
408
+
409
+ self.animOffset = 0; // self.animOffset - frame;
410
+ self.animStartTimeRef = Date.now();
411
+ }
412
+ };
413
+
414
+ this.setSkelUp = function() {
415
+ this.jointMeshes[0].traverse(function(joint) {
416
+ if (typeof joint.bvhIndex === "undefined")
417
+ return;
418
+
419
+ var bj = self.bvh.jointArray[joint.bvhIndex];
420
+
421
+ var offsetVec = joint.offsetVec;
422
+ var torad = Math.PI / 180;
423
+ var thisEuler = [];
424
+
425
+ thisEuler = new THREE.Euler(0, 0, 0, joint.rotOrder);
426
+
427
+ joint.localRotMat = new THREE.Matrix4();
428
+ joint.localRotMat.makeRotationFromEuler(thisEuler);
429
+ joint.rotation.setFromRotationMatrix(joint.localRotMat);
430
+
431
+ if (joint.jointparent !== 0) {
432
+ // joint.position.set(offsetVec.x, offsetVec.y, offsetVec.z);
433
+ } else { // root
434
+ joint.position.set(self.originPosition.x, self.originPosition.y, self.originPosition.z);
435
+ }
436
+ });
437
+ };
438
+ };
439
+
440
+
441
+ module.exports = BVHCharacter;
442
+
443
+ /***/ },
444
+ /* 2 */
445
+ /***/ function(module, exports, __webpack_require__) {
446
+
447
+ module.exports ={
448
+ bvhParser: __webpack_require__(3),
449
+ bvhStreamParser: __webpack_require__(4)
450
+ };
451
+
452
+ /***/ },
453
+ /* 3 */
454
+ /***/ function(module, exports) {
455
+
456
+ // By Ankit
457
+ var BVHReader = function () {
458
+ this.load = function (url, callbackHeader, callbackFrameArray) {
459
+ $.get(url, function (str) {
460
+
461
+ var dataReturn = parse(str);
462
+
463
+
464
+ var jointStack = dataReturn[0];
465
+ var jointMap = dataReturn[1];
466
+ var jointArray = dataReturn[2];
467
+ var connectivityMatrix = dataReturn[3]
468
+ _bvh = new BVHReader.BVH.Skeleton(jointStack[0], jointMap, jointArray, dataReturn[3], dataReturn[4], dataReturn[5], []);
469
+
470
+ if (callbackHeader)
471
+ callbackHeader(_bvh,'BVH');
472
+ console.log("Blah");
473
+ _bvh.fillFrameArray(dataReturn[6]);
474
+
475
+ if (callbackFrameArray)
476
+ callbackFrameArray();
477
+
478
+ });
479
+ };
480
+
481
+ function parse(str) {
482
+ var lines = str.split('\n');
483
+ var jointStack = [];
484
+ var jointMap = {};
485
+ var jointArray = [];
486
+ var connectivityMatrix = [];
487
+ var frameCount, frameTime, frameArray = [];
488
+ var i = 0;
489
+ //parse structure
490
+ for (i = 1; i < lines.length; i++) {
491
+ if (!parseLine(lines[i], jointStack, jointMap, jointArray, connectivityMatrix)) {
492
+ break;
493
+ }
494
+ }
495
+
496
+ for (i = i + 1; i < lines.length; i++) {
497
+ var line = lines[i].trim();
498
+ //when encountering last line
499
+ if (line === "")
500
+ break;
501
+ if (line.indexOf("Frames") === 0) {
502
+ frameCount = +(line.split(/\b/)[2]);
503
+ } else if (line.indexOf("Frame Time") === 0) {
504
+ frameTime = +( line.substr(line.indexOf(":") + 1).trim() )
505
+ } else {
506
+ var parts = line.split(" ");
507
+ for (var j = 0; j < parts.length; j++)
508
+ parts[j] = +parts[j];
509
+ frameArray.push(parts);
510
+ }
511
+ }
512
+
513
+ //parse motion
514
+ return [jointStack, jointMap, jointArray, connectivityMatrix, frameCount, frameTime, frameArray];
515
+ }
516
+
517
+ //parses individual line in the bvh file.
518
+ var parseLine = function (line, jointStack, jointMap, jointArray, connectivityMatrix) {
519
+ line = line.trim();
520
+ if (line.indexOf("ROOT") > -1 || line.indexOf("JOINT") > -1 || line.indexOf("End") > -1) {
521
+ var parts = line.split(" ");
522
+ var title = parts[1]; //temporary variable to be used after creating the joint object
523
+ parts[1] = parts[1] + "-" + jointArray.length;
524
+ var joint = new BVHReader.BVH.Joint(parts[1]);
525
+ joint.title = title;
526
+ jointStack.push(joint);
527
+
528
+ joint.jointIndex = Object.keys(jointMap).length;
529
+ jointMap[parts[1]] = joint;
530
+ jointArray.push(joint);
531
+ //if the joint is not an end site
532
+ if( line.indexOf("End") != 0 ){
533
+ if (jointArray.length == 1) {
534
+ joint.channelOffset = 0;
535
+ } else {
536
+ joint.channelOffset = jointArray[jointArray.length - 2].channelOffset + jointArray[jointArray.length - 2].channelLength;
537
+ }
538
+ }else{
539
+ //channelLength is 0 for end joints
540
+ joint.channelLength = 0;
541
+ joint.channelOffset = jointArray[jointArray.length - 2].channelOffset + jointArray[jointArray.length - 2].channelLength;
542
+ }
543
+
544
+ } else if (line.indexOf("{") === 0) {
545
+
546
+ } else if (line.indexOf("OFFSET") === 0) {
547
+ var parts = line.split(" ");
548
+ jointStack[jointStack.length - 1]["offset"] = parts.slice(1);
549
+ for(x in jointStack[jointStack.length - 1]["offset"]){
550
+ jointStack[jointStack.length - 1]["offset"][x] = +jointStack[jointStack.length - 1]["offset"][x]
551
+ }
552
+ } else if (line.indexOf("CHANNELS") === 0) {
553
+ var parts = line.split(" ");
554
+ jointStack[jointStack.length - 1].setChannelNames(parts.slice(2));
555
+ jointStack[jointStack.length - 1]["channelLength"] = +parts[1];
556
+ } else if (line.indexOf("}") === 0) {
557
+ if (jointStack.length > 1) {
558
+ child = jointStack.pop();
559
+ jointStack[jointStack.length - 1].children.push(child);
560
+ child.parent = jointStack[jointStack.length - 1];
561
+
562
+ connectivityMatrix.push([child.parent, child])
563
+
564
+ // if(!connectivityMatrix[child.name]){
565
+ // connectivityMatrix[child.name] = {}
566
+ // }
567
+ // connectivityMatrix[child.name][child.parent.name] = 1;
568
+
569
+ // if(!connectivityMatrix[child.parent.name]){
570
+ // connectivityMatrix[child.parent.name] = {}
571
+ // }
572
+ // connectivityMatrix[child.parent.name][child.name] = 1;
573
+ }
574
+ } else if (line.indexOf("MOTION") == 0) {
575
+ return false;
576
+ }
577
+
578
+ return true;
579
+ };
580
+ };
581
+
582
+ BVHReader.BVH = BVHReader.BVH || {};
583
+
584
+ BVHReader.BVH.Joint = function (name, index) {
585
+
586
+ this.name = name;
587
+ this.children = [];
588
+ this.isEndSite = function () {
589
+ return this.children.length == 0;
590
+ };
591
+ this.rotationIndex = {};
592
+ this.positionIndex = {};
593
+
594
+ this.getChannels = function () {
595
+ var allChannels = [];
596
+ for (i = 0; i < this.skeleton.frameArray.length; i++) {
597
+ allChannels.push(this.getChannelsAt(i));
598
+ }
599
+ return allChannels;
600
+ };
601
+ this.getChannelsAt = function (frameNum) {
602
+ var channelsAtFrame = this.skeleton.frameArray[frameNum];
603
+ return channelsAtFrame.slice(this.channelOffset, this.channelOffset + this.channelLength);
604
+ };
605
+
606
+ this.setChannelNames = function (nameArr){
607
+ this.channelNames = nameArr;
608
+ for(i in this.channelNames){
609
+ var name = this.channelNames[i];
610
+ switch(name){
611
+ case "Xposition": this.positionIndex.x = i; break;
612
+ case "Yposition": this.positionIndex.y = i; break;
613
+ case "Zposition": this.positionIndex.z = i; break;
614
+
615
+ case "Xrotation": this.rotationIndex.x = i; break;
616
+ case "Yrotation": this.rotationIndex.y = i; break;
617
+ case "Zrotation": this.rotationIndex.z = i; break;
618
+ }
619
+ }
620
+ }
621
+ };
622
+
623
+ BVHReader.BVH.Skeleton = function (root, map, arr, connectivityMatrix, frameCount, frameTime, frameArray) {
624
+ thisSkeleton = this;
625
+ this.root = root;
626
+ this.jointMap = map;
627
+ this.jointArray = arr;
628
+ this.connectivityMatrix = connectivityMatrix;
629
+ this.frameCount = frameCount;
630
+ this.frameTime = frameTime;
631
+ this.frameArray = frameArray;
632
+
633
+ for (i = 0; i < this.jointArray.length; i++) {
634
+ this.jointArray[i].skeleton = thisSkeleton;
635
+ }
636
+
637
+
638
+
639
+ this.fillFrameArray = function (fa) {
640
+ this.frameArray = fa;
641
+ this.frameCount = fa.length;
642
+ //all the structures are ready. let's calculate the positions
643
+ for(j=0; j < this.jointArray.length; j++){
644
+ var joint = this.jointArray[j];
645
+ updateWithPositions(joint);
646
+ }
647
+ }
648
+
649
+ this.getChannels = function () {
650
+ return frameArray;
651
+ };
652
+ this.getChannelsAt = function (frameNum) {
653
+ //How do I know which column is what?
654
+ //Why do you need the column index?
655
+ return frameArray[frameNum];
656
+ };
657
+ this.getFrameRate = function () {
658
+ return frameCount / frameTime;
659
+ };
660
+ this.getSkeleton = function () {
661
+ return root;
662
+ };
663
+
664
+ this.getHeadJoint = function () {
665
+ // do a quick search in the joint names to see if any of them matches head, else return the something!!!!
666
+ return jointMap["Head"];
667
+ };
668
+ this.getPositionsAt = function (frameNum) {
669
+ //for each joint, calculate its position in XYZ
670
+ //return an array of joints, each with .x, .y, and .z properties
671
+ posFrame = [];
672
+
673
+ for (j=0;j<this.jointArray.length;j++) {
674
+ posFrame.push(this.jointArray[j].positions[frameNum]);
675
+ }
676
+
677
+ posFrame = posFrame.map(function(d) {
678
+ return {
679
+ x : d[0],
680
+ y : d[1],
681
+ z : d[2],
682
+ };
683
+ });
684
+
685
+ return posFrame;
686
+ };
687
+ this.getTPose = function () {
688
+ // This function is basically the same as the getPositionsAt except that all the rotations will be 0
689
+ console.log("Not yet implemented");
690
+ };
691
+
692
+ function updatePositions(rootOffset, removeRoot, orientation, camera) {
693
+ //TODO: compelte the specification of this
694
+
695
+ for(j=0; j < this.jointArray.length; j++){
696
+ var joint = this.jointArray[j];
697
+ updateWithPositions(joint);
698
+ }
699
+ }
700
+
701
+ function updateWithPositions(joint){
702
+ var channelNames = joint.channelNames;
703
+ joint.channels = joint.getChannels();
704
+ joint.rotations = [];
705
+ joint.positions = [];
706
+ joint.rotmat = [];
707
+ for(i in joint.channels){
708
+ var channel = joint.channels[i];
709
+ var xpos = channel[joint.positionIndex.x] || 0,
710
+ ypos = channel[joint.positionIndex.y] || 0,
711
+ zpos = channel[joint.positionIndex.z] || 0,
712
+ xangle = deg2rad(channel[joint.rotationIndex.x] || 0),
713
+ yangle = deg2rad(channel[joint.rotationIndex.y] || 0),
714
+ zangle= deg2rad(channel[joint.rotationIndex.z] || 0);
715
+
716
+ // var rotMatrix = math.transpose(getRotationMatrix(xangle, yangle, zangle, "xyz"));
717
+ // var rotMatrix = getRotationMatrix1(xangle, yangle, zangle, "xyz"); //this also works
718
+ var posMatrix = [xpos, ypos, zpos];
719
+
720
+ if(joint.parent){
721
+ posMatrix = [0,0,0]; //At least for the bvhs that we have, this should be set to 0
722
+
723
+ // var t = vectorAdd(joint.offset, posMatrix);
724
+ // var u = matrixMultiply(t, joint.parent.rotations[i]);
725
+
726
+ // joint.positions[i] = vectorAdd(u, joint.parent.positions[i]);
727
+ // joint.rotations[i] = matrixMultiply( rotMatrix, joint.parent.rotations[i]);
728
+ // joint.rotmat[i] = rotMatrix;
729
+
730
+ if (i==0 && (joint.name == "Spine" || joint.name == "L_Femur")) {
731
+ /*console.log("head's rot mat: ");
732
+ console.log(joint.rotations[i]);
733
+ console.log(t);
734
+ console.log(u);
735
+
736
+ console.log("x: "+xangle + "y: "+yangle + "z: "+zangle );
737
+ console.log(posMatrix);
738
+ */
739
+ }
740
+
741
+ }else{
742
+ //its the root
743
+ // joint.rotations[i] = rotMatrix;
744
+ // joint.rotmat[i] = rotMatrix;
745
+ joint.positions[i] = posMatrix;//vectorAdd(joint.offset , posMatrix);
746
+ // ^ we can safely ignore the root's offset
747
+ }
748
+ }
749
+ }
750
+
751
+ function deg2rad(deg){
752
+ return deg * (Math.PI/180);
753
+ }
754
+
755
+
756
+ function getRotationMatrix(alpha, beta, gamma) {
757
+
758
+ //inputs are the intrinsic rotation angles in RADIANTS
759
+ var ca = Math.cos(alpha),
760
+ sa = Math.sin(alpha),
761
+
762
+ cb = Math.cos(beta),
763
+ sb = Math.sin(beta),
764
+
765
+ cg = Math.cos(gamma),
766
+ sg = Math.sin(gamma),
767
+
768
+ Rx = [[1, 0, 0], [0, ca, -sa], [0, sa, ca]];
769
+
770
+ Ry = [[cb, 0, sb], [0, 1, 0], [-sb, 0, cb]];
771
+
772
+ Rz = [[cg, -sg, 0], [sg, cg, 0], [0, 0, 1]];
773
+
774
+
775
+
776
+
777
+ var Rzm = math.matrix(Rz);
778
+ var Rym = math.matrix(Ry);
779
+ var Rxm = math.matrix(Rx);
780
+
781
+ var tt = math.multiply(Rzm, Rym);
782
+
783
+ return math.multiply(tt,Rxm).toArray();
784
+ //rotationMatrix = math. //Rz*Ry*Rx;
785
+
786
+ // R = Rx*Ry*Rz;
787
+ }
788
+
789
+ function getRotationMatrix1 (xangle, yangle, zangle, order){
790
+ var c1 = Math.cos(xangle),
791
+ c2 = Math.cos(yangle),
792
+ c3 = Math.cos(zangle),
793
+ s1 = Math.sin(xangle),
794
+ s2 = Math.sin(yangle),
795
+ s3 = Math.sin(zangle);
796
+
797
+ if(order === undefined || order.trim() === ""){
798
+ order = "zxy";
799
+ }
800
+
801
+ var rotMat = [
802
+ [1,0,0],
803
+ [0,1,0],
804
+ [0,0,1]
805
+ ];
806
+
807
+ switch(order){
808
+ case "___zxy":
809
+ rotMat = [
810
+ [c2*c3-s1*s2*s3, c2*s3+s1*s2*c3, -s2*c1],
811
+ [-c1*s3, c1*c3, s1],
812
+ [s2*c3+c2*s1*s3, s2*s3-c2*s1*c3, c2*c1]
813
+ ];
814
+ break;
815
+ default:
816
+ for (o in order){
817
+ var axis = order[o];
818
+ var t;
819
+ switch(axis){
820
+ case "x":
821
+ t = [
822
+ [1, 0, 0],
823
+ [0, c1, s1],
824
+ [0, -s1, c1],
825
+ ]
826
+ break;
827
+ case "y":
828
+ t = [
829
+ [c2,0,-s2],
830
+ [0,1,0],
831
+ [s2,0,c2]
832
+ ]
833
+ break;
834
+ case "z":
835
+ t = [[c3,s3,0],[-s3,c3,0],[0,0,1]]
836
+ break;
837
+ }
838
+
839
+ rotMat = matrixMultiply(t, rotMat)
840
+ }
841
+ }
842
+
843
+ return rotMat;
844
+ }
845
+ };
846
+
847
+ function vectorAdd(a, b){
848
+ return math.add(math.matrix(a), math.matrix(b)).toArray();
849
+ }
850
+
851
+ function matrixMultiply(m1, m2) {
852
+ var a = math.matrix(m1);
853
+ var b = math.matrix(m2);
854
+ return math.multiply(a, b).toArray();
855
+ }
856
+
857
+
858
+ module.exports = BVHReader;
859
+
860
+ /***/ },
861
+ /* 4 */
862
+ /***/ function(module, exports) {
863
+
864
+ // BVH parser by Ankit
865
+ // Stream by Omid
866
+
867
+
868
+ var BVHStreamParser = function () {
869
+ this.readHeader = function (str, callback) {
870
+ var dataReturn = parseHeader(str);
871
+ var jointStack = dataReturn[0];
872
+ var jointMap = dataReturn[1];
873
+ var jointArray = dataReturn[2];
874
+ var connectivityMatrix = dataReturn[3]
875
+ if (callback)
876
+ callback(new BVHStreamParser.BVH.Skeleton(jointStack[0], jointMap, jointArray, dataReturn[3], 0, dataReturn[5], dataReturn[6]),'BVH');
877
+ };
878
+
879
+ function parseHeader(str) {
880
+ var lines = str.split('\n');
881
+ var jointStack = [];
882
+ var jointMap = {};
883
+ var jointArray = [];
884
+ var connectivityMatrix = [];
885
+ var frameCount, frameTime, frameArray = [];
886
+ var i = 0;
887
+ //parse structure
888
+ for (i = 2; i < lines.length; i++) { // start from 2 to skip the $HEADER$ command
889
+ if (!parseLine(lines[i], jointStack, jointMap, jointArray, connectivityMatrix)) {
890
+ break;
891
+ }
892
+ }
893
+
894
+ for (i = i + 1; i < lines.length; i++) {
895
+ var line = lines[i].trim();
896
+ //when encountering last line
897
+ if (line === "")
898
+ break;
899
+ if (line.indexOf("Frames") === 0) {
900
+ frameCount = +(line.split(/\b/)[2]);
901
+ } else if (line.indexOf("Frame Time") === 0) {
902
+ frameTime = +( line.substr(line.indexOf(":") + 1).trim() )
903
+ } else { /// maybe this should be removed
904
+ var parts = line.split(" ");
905
+ for (var j = 0; j < parts.length; j++)
906
+ parts[j] = +parts[j];
907
+ frameArray.push(parts);
908
+ }
909
+ }
910
+
911
+ //parse motion
912
+ return [jointStack, jointMap, jointArray, connectivityMatrix, frameCount, frameTime, frameArray];
913
+ }
914
+
915
+ //parses individual line in the bvh file.
916
+ var parseLine = function (line, jointStack, jointMap, jointArray, connectivityMatrix) {
917
+ line = line.trim();
918
+ if (line.indexOf("ROOT") > -1 || line.indexOf("JOINT") > -1 || line.indexOf("End") > -1) {
919
+ var parts = line.split(" ");
920
+ var title = parts[1]; //temporary variable to be used after creating the joint object
921
+ parts[1] = parts[1] + "-" + jointArray.length;
922
+ var joint = new BVHStreamParser.BVH.Joint(parts[1]);
923
+ joint.title = title;
924
+ jointStack.push(joint);
925
+
926
+ joint.jointIndex = Object.keys(jointMap).length;
927
+ jointMap[parts[1]] = joint;
928
+ jointArray.push(joint);
929
+ //if the joint is not an end site
930
+ if( line.indexOf("End") != 0 ){
931
+ if (jointArray.length == 1) {
932
+ joint.channelOffset = 0;
933
+ } else {
934
+ joint.channelOffset = jointArray[jointArray.length - 2].channelOffset + jointArray[jointArray.length - 2].channelLength;
935
+ }
936
+ }else{
937
+ //channelLength is 0 for end joints
938
+ joint.channelLength = 0;
939
+ joint.channelOffset = jointArray[jointArray.length - 2].channelOffset + jointArray[jointArray.length - 2].channelLength;
940
+ }
941
+
942
+ } else if (line.indexOf("{") === 0) {
943
+
944
+ } else if (line.indexOf("OFFSET") === 0) {
945
+ var parts = line.split(" ");
946
+ jointStack[jointStack.length - 1]["offset"] = parts.slice(1);
947
+ for(x in jointStack[jointStack.length - 1]["offset"]){
948
+ jointStack[jointStack.length - 1]["offset"][x] = +jointStack[jointStack.length - 1]["offset"][x]
949
+ }
950
+ } else if (line.indexOf("CHANNELS") === 0) {
951
+ var parts = line.split(" ");
952
+ jointStack[jointStack.length - 1].setChannelNames(parts.slice(2));
953
+ jointStack[jointStack.length - 1]["channelLength"] = +parts[1];
954
+ } else if (line.indexOf("}") === 0) {
955
+ if (jointStack.length > 1) {
956
+ child = jointStack.pop();
957
+ jointStack[jointStack.length - 1].children.push(child);
958
+ child.parent = jointStack[jointStack.length - 1];
959
+
960
+ connectivityMatrix.push([child.parent, child])
961
+ }
962
+ } else if (line.indexOf("MOTION") == 0) {
963
+ return false;
964
+ }
965
+
966
+ return true;
967
+ };
968
+ };
969
+
970
+ BVHStreamParser.BVH = BVHStreamParser.BVH || {};
971
+
972
+ BVHStreamParser.BVH.Joint = function (name, index) {
973
+
974
+ this.name = name;
975
+ this.children = [];
976
+ this.isEndSite = function () {
977
+ return this.children.length == 0;
978
+ };
979
+ this.rotationIndex = {};
980
+ this.positionIndex = {};
981
+
982
+ this.getChannels = function () {
983
+ var allChannels = [];
984
+ for (i = 0; i < this.skeleton.frameArray.length; i++) {
985
+ allChannels.push(this.getChannelsAt(i));
986
+ }
987
+ return allChannels;
988
+ };
989
+ this.getChannelsAt = function (frameNum) {
990
+ var channelsAtFrame = this.skeleton.frameArray[frameNum];
991
+ return channelsAtFrame.slice(this.channelOffset, this.channelOffset + this.channelLength);
992
+ };
993
+
994
+ this.setChannelNames = function (nameArr){
995
+ this.channelNames = nameArr;
996
+ for(i in this.channelNames){
997
+ var name = this.channelNames[i];
998
+ switch(name){
999
+ case "Xposition": this.positionIndex.x = i; break;
1000
+ case "Yposition": this.positionIndex.y = i; break;
1001
+ case "Zposition": this.positionIndex.z = i; break;
1002
+
1003
+ case "Xrotation": this.rotationIndex.x = i; break;
1004
+ case "Yrotation": this.rotationIndex.y = i; break;
1005
+ case "Zrotation": this.rotationIndex.z = i; break;
1006
+ }
1007
+ }
1008
+ }
1009
+ };
1010
+
1011
+ BVHStreamParser.BVH.Skeleton = function (root, map, arr, connectivityMatrix, frameCount, frameTime, frameArray) {
1012
+ thisSkeleton = this;
1013
+ this.root = root;
1014
+ this.jointMap = map;
1015
+ this.jointArray = arr;
1016
+ this.connectivityMatrix = connectivityMatrix;
1017
+ this.frameCount = frameCount;
1018
+ this.frameTime = frameTime;
1019
+ this.frameArray = frameArray;
1020
+ this.bufferSize = 500;
1021
+
1022
+ for (i = 0; i < this.jointArray.length; i++) {
1023
+ this.jointArray[i].skeleton = thisSkeleton;
1024
+ }
1025
+
1026
+ this.fillFrameArray = function (fa) {
1027
+ this.frameArray.push.apply(this.frameArray,fa);
1028
+ //this.frameArray.push.apply(this.frameArray,fa);
1029
+
1030
+ diff = this.frameArray.length - this.bufferSize;
1031
+ // console.log('diff = ' + diff);
1032
+
1033
+ /*
1034
+ if (diff > 0)
1035
+ for (i=0;i<diff;i++)
1036
+ this.frameArray.shift();
1037
+
1038
+ this.frameCount = this.frameArray.length;
1039
+ */
1040
+
1041
+ if (diff > 0)
1042
+ addedCount = this.frameCount;
1043
+ else
1044
+ addedCount = fa.length;
1045
+
1046
+ for(j=0; j < this.jointArray.length; j++){
1047
+ var joint = this.jointArray[j];
1048
+ updateWithPositionsSinceLast(joint, addedCount);
1049
+ }
1050
+
1051
+ return diff;
1052
+ }
1053
+
1054
+ this.consumeFrames = function (index) {
1055
+ for (i=0;i<=index;i++) {
1056
+ this.frameArray.shift();
1057
+ for (j=0;j<this.jointArray.length;j++)
1058
+ this.jointArray[j].channels.shift();
1059
+ }
1060
+ this.frameCount = this.frameArray.length;
1061
+ }
1062
+
1063
+ this.getChannels = function () {
1064
+ return frameArray;
1065
+ };
1066
+ this.getChannelsAt = function (frameNum) {
1067
+ //How do I know which column is what?
1068
+ //Why do you need the column index?
1069
+ return frameArray[frameNum];
1070
+ };
1071
+ this.getFrameRate = function () {
1072
+ return frameCount / frameTime;
1073
+ };
1074
+ this.getSkeleton = function () {
1075
+ return root;
1076
+ };
1077
+
1078
+ this.getHeadJoint = function () {
1079
+ // do a quick search in the joint names to see if any of them matches head, else return the something!!!!
1080
+ return jointMap["Head"];
1081
+ };
1082
+ this.getPositionsAt = function (frameNum) {
1083
+ //for each joint, calculate its position in XYZ
1084
+ //return an array of joints, each with .x, .y, and .z properties
1085
+ posFrame = [];
1086
+
1087
+ for (j=0;j<this.jointArray.length;j++) {
1088
+ posFrame.push(this.jointArray[j].positions[frameNum]);
1089
+ }
1090
+
1091
+ posFrame = posFrame.map(function(d) {
1092
+ return {
1093
+ x : d[0],
1094
+ y : d[1],
1095
+ z : d[2],
1096
+ };
1097
+ });
1098
+
1099
+ return posFrame;
1100
+ };
1101
+ this.getTPose = function () {
1102
+ // This function is basically the same as the getPositionsAt except that all the rotations will be 0
1103
+ console.log("Not yet implemented");
1104
+ };
1105
+
1106
+ function updatePositions(rootOffset, removeRoot, orientation, camera) {
1107
+ //TODO: compelte the specification of this
1108
+
1109
+ for(j=0; j < this.jointArray.length; j++){
1110
+ var joint = this.jointArray[j];
1111
+ updateWithPositions(joint);
1112
+ }
1113
+ }
1114
+
1115
+ function updateWithPositions(joint){
1116
+ var channelNames = joint.channelNames;
1117
+ joint.channels = joint.getChannels();
1118
+ joint.rotations = [];
1119
+ joint.positions = [];
1120
+ joint.rotmat = [];
1121
+ for(i in joint.channels){
1122
+ var channel = joint.channels[i];
1123
+ var xpos = channel[joint.positionIndex.x] || 0,
1124
+ ypos = channel[joint.positionIndex.y] || 0,
1125
+ zpos = channel[joint.positionIndex.z] || 0;
1126
+ // xangle = deg2rad(channel[joint.rotationIndex.x] || 0),
1127
+ // yangle = deg2rad(channel[joint.rotationIndex.y] || 0),
1128
+ // zangle= deg2rad(channel[joint.rotationIndex.z] || 0);
1129
+
1130
+ var posMatrix = [xpos, ypos, zpos];
1131
+
1132
+ if(!joint.parent){
1133
+ //its the root
1134
+ joint.positions[i] = posMatrix;//vectorAdd(joint.offset , posMatrix);
1135
+ // ^ we can safely ignore the root's offset
1136
+ }
1137
+ }
1138
+ }
1139
+
1140
+ function updateWithPositionsSinceLast(joint, addedCount){
1141
+ var channelNames = joint.channelNames;
1142
+ joint.channels = joint.getChannels();
1143
+ joint.rotations = [];
1144
+ joint.positions = [];
1145
+ joint.rotmat = [];
1146
+ for(i=joint.channels.length - addedCount;i < joint.channels.length; i++){
1147
+ var channel = joint.channels[i];
1148
+ var xpos = channel[joint.positionIndex.x] || 0,
1149
+ ypos = channel[joint.positionIndex.y] || 0,
1150
+ zpos = channel[joint.positionIndex.z] || 0;
1151
+ // xangle = deg2rad(channel[joint.rotationIndex.x] || 0),
1152
+ // yangle = deg2rad(channel[joint.rotationIndex.y] || 0),
1153
+ // zangle= deg2rad(channel[joint.rotationIndex.z] || 0);
1154
+
1155
+ var posMatrix = [xpos, ypos, zpos];
1156
+
1157
+ if(!joint.parent){
1158
+ //its the root
1159
+ joint.positions[i] = posMatrix;//vectorAdd(joint.offset , posMatrix);
1160
+ // ^ we can safely ignore the root's offset
1161
+ }
1162
+ }
1163
+ }
1164
+
1165
+ function deg2rad(deg){
1166
+ return deg * (Math.PI/180);
1167
+ }
1168
+ };
1169
+
1170
+ module.exports = BVHStreamParser;
1171
+
1172
+ /***/ },
1173
+ /* 5 */
1174
+ /***/ function(module, exports) {
1175
+
1176
+ var C3DCharacter = C3DCharacter || {};
1177
+
1178
+ C3DCharacter = function(n, jm, jg){
1179
+ this.name = n;
1180
+
1181
+ this.markerMaterial = jm;
1182
+ this.makeMarkerGeometryFCN = jg;
1183
+
1184
+ this.originPosition = new THREE.Vector3(0,0,0);
1185
+
1186
+ this.markerdata = [];
1187
+ this.ready = false;
1188
+ this.scale = 0.5;
1189
+ this.markerMeshes = [];
1190
+
1191
+ this.frameTime = 1/30;
1192
+ this.frameCount = 0;
1193
+
1194
+ this.animIndex = 0;
1195
+ this.animStartTimeRef = 0;
1196
+ this.animOffset = 0;
1197
+ this.playing = true;
1198
+
1199
+ this.debug = true;
1200
+
1201
+ var self = this;
1202
+
1203
+ //
1204
+
1205
+ this.log = function(m) {
1206
+ if (self.debug)
1207
+ console.log(self.name + ": "+m.toString());
1208
+ };
1209
+
1210
+ this.loadFromURL = function(url, callback) {
1211
+ self.log("Loading the mocap file ...");
1212
+ Pace.start();
1213
+ url2 = "../" + url;
1214
+ self.url = url;
1215
+
1216
+ Papa.parse(url2, {
1217
+ worker: true,
1218
+ delimiter: ",",
1219
+ dynamicTyping: true,
1220
+ download: true,
1221
+ header: false,
1222
+ complete: function(results) {
1223
+ self.processData(results);
1224
+ if (callback)
1225
+ callback();
1226
+ }
1227
+ });
1228
+ };
1229
+
1230
+ this.loadFromBuffer = function(data, callback) {
1231
+ self.log("Loading the mocap from buffer...");
1232
+ Pace.start();
1233
+ var preData = data.split('\n');
1234
+ preData = preData.map(function(d,i){
1235
+ var cols = d.split(',');
1236
+ var floats = cols;
1237
+ // console.log(i);
1238
+ if (i!=0) {
1239
+ floats = cols.map(function(p, j){
1240
+ return parseFloat(p);
1241
+ });
1242
+ }
1243
+
1244
+ return floats;
1245
+ });
1246
+ preData.pop();
1247
+
1248
+ this.processData({data: preData});
1249
+ if (callback)
1250
+ callback();
1251
+ }
1252
+
1253
+ this.processData = function(results) {
1254
+ //self.markerdata = results.data;
1255
+ // console.log(results);
1256
+
1257
+ for (i=0;i<results.data[0].length-3;i+=3) {
1258
+ var markerMesh = new THREE.Mesh(self.makeMarkerGeometryFCN(results.data[0][i], self.scale), self.markerMaterial);
1259
+ markerMesh.markerIndex = i;
1260
+ markerMesh.name = results.data[0][i];
1261
+ scene.add(markerMesh);
1262
+ self.markerMeshes.push(markerMesh);
1263
+ }
1264
+
1265
+ self.markerNames = results.data[0];
1266
+
1267
+ for (f=1;f<results.data.length;f++) {
1268
+ self.markerdata[f-1] = [];
1269
+ for (m=0;m<results.data[f].length-3;m+=3) {
1270
+ marker = {};
1271
+ marker.x = results.data[f][m];
1272
+ marker.y = results.data[f][m+1];
1273
+ marker.z = results.data[f][m+2];
1274
+ marker.name = self.markerNames[m];
1275
+
1276
+ self.markerdata[f-1].push(marker);
1277
+ }
1278
+ }
1279
+
1280
+ self.frameCount = self.markerdata.length;
1281
+ self.log("Done parsing!");
1282
+ self.ready = true;
1283
+ }
1284
+
1285
+ this.setOriginPosition = function (x, y, z) {
1286
+ self.originPosition.set(x,y,z);
1287
+ };
1288
+
1289
+ this.setSkeletonScale = function(s) {
1290
+ self.rootMeshes.forEach(function (c) {
1291
+ c.scale.set(s,s,s);
1292
+ });
1293
+ self.jointMeshes[0].scale.set(s,s,s);
1294
+ self.jointMeshes[0].position.multiplyScalar(s);
1295
+ };
1296
+
1297
+
1298
+ this.animFrame = function (frame) {
1299
+ for (m=0;m<self.markerMeshes.length; m++) {
1300
+ self.markerMeshes[m].position.set(
1301
+ self.markerdata[frame][m].x * self.scale + self.originPosition.x,
1302
+ self.markerdata[frame][m].y * self.scale + self.originPosition.y,
1303
+ self.markerdata[frame][m].z * self.scale + self.originPosition.z);
1304
+ }
1305
+ };
1306
+ };
1307
+
1308
+ module.exports = C3DCharacter;
1309
+
1310
+ /***/ }
1311
+ /******/ ]);
1312
+ //# sourceMappingURL=mocapjs.js.map
dataloaders/pymo/mocapplayer/libs/pace.min.js ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ /*! pace 1.0.2 */
2
+ (function(){var a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X=[].slice,Y={}.hasOwnProperty,Z=function(a,b){function c(){this.constructor=a}for(var d in b)Y.call(b,d)&&(a[d]=b[d]);return c.prototype=b.prototype,a.prototype=new c,a.__super__=b.prototype,a},$=[].indexOf||function(a){for(var b=0,c=this.length;c>b;b++)if(b in this&&this[b]===a)return b;return-1};for(u={catchupTime:100,initialRate:.03,minTime:250,ghostTime:100,maxProgressPerFrame:20,easeFactor:1.25,startOnPageLoad:!0,restartOnPushState:!0,restartOnRequestAfter:500,target:"body",elements:{checkInterval:100,selectors:["body"]},eventLag:{minSamples:10,sampleCount:3,lagThreshold:3},ajax:{trackMethods:["GET"],trackWebSockets:!0,ignoreURLs:[]}},C=function(){var a;return null!=(a="undefined"!=typeof performance&&null!==performance&&"function"==typeof performance.now?performance.now():void 0)?a:+new Date},E=window.requestAnimationFrame||window.mozRequestAnimationFrame||window.webkitRequestAnimationFrame||window.msRequestAnimationFrame,t=window.cancelAnimationFrame||window.mozCancelAnimationFrame,null==E&&(E=function(a){return setTimeout(a,50)},t=function(a){return clearTimeout(a)}),G=function(a){var b,c;return b=C(),(c=function(){var d;return d=C()-b,d>=33?(b=C(),a(d,function(){return E(c)})):setTimeout(c,33-d)})()},F=function(){var a,b,c;return c=arguments[0],b=arguments[1],a=3<=arguments.length?X.call(arguments,2):[],"function"==typeof c[b]?c[b].apply(c,a):c[b]},v=function(){var a,b,c,d,e,f,g;for(b=arguments[0],d=2<=arguments.length?X.call(arguments,1):[],f=0,g=d.length;g>f;f++)if(c=d[f])for(a in c)Y.call(c,a)&&(e=c[a],null!=b[a]&&"object"==typeof b[a]&&null!=e&&"object"==typeof e?v(b[a],e):b[a]=e);return b},q=function(a){var b,c,d,e,f;for(c=b=0,e=0,f=a.length;f>e;e++)d=a[e],c+=Math.abs(d),b++;return c/b},x=function(a,b){var c,d,e;if(null==a&&(a="options"),null==b&&(b=!0),e=document.querySelector("[data-pace-"+a+"]")){if(c=e.getAttribute("data-pace-"+a),!b)return c;try{return JSON.parse(c)}catch(f){return d=f,"undefined"!=typeof console&&null!==console?console.error("Error parsing inline pace options",d):void 0}}},g=function(){function a(){}return a.prototype.on=function(a,b,c,d){var e;return null==d&&(d=!1),null==this.bindings&&(this.bindings={}),null==(e=this.bindings)[a]&&(e[a]=[]),this.bindings[a].push({handler:b,ctx:c,once:d})},a.prototype.once=function(a,b,c){return this.on(a,b,c,!0)},a.prototype.off=function(a,b){var c,d,e;if(null!=(null!=(d=this.bindings)?d[a]:void 0)){if(null==b)return delete this.bindings[a];for(c=0,e=[];c<this.bindings[a].length;)e.push(this.bindings[a][c].handler===b?this.bindings[a].splice(c,1):c++);return e}},a.prototype.trigger=function(){var a,b,c,d,e,f,g,h,i;if(c=arguments[0],a=2<=arguments.length?X.call(arguments,1):[],null!=(g=this.bindings)?g[c]:void 0){for(e=0,i=[];e<this.bindings[c].length;)h=this.bindings[c][e],d=h.handler,b=h.ctx,f=h.once,d.apply(null!=b?b:this,a),i.push(f?this.bindings[c].splice(e,1):e++);return i}},a}(),j=window.Pace||{},window.Pace=j,v(j,g.prototype),D=j.options=v({},u,window.paceOptions,x()),U=["ajax","document","eventLag","elements"],Q=0,S=U.length;S>Q;Q++)K=U[Q],D[K]===!0&&(D[K]=u[K]);i=function(a){function b(){return V=b.__super__.constructor.apply(this,arguments)}return Z(b,a),b}(Error),b=function(){function a(){this.progress=0}return a.prototype.getElement=function(){var a;if(null==this.el){if(a=document.querySelector(D.target),!a)throw new i;this.el=document.createElement("div"),this.el.className="pace pace-active",document.body.className=document.body.className.replace(/pace-done/g,""),document.body.className+=" pace-running",this.el.innerHTML='<div class="pace-progress">\n <div class="pace-progress-inner"></div>\n</div>\n<div class="pace-activity"></div>',null!=a.firstChild?a.insertBefore(this.el,a.firstChild):a.appendChild(this.el)}return this.el},a.prototype.finish=function(){var a;return a=this.getElement(),a.className=a.className.replace("pace-active",""),a.className+=" pace-inactive",document.body.className=document.body.className.replace("pace-running",""),document.body.className+=" pace-done"},a.prototype.update=function(a){return this.progress=a,this.render()},a.prototype.destroy=function(){try{this.getElement().parentNode.removeChild(this.getElement())}catch(a){i=a}return this.el=void 0},a.prototype.render=function(){var a,b,c,d,e,f,g;if(null==document.querySelector(D.target))return!1;for(a=this.getElement(),d="translate3d("+this.progress+"%, 0, 0)",g=["webkitTransform","msTransform","transform"],e=0,f=g.length;f>e;e++)b=g[e],a.children[0].style[b]=d;return(!this.lastRenderedProgress||this.lastRenderedProgress|0!==this.progress|0)&&(a.children[0].setAttribute("data-progress-text",""+(0|this.progress)+"%"),this.progress>=100?c="99":(c=this.progress<10?"0":"",c+=0|this.progress),a.children[0].setAttribute("data-progress",""+c)),this.lastRenderedProgress=this.progress},a.prototype.done=function(){return this.progress>=100},a}(),h=function(){function a(){this.bindings={}}return a.prototype.trigger=function(a,b){var c,d,e,f,g;if(null!=this.bindings[a]){for(f=this.bindings[a],g=[],d=0,e=f.length;e>d;d++)c=f[d],g.push(c.call(this,b));return g}},a.prototype.on=function(a,b){var c;return null==(c=this.bindings)[a]&&(c[a]=[]),this.bindings[a].push(b)},a}(),P=window.XMLHttpRequest,O=window.XDomainRequest,N=window.WebSocket,w=function(a,b){var c,d,e;e=[];for(d in b.prototype)try{e.push(null==a[d]&&"function"!=typeof b[d]?"function"==typeof Object.defineProperty?Object.defineProperty(a,d,{get:function(){return b.prototype[d]},configurable:!0,enumerable:!0}):a[d]=b.prototype[d]:void 0)}catch(f){c=f}return e},A=[],j.ignore=function(){var a,b,c;return b=arguments[0],a=2<=arguments.length?X.call(arguments,1):[],A.unshift("ignore"),c=b.apply(null,a),A.shift(),c},j.track=function(){var a,b,c;return b=arguments[0],a=2<=arguments.length?X.call(arguments,1):[],A.unshift("track"),c=b.apply(null,a),A.shift(),c},J=function(a){var b;if(null==a&&(a="GET"),"track"===A[0])return"force";if(!A.length&&D.ajax){if("socket"===a&&D.ajax.trackWebSockets)return!0;if(b=a.toUpperCase(),$.call(D.ajax.trackMethods,b)>=0)return!0}return!1},k=function(a){function b(){var a,c=this;b.__super__.constructor.apply(this,arguments),a=function(a){var b;return b=a.open,a.open=function(d,e){return J(d)&&c.trigger("request",{type:d,url:e,request:a}),b.apply(a,arguments)}},window.XMLHttpRequest=function(b){var c;return c=new P(b),a(c),c};try{w(window.XMLHttpRequest,P)}catch(d){}if(null!=O){window.XDomainRequest=function(){var b;return b=new O,a(b),b};try{w(window.XDomainRequest,O)}catch(d){}}if(null!=N&&D.ajax.trackWebSockets){window.WebSocket=function(a,b){var d;return d=null!=b?new N(a,b):new N(a),J("socket")&&c.trigger("request",{type:"socket",url:a,protocols:b,request:d}),d};try{w(window.WebSocket,N)}catch(d){}}}return Z(b,a),b}(h),R=null,y=function(){return null==R&&(R=new k),R},I=function(a){var b,c,d,e;for(e=D.ajax.ignoreURLs,c=0,d=e.length;d>c;c++)if(b=e[c],"string"==typeof b){if(-1!==a.indexOf(b))return!0}else if(b.test(a))return!0;return!1},y().on("request",function(b){var c,d,e,f,g;return f=b.type,e=b.request,g=b.url,I(g)?void 0:j.running||D.restartOnRequestAfter===!1&&"force"!==J(f)?void 0:(d=arguments,c=D.restartOnRequestAfter||0,"boolean"==typeof c&&(c=0),setTimeout(function(){var b,c,g,h,i,k;if(b="socket"===f?e.readyState<2:0<(h=e.readyState)&&4>h){for(j.restart(),i=j.sources,k=[],c=0,g=i.length;g>c;c++){if(K=i[c],K instanceof a){K.watch.apply(K,d);break}k.push(void 0)}return k}},c))}),a=function(){function a(){var a=this;this.elements=[],y().on("request",function(){return a.watch.apply(a,arguments)})}return a.prototype.watch=function(a){var b,c,d,e;return d=a.type,b=a.request,e=a.url,I(e)?void 0:(c="socket"===d?new n(b):new o(b),this.elements.push(c))},a}(),o=function(){function a(a){var b,c,d,e,f,g,h=this;if(this.progress=0,null!=window.ProgressEvent)for(c=null,a.addEventListener("progress",function(a){return h.progress=a.lengthComputable?100*a.loaded/a.total:h.progress+(100-h.progress)/2},!1),g=["load","abort","timeout","error"],d=0,e=g.length;e>d;d++)b=g[d],a.addEventListener(b,function(){return h.progress=100},!1);else f=a.onreadystatechange,a.onreadystatechange=function(){var b;return 0===(b=a.readyState)||4===b?h.progress=100:3===a.readyState&&(h.progress=50),"function"==typeof f?f.apply(null,arguments):void 0}}return a}(),n=function(){function a(a){var b,c,d,e,f=this;for(this.progress=0,e=["error","open"],c=0,d=e.length;d>c;c++)b=e[c],a.addEventListener(b,function(){return f.progress=100},!1)}return a}(),d=function(){function a(a){var b,c,d,f;for(null==a&&(a={}),this.elements=[],null==a.selectors&&(a.selectors=[]),f=a.selectors,c=0,d=f.length;d>c;c++)b=f[c],this.elements.push(new e(b))}return a}(),e=function(){function a(a){this.selector=a,this.progress=0,this.check()}return a.prototype.check=function(){var a=this;return document.querySelector(this.selector)?this.done():setTimeout(function(){return a.check()},D.elements.checkInterval)},a.prototype.done=function(){return this.progress=100},a}(),c=function(){function a(){var a,b,c=this;this.progress=null!=(b=this.states[document.readyState])?b:100,a=document.onreadystatechange,document.onreadystatechange=function(){return null!=c.states[document.readyState]&&(c.progress=c.states[document.readyState]),"function"==typeof a?a.apply(null,arguments):void 0}}return a.prototype.states={loading:0,interactive:50,complete:100},a}(),f=function(){function a(){var a,b,c,d,e,f=this;this.progress=0,a=0,e=[],d=0,c=C(),b=setInterval(function(){var g;return g=C()-c-50,c=C(),e.push(g),e.length>D.eventLag.sampleCount&&e.shift(),a=q(e),++d>=D.eventLag.minSamples&&a<D.eventLag.lagThreshold?(f.progress=100,clearInterval(b)):f.progress=100*(3/(a+3))},50)}return a}(),m=function(){function a(a){this.source=a,this.last=this.sinceLastUpdate=0,this.rate=D.initialRate,this.catchup=0,this.progress=this.lastProgress=0,null!=this.source&&(this.progress=F(this.source,"progress"))}return a.prototype.tick=function(a,b){var c;return null==b&&(b=F(this.source,"progress")),b>=100&&(this.done=!0),b===this.last?this.sinceLastUpdate+=a:(this.sinceLastUpdate&&(this.rate=(b-this.last)/this.sinceLastUpdate),this.catchup=(b-this.progress)/D.catchupTime,this.sinceLastUpdate=0,this.last=b),b>this.progress&&(this.progress+=this.catchup*a),c=1-Math.pow(this.progress/100,D.easeFactor),this.progress+=c*this.rate*a,this.progress=Math.min(this.lastProgress+D.maxProgressPerFrame,this.progress),this.progress=Math.max(0,this.progress),this.progress=Math.min(100,this.progress),this.lastProgress=this.progress,this.progress},a}(),L=null,H=null,r=null,M=null,p=null,s=null,j.running=!1,z=function(){return D.restartOnPushState?j.restart():void 0},null!=window.history.pushState&&(T=window.history.pushState,window.history.pushState=function(){return z(),T.apply(window.history,arguments)}),null!=window.history.replaceState&&(W=window.history.replaceState,window.history.replaceState=function(){return z(),W.apply(window.history,arguments)}),l={ajax:a,elements:d,document:c,eventLag:f},(B=function(){var a,c,d,e,f,g,h,i;for(j.sources=L=[],g=["ajax","elements","document","eventLag"],c=0,e=g.length;e>c;c++)a=g[c],D[a]!==!1&&L.push(new l[a](D[a]));for(i=null!=(h=D.extraSources)?h:[],d=0,f=i.length;f>d;d++)K=i[d],L.push(new K(D));return j.bar=r=new b,H=[],M=new m})(),j.stop=function(){return j.trigger("stop"),j.running=!1,r.destroy(),s=!0,null!=p&&("function"==typeof t&&t(p),p=null),B()},j.restart=function(){return j.trigger("restart"),j.stop(),j.start()},j.go=function(){var a;return j.running=!0,r.render(),a=C(),s=!1,p=G(function(b,c){var d,e,f,g,h,i,k,l,n,o,p,q,t,u,v,w;for(l=100-r.progress,e=p=0,f=!0,i=q=0,u=L.length;u>q;i=++q)for(K=L[i],o=null!=H[i]?H[i]:H[i]=[],h=null!=(w=K.elements)?w:[K],k=t=0,v=h.length;v>t;k=++t)g=h[k],n=null!=o[k]?o[k]:o[k]=new m(g),f&=n.done,n.done||(e++,p+=n.tick(b));return d=p/e,r.update(M.tick(b,d)),r.done()||f||s?(r.update(100),j.trigger("done"),setTimeout(function(){return r.finish(),j.running=!1,j.trigger("hide")},Math.max(D.ghostTime,Math.max(D.minTime-(C()-a),0)))):c()})},j.start=function(a){v(D,a),j.running=!0;try{r.render()}catch(b){i=b}return document.querySelector(".pace")?(j.trigger("start"),j.go()):setTimeout(j.start,50)},"function"==typeof define&&define.amd?define(["pace"],function(){return j}):"object"==typeof exports?module.exports=j:D.startOnPageLoad&&j.start()}).call(this);
dataloaders/pymo/mocapplayer/libs/papaparse.min.js ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ /*!
2
+ Papa Parse
3
+ v4.1.2
4
+ https://github.com/mholt/PapaParse
5
+ */
6
+ !function(e){"use strict";function t(t,r){if(r=r||{},r.worker&&S.WORKERS_SUPPORTED){var n=f();return n.userStep=r.step,n.userChunk=r.chunk,n.userComplete=r.complete,n.userError=r.error,r.step=m(r.step),r.chunk=m(r.chunk),r.complete=m(r.complete),r.error=m(r.error),delete r.worker,void n.postMessage({input:t,config:r,workerId:n.id})}var o=null;return"string"==typeof t?o=r.download?new i(r):new a(r):(e.File&&t instanceof File||t instanceof Object)&&(o=new s(r)),o.stream(t)}function r(e,t){function r(){"object"==typeof t&&("string"==typeof t.delimiter&&1==t.delimiter.length&&-1==S.BAD_DELIMITERS.indexOf(t.delimiter)&&(u=t.delimiter),("boolean"==typeof t.quotes||t.quotes instanceof Array)&&(o=t.quotes),"string"==typeof t.newline&&(h=t.newline))}function n(e){if("object"!=typeof e)return[];var t=[];for(var r in e)t.push(r);return t}function i(e,t){var r="";"string"==typeof e&&(e=JSON.parse(e)),"string"==typeof t&&(t=JSON.parse(t));var n=e instanceof Array&&e.length>0,i=!(t[0]instanceof Array);if(n){for(var a=0;a<e.length;a++)a>0&&(r+=u),r+=s(e[a],a);t.length>0&&(r+=h)}for(var o=0;o<t.length;o++){for(var f=n?e.length:t[o].length,c=0;f>c;c++){c>0&&(r+=u);var d=n&&i?e[c]:c;r+=s(t[o][d],c)}o<t.length-1&&(r+=h)}return r}function s(e,t){if("undefined"==typeof e||null===e)return"";e=e.toString().replace(/"/g,'""');var r="boolean"==typeof o&&o||o instanceof Array&&o[t]||a(e,S.BAD_DELIMITERS)||e.indexOf(u)>-1||" "==e.charAt(0)||" "==e.charAt(e.length-1);return r?'"'+e+'"':e}function a(e,t){for(var r=0;r<t.length;r++)if(e.indexOf(t[r])>-1)return!0;return!1}var o=!1,u=",",h="\r\n";if(r(),"string"==typeof e&&(e=JSON.parse(e)),e instanceof Array){if(!e.length||e[0]instanceof Array)return i(null,e);if("object"==typeof e[0])return i(n(e[0]),e)}else if("object"==typeof e)return"string"==typeof e.data&&(e.data=JSON.parse(e.data)),e.data instanceof Array&&(e.fields||(e.fields=e.data[0]instanceof Array?e.fields:n(e.data[0])),e.data[0]instanceof Array||"object"==typeof e.data[0]||(e.data=[e.data])),i(e.fields||[],e.data||[]);throw"exception: Unable to serialize unrecognized input"}function n(t){function r(e){var t=_(e);t.chunkSize=parseInt(t.chunkSize),e.step||e.chunk||(t.chunkSize=null),this._handle=new o(t),this._handle.streamer=this,this._config=t}this._handle=null,this._paused=!1,this._finished=!1,this._input=null,this._baseIndex=0,this._partialLine="",this._rowCount=0,this._start=0,this._nextChunk=null,this.isFirstChunk=!0,this._completeResults={data:[],errors:[],meta:{}},r.call(this,t),this.parseChunk=function(t){if(this.isFirstChunk&&m(this._config.beforeFirstChunk)){var r=this._config.beforeFirstChunk(t);void 0!==r&&(t=r)}this.isFirstChunk=!1;var n=this._partialLine+t;this._partialLine="";var i=this._handle.parse(n,this._baseIndex,!this._finished);if(!this._handle.paused()&&!this._handle.aborted()){var s=i.meta.cursor;this._finished||(this._partialLine=n.substring(s-this._baseIndex),this._baseIndex=s),i&&i.data&&(this._rowCount+=i.data.length);var a=this._finished||this._config.preview&&this._rowCount>=this._config.preview;if(y)e.postMessage({results:i,workerId:S.WORKER_ID,finished:a});else if(m(this._config.chunk)){if(this._config.chunk(i,this._handle),this._paused)return;i=void 0,this._completeResults=void 0}return this._config.step||this._config.chunk||(this._completeResults.data=this._completeResults.data.concat(i.data),this._completeResults.errors=this._completeResults.errors.concat(i.errors),this._completeResults.meta=i.meta),!a||!m(this._config.complete)||i&&i.meta.aborted||this._config.complete(this._completeResults),a||i&&i.meta.paused||this._nextChunk(),i}},this._sendError=function(t){m(this._config.error)?this._config.error(t):y&&this._config.error&&e.postMessage({workerId:S.WORKER_ID,error:t,finished:!1})}}function i(e){function t(e){var t=e.getResponseHeader("Content-Range");return parseInt(t.substr(t.lastIndexOf("/")+1))}e=e||{},e.chunkSize||(e.chunkSize=S.RemoteChunkSize),n.call(this,e);var r;this._nextChunk=k?function(){this._readChunk(),this._chunkLoaded()}:function(){this._readChunk()},this.stream=function(e){this._input=e,this._nextChunk()},this._readChunk=function(){if(this._finished)return void this._chunkLoaded();if(r=new XMLHttpRequest,k||(r.onload=g(this._chunkLoaded,this),r.onerror=g(this._chunkError,this)),r.open("GET",this._input,!k),this._config.chunkSize){var e=this._start+this._config.chunkSize-1;r.setRequestHeader("Range","bytes="+this._start+"-"+e),r.setRequestHeader("If-None-Match","webkit-no-cache")}try{r.send()}catch(t){this._chunkError(t.message)}k&&0==r.status?this._chunkError():this._start+=this._config.chunkSize},this._chunkLoaded=function(){if(4==r.readyState){if(r.status<200||r.status>=400)return void this._chunkError();this._finished=!this._config.chunkSize||this._start>t(r),this.parseChunk(r.responseText)}},this._chunkError=function(e){var t=r.statusText||e;this._sendError(t)}}function s(e){e=e||{},e.chunkSize||(e.chunkSize=S.LocalChunkSize),n.call(this,e);var t,r,i="undefined"!=typeof FileReader;this.stream=function(e){this._input=e,r=e.slice||e.webkitSlice||e.mozSlice,i?(t=new FileReader,t.onload=g(this._chunkLoaded,this),t.onerror=g(this._chunkError,this)):t=new FileReaderSync,this._nextChunk()},this._nextChunk=function(){this._finished||this._config.preview&&!(this._rowCount<this._config.preview)||this._readChunk()},this._readChunk=function(){var e=this._input;if(this._config.chunkSize){var n=Math.min(this._start+this._config.chunkSize,this._input.size);e=r.call(e,this._start,n)}var s=t.readAsText(e,this._config.encoding);i||this._chunkLoaded({target:{result:s}})},this._chunkLoaded=function(e){this._start+=this._config.chunkSize,this._finished=!this._config.chunkSize||this._start>=this._input.size,this.parseChunk(e.target.result)},this._chunkError=function(){this._sendError(t.error)}}function a(e){e=e||{},n.call(this,e);var t,r;this.stream=function(e){return t=e,r=e,this._nextChunk()},this._nextChunk=function(){if(!this._finished){var e=this._config.chunkSize,t=e?r.substr(0,e):r;return r=e?r.substr(e):"",this._finished=!r,this.parseChunk(t)}}}function o(e){function t(){if(b&&d&&(h("Delimiter","UndetectableDelimiter","Unable to auto-detect delimiting character; defaulted to '"+S.DefaultDelimiter+"'"),d=!1),e.skipEmptyLines)for(var t=0;t<b.data.length;t++)1==b.data[t].length&&""==b.data[t][0]&&b.data.splice(t--,1);return r()&&n(),i()}function r(){return e.header&&0==y.length}function n(){if(b){for(var e=0;r()&&e<b.data.length;e++)for(var t=0;t<b.data[e].length;t++)y.push(b.data[e][t]);b.data.splice(0,1)}}function i(){if(!b||!e.header&&!e.dynamicTyping)return b;for(var t=0;t<b.data.length;t++){for(var r={},n=0;n<b.data[t].length;n++){if(e.dynamicTyping){var i=b.data[t][n];b.data[t][n]="true"==i||"TRUE"==i?!0:"false"==i||"FALSE"==i?!1:o(i)}e.header&&(n>=y.length?(r.__parsed_extra||(r.__parsed_extra=[]),r.__parsed_extra.push(b.data[t][n])):r[y[n]]=b.data[t][n])}e.header&&(b.data[t]=r,n>y.length?h("FieldMismatch","TooManyFields","Too many fields: expected "+y.length+" fields but parsed "+n,t):n<y.length&&h("FieldMismatch","TooFewFields","Too few fields: expected "+y.length+" fields but parsed "+n,t))}return e.header&&b.meta&&(b.meta.fields=y),b}function s(t){for(var r,n,i,s=[","," ","|",";",S.RECORD_SEP,S.UNIT_SEP],a=0;a<s.length;a++){var o=s[a],h=0,f=0;i=void 0;for(var c=new u({delimiter:o,preview:10}).parse(t),d=0;d<c.data.length;d++){var l=c.data[d].length;f+=l,"undefined"!=typeof i?l>1&&(h+=Math.abs(l-i),i=l):i=l}c.data.length>0&&(f/=c.data.length),("undefined"==typeof n||n>h)&&f>1.99&&(n=h,r=o)}return e.delimiter=r,{successful:!!r,bestDelimiter:r}}function a(e){e=e.substr(0,1048576);var t=e.split("\r");if(1==t.length)return"\n";for(var r=0,n=0;n<t.length;n++)"\n"==t[n][0]&&r++;return r>=t.length/2?"\r\n":"\r"}function o(e){var t=l.test(e);return t?parseFloat(e):e}function h(e,t,r,n){b.errors.push({type:e,code:t,message:r,row:n})}var f,c,d,l=/^\s*-?(\d*\.?\d+|\d+\.?\d*)(e[-+]?\d+)?\s*$/i,p=this,g=0,v=!1,k=!1,y=[],b={data:[],errors:[],meta:{}};if(m(e.step)){var R=e.step;e.step=function(n){if(b=n,r())t();else{if(t(),0==b.data.length)return;g+=n.data.length,e.preview&&g>e.preview?c.abort():R(b,p)}}}this.parse=function(r,n,i){if(e.newline||(e.newline=a(r)),d=!1,!e.delimiter){var o=s(r);o.successful?e.delimiter=o.bestDelimiter:(d=!0,e.delimiter=S.DefaultDelimiter),b.meta.delimiter=e.delimiter}var h=_(e);return e.preview&&e.header&&h.preview++,f=r,c=new u(h),b=c.parse(f,n,i),t(),v?{meta:{paused:!0}}:b||{meta:{paused:!1}}},this.paused=function(){return v},this.pause=function(){v=!0,c.abort(),f=f.substr(c.getCharIndex())},this.resume=function(){v=!1,p.streamer.parseChunk(f)},this.aborted=function(){return k},this.abort=function(){k=!0,c.abort(),b.meta.aborted=!0,m(e.complete)&&e.complete(b),f=""}}function u(e){e=e||{};var t=e.delimiter,r=e.newline,n=e.comments,i=e.step,s=e.preview,a=e.fastMode;if(("string"!=typeof t||S.BAD_DELIMITERS.indexOf(t)>-1)&&(t=","),n===t)throw"Comment character same as delimiter";n===!0?n="#":("string"!=typeof n||S.BAD_DELIMITERS.indexOf(n)>-1)&&(n=!1),"\n"!=r&&"\r"!=r&&"\r\n"!=r&&(r="\n");var o=0,u=!1;this.parse=function(e,h,f){function c(e){b.push(e),S=o}function d(t){return f?p():("undefined"==typeof t&&(t=e.substr(o)),w.push(t),o=g,c(w),y&&_(),p())}function l(t){o=t,c(w),w=[],O=e.indexOf(r,o)}function p(e){return{data:b,errors:R,meta:{delimiter:t,linebreak:r,aborted:u,truncated:!!e,cursor:S+(h||0)}}}function _(){i(p()),b=[],R=[]}if("string"!=typeof e)throw"Input must be a string";var g=e.length,m=t.length,v=r.length,k=n.length,y="function"==typeof i;o=0;var b=[],R=[],w=[],S=0;if(!e)return p();if(a||a!==!1&&-1===e.indexOf('"')){for(var C=e.split(r),E=0;E<C.length;E++){var w=C[E];if(o+=w.length,E!==C.length-1)o+=r.length;else if(f)return p();if(!n||w.substr(0,k)!=n){if(y){if(b=[],c(w.split(t)),_(),u)return p()}else c(w.split(t));if(s&&E>=s)return b=b.slice(0,s),p(!0)}}return p()}for(var x=e.indexOf(t,o),O=e.indexOf(r,o);;)if('"'!=e[o])if(n&&0===w.length&&e.substr(o,k)===n){if(-1==O)return p();o=O+v,O=e.indexOf(r,o),x=e.indexOf(t,o)}else if(-1!==x&&(O>x||-1===O))w.push(e.substring(o,x)),o=x+m,x=e.indexOf(t,o);else{if(-1===O)break;if(w.push(e.substring(o,O)),l(O+v),y&&(_(),u))return p();if(s&&b.length>=s)return p(!0)}else{var I=o;for(o++;;){var I=e.indexOf('"',I+1);if(-1===I)return f||R.push({type:"Quotes",code:"MissingQuotes",message:"Quoted field unterminated",row:b.length,index:o}),d();if(I===g-1){var D=e.substring(o,I).replace(/""/g,'"');return d(D)}if('"'!=e[I+1]){if(e[I+1]==t){w.push(e.substring(o,I).replace(/""/g,'"')),o=I+1+m,x=e.indexOf(t,o),O=e.indexOf(r,o);break}if(e.substr(I+1,v)===r){if(w.push(e.substring(o,I).replace(/""/g,'"')),l(I+1+v),x=e.indexOf(t,o),y&&(_(),u))return p();if(s&&b.length>=s)return p(!0);break}}else I++}}return d()},this.abort=function(){u=!0},this.getCharIndex=function(){return o}}function h(){var e=document.getElementsByTagName("script");return e.length?e[e.length-1].src:""}function f(){if(!S.WORKERS_SUPPORTED)return!1;if(!b&&null===S.SCRIPT_PATH)throw new Error("Script path cannot be determined automatically when Papa Parse is loaded asynchronously. You need to set Papa.SCRIPT_PATH manually.");var t=S.SCRIPT_PATH||v;t+=(-1!==t.indexOf("?")?"&":"?")+"papaworker";var r=new e.Worker(t);return r.onmessage=c,r.id=w++,R[r.id]=r,r}function c(e){var t=e.data,r=R[t.workerId],n=!1;if(t.error)r.userError(t.error,t.file);else if(t.results&&t.results.data){var i=function(){n=!0,d(t.workerId,{data:[],errors:[],meta:{aborted:!0}})},s={abort:i,pause:l,resume:l};if(m(r.userStep)){for(var a=0;a<t.results.data.length&&(r.userStep({data:[t.results.data[a]],errors:t.results.errors,meta:t.results.meta},s),!n);a++);delete t.results}else m(r.userChunk)&&(r.userChunk(t.results,s,t.file),delete t.results)}t.finished&&!n&&d(t.workerId,t.results)}function d(e,t){var r=R[e];m(r.userComplete)&&r.userComplete(t),r.terminate(),delete R[e]}function l(){throw"Not implemented."}function p(t){var r=t.data;if("undefined"==typeof S.WORKER_ID&&r&&(S.WORKER_ID=r.workerId),"string"==typeof r.input)e.postMessage({workerId:S.WORKER_ID,results:S.parse(r.input,r.config),finished:!0});else if(e.File&&r.input instanceof File||r.input instanceof Object){var n=S.parse(r.input,r.config);n&&e.postMessage({workerId:S.WORKER_ID,results:n,finished:!0})}}function _(e){if("object"!=typeof e)return e;var t=e instanceof Array?[]:{};for(var r in e)t[r]=_(e[r]);return t}function g(e,t){return function(){e.apply(t,arguments)}}function m(e){return"function"==typeof e}var v,k=!e.document&&!!e.postMessage,y=k&&/(\?|&)papaworker(=|&|$)/.test(e.location.search),b=!1,R={},w=0,S={};if(S.parse=t,S.unparse=r,S.RECORD_SEP=String.fromCharCode(30),S.UNIT_SEP=String.fromCharCode(31),S.BYTE_ORDER_MARK="",S.BAD_DELIMITERS=["\r","\n",'"',S.BYTE_ORDER_MARK],S.WORKERS_SUPPORTED=!k&&!!e.Worker,S.SCRIPT_PATH=null,S.LocalChunkSize=10485760,S.RemoteChunkSize=5242880,S.DefaultDelimiter=",",S.Parser=u,S.ParserHandle=o,S.NetworkStreamer=i,S.FileStreamer=s,S.StringStreamer=a,"undefined"!=typeof module&&module.exports?module.exports=S:m(e.define)&&e.define.amd?define(function(){return S}):e.Papa=S,e.jQuery){var C=e.jQuery;C.fn.parse=function(t){function r(){if(0==a.length)return void(m(t.complete)&&t.complete());var e=a[0];if(m(t.before)){var r=t.before(e.file,e.inputElem);if("object"==typeof r){if("abort"==r.action)return void n("AbortError",e.file,e.inputElem,r.reason);if("skip"==r.action)return void i();"object"==typeof r.config&&(e.instanceConfig=C.extend(e.instanceConfig,r.config))}else if("skip"==r)return void i()}var s=e.instanceConfig.complete;e.instanceConfig.complete=function(t){m(s)&&s(t,e.file,e.inputElem),i()},S.parse(e.file,e.instanceConfig)}function n(e,r,n,i){m(t.error)&&t.error({name:e},r,n,i)}function i(){a.splice(0,1),r()}var s=t.config||{},a=[];return this.each(function(){var t="INPUT"==C(this).prop("tagName").toUpperCase()&&"file"==C(this).attr("type").toLowerCase()&&e.FileReader;if(!t||!this.files||0==this.files.length)return!0;for(var r=0;r<this.files.length;r++)a.push({file:this.files[r],inputElem:this,instanceConfig:C.extend({},s)})}),r(),this}}y?e.onmessage=p:S.WORKERS_SUPPORTED&&(v=h(),document.body?document.addEventListener("DOMContentLoaded",function(){b=!0},!0):b=!0),i.prototype=Object.create(n.prototype),i.prototype.constructor=i,s.prototype=Object.create(n.prototype),s.prototype.constructor=s,a.prototype=Object.create(a.prototype),a.prototype.constructor=a}("undefined"!=typeof window?window:this);
dataloaders/pymo/mocapplayer/libs/threejs/Detector.js ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * @author alteredq / http://alteredqualia.com/
3
+ * @author mr.doob / http://mrdoob.com/
4
+ */
5
+
6
+ var Detector = {
7
+
8
+ canvas: !! window.CanvasRenderingContext2D,
9
+ webgl: ( function () {
10
+
11
+ try {
12
+
13
+ var canvas = document.createElement( 'canvas' ); return !! ( window.WebGLRenderingContext && ( canvas.getContext( 'webgl' ) || canvas.getContext( 'experimental-webgl' ) ) );
14
+
15
+ } catch ( e ) {
16
+
17
+ return false;
18
+
19
+ }
20
+
21
+ } )(),
22
+ workers: !! window.Worker,
23
+ fileapi: window.File && window.FileReader && window.FileList && window.Blob,
24
+
25
+ getWebGLErrorMessage: function () {
26
+
27
+ var element = document.createElement( 'div' );
28
+ element.id = 'webgl-error-message';
29
+ element.style.fontFamily = 'monospace';
30
+ element.style.fontSize = '13px';
31
+ element.style.fontWeight = 'normal';
32
+ element.style.textAlign = 'center';
33
+ element.style.background = '#fff';
34
+ element.style.color = '#000';
35
+ element.style.padding = '1.5em';
36
+ element.style.width = '400px';
37
+ element.style.margin = '5em auto 0';
38
+
39
+ if ( ! this.webgl ) {
40
+
41
+ element.innerHTML = window.WebGLRenderingContext ? [
42
+ 'Your graphics card does not seem to support <a href="http://khronos.org/webgl/wiki/Getting_a_WebGL_Implementation" style="color:#000">WebGL</a>.<br />',
43
+ 'Find out how to get it <a href="http://get.webgl.org/" style="color:#000">here</a>.'
44
+ ].join( '\n' ) : [
45
+ 'Your browser does not seem to support <a href="http://khronos.org/webgl/wiki/Getting_a_WebGL_Implementation" style="color:#000">WebGL</a>.<br/>',
46
+ 'Find out how to get it <a href="http://get.webgl.org/" style="color:#000">here</a>.'
47
+ ].join( '\n' );
48
+
49
+ }
50
+
51
+ return element;
52
+
53
+ },
54
+
55
+ addGetWebGLMessage: function ( parameters ) {
56
+
57
+ var parent, id, element;
58
+
59
+ parameters = parameters || {};
60
+
61
+ parent = parameters.parent !== undefined ? parameters.parent : document.body;
62
+ id = parameters.id !== undefined ? parameters.id : 'oldie';
63
+
64
+ element = Detector.getWebGLErrorMessage();
65
+ element.id = id;
66
+
67
+ parent.appendChild( element );
68
+
69
+ }
70
+
71
+ };
72
+
73
+ // browserify support
74
+ if ( typeof module === 'object' ) {
75
+
76
+ module.exports = Detector;
77
+
78
+ }
dataloaders/pymo/mocapplayer/libs/threejs/OrbitControls.js ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * @author qiao / https://github.com/qiao
3
+ * @author mrdoob / http://mrdoob.com
4
+ * @author alteredq / http://alteredqualia.com/
5
+ * @author WestLangley / http://github.com/WestLangley
6
+ * @author erich666 / http://erichaines.com
7
+ */
8
+
9
+ // This set of controls performs orbiting, dollying (zooming), and panning.
10
+ // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
11
+ //
12
+ // Orbit - left mouse / touch: one finger move
13
+ // Zoom - middle mouse, or mousewheel / touch: two finger spread or squish
14
+ // Pan - right mouse, or arrow keys / touch: three finter swipe
15
+
16
+ THREE.OrbitControls = function ( object, domElement ) {
17
+
18
+ this.object = object;
19
+
20
+ this.domElement = ( domElement !== undefined ) ? domElement : document;
21
+
22
+ // Set to false to disable this control
23
+ this.enabled = true;
24
+
25
+ // "target" sets the location of focus, where the object orbits around
26
+ this.target = new THREE.Vector3();
27
+
28
+ // How far you can dolly in and out ( PerspectiveCamera only )
29
+ this.minDistance = 0;
30
+ this.maxDistance = Infinity;
31
+
32
+ // How far you can zoom in and out ( OrthographicCamera only )
33
+ this.minZoom = 0;
34
+ this.maxZoom = Infinity;
35
+
36
+ // How far you can orbit vertically, upper and lower limits.
37
+ // Range is 0 to Math.PI radians.
38
+ this.minPolarAngle = 0; // radians
39
+ this.maxPolarAngle = Math.PI; // radians
40
+
41
+ // How far you can orbit horizontally, upper and lower limits.
42
+ // If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
43
+ this.minAzimuthAngle = - Infinity; // radians
44
+ this.maxAzimuthAngle = Infinity; // radians
45
+
46
+ // Set to true to enable damping (inertia)
47
+ // If damping is enabled, you must call controls.update() in your animation loop
48
+ this.enableDamping = false;
49
+ this.dampingFactor = 0.25;
50
+
51
+ // This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
52
+ // Set to false to disable zooming
53
+ this.enableZoom = true;
54
+ this.zoomSpeed = 1.0;
55
+
56
+ // Set to false to disable rotating
57
+ this.enableRotate = true;
58
+ this.rotateSpeed = 1.0;
59
+
60
+ // Set to false to disable panning
61
+ this.enablePan = true;
62
+ this.keyPanSpeed = 7.0; // pixels moved per arrow key push
63
+
64
+ // Set to true to automatically rotate around the target
65
+ // If auto-rotate is enabled, you must call controls.update() in your animation loop
66
+ this.autoRotate = false;
67
+ this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60
68
+
69
+ // Set to false to disable use of the keys
70
+ this.enableKeys = true;
71
+
72
+ // The four arrow keys
73
+ this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };
74
+
75
+ // Mouse buttons
76
+ this.mouseButtons = { ORBIT: THREE.MOUSE.LEFT, ZOOM: THREE.MOUSE.MIDDLE, PAN: THREE.MOUSE.RIGHT };
77
+
78
+ // for reset
79
+ this.target0 = this.target.clone();
80
+ this.position0 = this.object.position.clone();
81
+ this.zoom0 = this.object.zoom;
82
+
83
+ //
84
+ // public methods
85
+ //
86
+
87
+ this.getPolarAngle = function () {
88
+
89
+ return spherical.phi;
90
+
91
+ };
92
+
93
+ this.getAzimuthalAngle = function () {
94
+
95
+ return spherical.theta;
96
+
97
+ };
98
+
99
+ this.reset = function () {
100
+
101
+ scope.target.copy( scope.target0 );
102
+ scope.object.position.copy( scope.position0 );
103
+ scope.object.zoom = scope.zoom0;
104
+
105
+ scope.object.updateProjectionMatrix();
106
+ scope.dispatchEvent( changeEvent );
107
+
108
+ scope.update();
109
+
110
+ state = STATE.NONE;
111
+
112
+ };
113
+
114
+ // this method is exposed, but perhaps it would be better if we can make it private...
115
+ this.update = function() {
116
+
117
+ var offset = new THREE.Vector3();
118
+
119
+ // so camera.up is the orbit axis
120
+ var quat = new THREE.Quaternion().setFromUnitVectors( object.up, new THREE.Vector3( 0, 1, 0 ) );
121
+ var quatInverse = quat.clone().inverse();
122
+
123
+ var lastPosition = new THREE.Vector3();
124
+ var lastQuaternion = new THREE.Quaternion();
125
+
126
+ return function () {
127
+
128
+ var position = scope.object.position;
129
+
130
+ offset.copy( position ).sub( scope.target );
131
+
132
+ // rotate offset to "y-axis-is-up" space
133
+ offset.applyQuaternion( quat );
134
+
135
+ // angle from z-axis around y-axis
136
+ spherical.setFromVector3( offset );
137
+
138
+ if ( scope.autoRotate && state === STATE.NONE ) {
139
+
140
+ rotateLeft( getAutoRotationAngle() );
141
+
142
+ }
143
+
144
+ spherical.theta += sphericalDelta.theta;
145
+ spherical.phi += sphericalDelta.phi;
146
+
147
+ // restrict theta to be between desired limits
148
+ spherical.theta = Math.max( scope.minAzimuthAngle, Math.min( scope.maxAzimuthAngle, spherical.theta ) );
149
+
150
+ // restrict phi to be between desired limits
151
+ spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );
152
+
153
+ spherical.makeSafe();
154
+
155
+
156
+ spherical.radius *= scale;
157
+
158
+ // restrict radius to be between desired limits
159
+ spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) );
160
+
161
+ // move target to panned location
162
+ scope.target.add( panOffset );
163
+
164
+ offset.setFromSpherical( spherical );
165
+
166
+ // rotate offset back to "camera-up-vector-is-up" space
167
+ offset.applyQuaternion( quatInverse );
168
+
169
+ position.copy( scope.target ).add( offset );
170
+
171
+ scope.object.lookAt( scope.target );
172
+
173
+ if ( scope.enableDamping === true ) {
174
+
175
+ sphericalDelta.theta *= ( 1 - scope.dampingFactor );
176
+ sphericalDelta.phi *= ( 1 - scope.dampingFactor );
177
+
178
+ } else {
179
+
180
+ sphericalDelta.set( 0, 0, 0 );
181
+
182
+ }
183
+
184
+ scale = 1;
185
+ panOffset.set( 0, 0, 0 );
186
+
187
+ // update condition is:
188
+ // min(camera displacement, camera rotation in radians)^2 > EPS
189
+ // using small-angle approximation cos(x/2) = 1 - x^2 / 8
190
+
191
+ if ( zoomChanged ||
192
+ lastPosition.distanceToSquared( scope.object.position ) > EPS ||
193
+ 8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) {
194
+
195
+ scope.dispatchEvent( changeEvent );
196
+
197
+ lastPosition.copy( scope.object.position );
198
+ lastQuaternion.copy( scope.object.quaternion );
199
+ zoomChanged = false;
200
+
201
+ return true;
202
+
203
+ }
204
+
205
+ return false;
206
+
207
+ };
208
+
209
+ }();
210
+
211
+ this.dispose = function() {
212
+
213
+ scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false );
214
+ scope.domElement.removeEventListener( 'mousedown', onMouseDown, false );
215
+ scope.domElement.removeEventListener( 'mousewheel', onMouseWheel, false );
216
+ scope.domElement.removeEventListener( 'MozMousePixelScroll', onMouseWheel, false ); // firefox
217
+
218
+ scope.domElement.removeEventListener( 'touchstart', onTouchStart, false );
219
+ scope.domElement.removeEventListener( 'touchend', onTouchEnd, false );
220
+ scope.domElement.removeEventListener( 'touchmove', onTouchMove, false );
221
+
222
+ document.removeEventListener( 'mousemove', onMouseMove, false );
223
+ document.removeEventListener( 'mouseup', onMouseUp, false );
224
+ document.removeEventListener( 'mouseout', onMouseUp, false );
225
+
226
+ window.removeEventListener( 'keydown', onKeyDown, false );
227
+
228
+ //scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?
229
+
230
+ };
231
+
232
+ //
233
+ // internals
234
+ //
235
+
236
+ var scope = this;
237
+
238
+ var changeEvent = { type: 'change' };
239
+ var startEvent = { type: 'start' };
240
+ var endEvent = { type: 'end' };
241
+
242
+ var STATE = { NONE : - 1, ROTATE : 0, DOLLY : 1, PAN : 2, TOUCH_ROTATE : 3, TOUCH_DOLLY : 4, TOUCH_PAN : 5 };
243
+
244
+ var state = STATE.NONE;
245
+
246
+ var EPS = 0.000001;
247
+
248
+ // current position in spherical coordinates
249
+ var spherical = new THREE.Spherical();
250
+ var sphericalDelta = new THREE.Spherical();
251
+
252
+ var scale = 1;
253
+ var panOffset = new THREE.Vector3();
254
+ var zoomChanged = false;
255
+
256
+ var rotateStart = new THREE.Vector2();
257
+ var rotateEnd = new THREE.Vector2();
258
+ var rotateDelta = new THREE.Vector2();
259
+
260
+ var panStart = new THREE.Vector2();
261
+ var panEnd = new THREE.Vector2();
262
+ var panDelta = new THREE.Vector2();
263
+
264
+ var dollyStart = new THREE.Vector2();
265
+ var dollyEnd = new THREE.Vector2();
266
+ var dollyDelta = new THREE.Vector2();
267
+
268
+ function getAutoRotationAngle() {
269
+
270
+ return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;
271
+
272
+ }
273
+
274
+ function getZoomScale() {
275
+
276
+ return Math.pow( 0.95, scope.zoomSpeed );
277
+
278
+ }
279
+
280
+ function rotateLeft( angle ) {
281
+
282
+ sphericalDelta.theta -= angle;
283
+
284
+ }
285
+
286
+ function rotateUp( angle ) {
287
+
288
+ sphericalDelta.phi -= angle;
289
+
290
+ }
291
+
292
+ var panLeft = function() {
293
+
294
+ var v = new THREE.Vector3();
295
+
296
+ return function panLeft( distance, objectMatrix ) {
297
+
298
+ v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
299
+ v.multiplyScalar( - distance );
300
+
301
+ panOffset.add( v );
302
+
303
+ };
304
+
305
+ }();
306
+
307
+ var panUp = function() {
308
+
309
+ var v = new THREE.Vector3();
310
+
311
+ return function panUp( distance, objectMatrix ) {
312
+
313
+ v.setFromMatrixColumn( objectMatrix, 1 ); // get Y column of objectMatrix
314
+ v.multiplyScalar( distance );
315
+
316
+ panOffset.add( v );
317
+
318
+ };
319
+
320
+ }();
321
+
322
+ // deltaX and deltaY are in pixels; right and down are positive
323
+ var pan = function() {
324
+
325
+ var offset = new THREE.Vector3();
326
+
327
+ return function( deltaX, deltaY ) {
328
+
329
+ var element = scope.domElement === document ? scope.domElement.body : scope.domElement;
330
+
331
+ if ( scope.object instanceof THREE.PerspectiveCamera ) {
332
+
333
+ // perspective
334
+ var position = scope.object.position;
335
+ offset.copy( position ).sub( scope.target );
336
+ var targetDistance = offset.length();
337
+
338
+ // half of the fov is center to top of screen
339
+ targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );
340
+
341
+ // we actually don't use screenWidth, since perspective camera is fixed to screen height
342
+ panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
343
+ panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );
344
+
345
+ } else if ( scope.object instanceof THREE.OrthographicCamera ) {
346
+
347
+ // orthographic
348
+ panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
349
+ panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );
350
+
351
+ } else {
352
+
353
+ // camera neither orthographic nor perspective
354
+ console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
355
+ scope.enablePan = false;
356
+
357
+ }
358
+
359
+ };
360
+
361
+ }();
362
+
363
+ function dollyIn( dollyScale ) {
364
+
365
+ if ( scope.object instanceof THREE.PerspectiveCamera ) {
366
+
367
+ scale /= dollyScale;
368
+
369
+ } else if ( scope.object instanceof THREE.OrthographicCamera ) {
370
+
371
+ scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) );
372
+ scope.object.updateProjectionMatrix();
373
+ zoomChanged = true;
374
+
375
+ } else {
376
+
377
+ console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
378
+ scope.enableZoom = false;
379
+
380
+ }
381
+
382
+ }
383
+
384
+ function dollyOut( dollyScale ) {
385
+
386
+ if ( scope.object instanceof THREE.PerspectiveCamera ) {
387
+
388
+ scale *= dollyScale;
389
+
390
+ } else if ( scope.object instanceof THREE.OrthographicCamera ) {
391
+
392
+ scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) );
393
+ scope.object.updateProjectionMatrix();
394
+ zoomChanged = true;
395
+
396
+ } else {
397
+
398
+ console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
399
+ scope.enableZoom = false;
400
+
401
+ }
402
+
403
+ }
404
+
405
+ //
406
+ // event callbacks - update the object state
407
+ //
408
+
409
+ function handleMouseDownRotate( event ) {
410
+
411
+ //console.log( 'handleMouseDownRotate' );
412
+
413
+ rotateStart.set( event.clientX, event.clientY );
414
+
415
+ }
416
+
417
+ function handleMouseDownDolly( event ) {
418
+
419
+ //console.log( 'handleMouseDownDolly' );
420
+
421
+ dollyStart.set( event.clientX, event.clientY );
422
+
423
+ }
424
+
425
+ function handleMouseDownPan( event ) {
426
+
427
+ //console.log( 'handleMouseDownPan' );
428
+
429
+ panStart.set( event.clientX, event.clientY );
430
+
431
+ }
432
+
433
+ function handleMouseMoveRotate( event ) {
434
+
435
+ //console.log( 'handleMouseMoveRotate' );
436
+
437
+ rotateEnd.set( event.clientX, event.clientY );
438
+ rotateDelta.subVectors( rotateEnd, rotateStart );
439
+
440
+ var element = scope.domElement === document ? scope.domElement.body : scope.domElement;
441
+
442
+ // rotating across whole screen goes 360 degrees around
443
+ rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed );
444
+
445
+ // rotating up and down along whole screen attempts to go 360, but limited to 180
446
+ rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed );
447
+
448
+ rotateStart.copy( rotateEnd );
449
+
450
+ scope.update();
451
+
452
+ }
453
+
454
+ function handleMouseMoveDolly( event ) {
455
+
456
+ //console.log( 'handleMouseMoveDolly' );
457
+
458
+ dollyEnd.set( event.clientX, event.clientY );
459
+
460
+ dollyDelta.subVectors( dollyEnd, dollyStart );
461
+
462
+ if ( dollyDelta.y > 0 ) {
463
+
464
+ dollyIn( getZoomScale() );
465
+
466
+ } else if ( dollyDelta.y < 0 ) {
467
+
468
+ dollyOut( getZoomScale() );
469
+
470
+ }
471
+
472
+ dollyStart.copy( dollyEnd );
473
+
474
+ scope.update();
475
+
476
+ }
477
+
478
+ function handleMouseMovePan( event ) {
479
+
480
+ //console.log( 'handleMouseMovePan' );
481
+
482
+ panEnd.set( event.clientX, event.clientY );
483
+
484
+ panDelta.subVectors( panEnd, panStart );
485
+
486
+ pan( panDelta.x, panDelta.y );
487
+
488
+ panStart.copy( panEnd );
489
+
490
+ scope.update();
491
+
492
+ }
493
+
494
+ function handleMouseUp( event ) {
495
+
496
+ //console.log( 'handleMouseUp' );
497
+
498
+ }
499
+
500
+ function handleMouseWheel( event ) {
501
+
502
+ //console.log( 'handleMouseWheel' );
503
+
504
+ var delta = 0;
505
+
506
+ if ( event.wheelDelta !== undefined ) {
507
+
508
+ // WebKit / Opera / Explorer 9
509
+
510
+ delta = event.wheelDelta;
511
+
512
+ } else if ( event.detail !== undefined ) {
513
+
514
+ // Firefox
515
+
516
+ delta = - event.detail;
517
+
518
+ }
519
+
520
+ if ( delta > 0 ) {
521
+
522
+ dollyOut( getZoomScale() );
523
+
524
+ } else if ( delta < 0 ) {
525
+
526
+ dollyIn( getZoomScale() );
527
+
528
+ }
529
+
530
+ scope.update();
531
+
532
+ }
533
+
534
+ function handleKeyDown( event ) {
535
+
536
+ //console.log( 'handleKeyDown' );
537
+
538
+ switch ( event.keyCode ) {
539
+
540
+ case scope.keys.UP:
541
+ pan( 0, scope.keyPanSpeed );
542
+ scope.update();
543
+ break;
544
+
545
+ case scope.keys.BOTTOM:
546
+ pan( 0, - scope.keyPanSpeed );
547
+ scope.update();
548
+ break;
549
+
550
+ case scope.keys.LEFT:
551
+ pan( scope.keyPanSpeed, 0 );
552
+ scope.update();
553
+ break;
554
+
555
+ case scope.keys.RIGHT:
556
+ pan( - scope.keyPanSpeed, 0 );
557
+ scope.update();
558
+ break;
559
+
560
+ }
561
+
562
+ }
563
+
564
+ function handleTouchStartRotate( event ) {
565
+
566
+ //console.log( 'handleTouchStartRotate' );
567
+
568
+ rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
569
+
570
+ }
571
+
572
+ function handleTouchStartDolly( event ) {
573
+
574
+ //console.log( 'handleTouchStartDolly' );
575
+
576
+ var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
577
+ var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
578
+
579
+ var distance = Math.sqrt( dx * dx + dy * dy );
580
+
581
+ dollyStart.set( 0, distance );
582
+
583
+ }
584
+
585
+ function handleTouchStartPan( event ) {
586
+
587
+ //console.log( 'handleTouchStartPan' );
588
+
589
+ panStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
590
+
591
+ }
592
+
593
+ function handleTouchMoveRotate( event ) {
594
+
595
+ //console.log( 'handleTouchMoveRotate' );
596
+
597
+ rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
598
+ rotateDelta.subVectors( rotateEnd, rotateStart );
599
+
600
+ var element = scope.domElement === document ? scope.domElement.body : scope.domElement;
601
+
602
+ // rotating across whole screen goes 360 degrees around
603
+ rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientWidth * scope.rotateSpeed );
604
+
605
+ // rotating up and down along whole screen attempts to go 360, but limited to 180
606
+ rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight * scope.rotateSpeed );
607
+
608
+ rotateStart.copy( rotateEnd );
609
+
610
+ scope.update();
611
+
612
+ }
613
+
614
+ function handleTouchMoveDolly( event ) {
615
+
616
+ //console.log( 'handleTouchMoveDolly' );
617
+
618
+ var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
619
+ var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;
620
+
621
+ var distance = Math.sqrt( dx * dx + dy * dy );
622
+
623
+ dollyEnd.set( 0, distance );
624
+
625
+ dollyDelta.subVectors( dollyEnd, dollyStart );
626
+
627
+ if ( dollyDelta.y > 0 ) {
628
+
629
+ dollyOut( getZoomScale() );
630
+
631
+ } else if ( dollyDelta.y < 0 ) {
632
+
633
+ dollyIn( getZoomScale() );
634
+
635
+ }
636
+
637
+ dollyStart.copy( dollyEnd );
638
+
639
+ scope.update();
640
+
641
+ }
642
+
643
+ function handleTouchMovePan( event ) {
644
+
645
+ //console.log( 'handleTouchMovePan' );
646
+
647
+ panEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );
648
+
649
+ panDelta.subVectors( panEnd, panStart );
650
+
651
+ pan( panDelta.x, panDelta.y );
652
+
653
+ panStart.copy( panEnd );
654
+
655
+ scope.update();
656
+
657
+ }
658
+
659
+ function handleTouchEnd( event ) {
660
+
661
+ //console.log( 'handleTouchEnd' );
662
+
663
+ }
664
+
665
+ //
666
+ // event handlers - FSM: listen for events and reset state
667
+ //
668
+
669
+ function onMouseDown( event ) {
670
+
671
+ if ( scope.enabled === false ) return;
672
+
673
+ event.preventDefault();
674
+
675
+ if ( event.button === scope.mouseButtons.ORBIT ) {
676
+
677
+ if ( scope.enableRotate === false ) return;
678
+
679
+ handleMouseDownRotate( event );
680
+
681
+ state = STATE.ROTATE;
682
+
683
+ } else if ( event.button === scope.mouseButtons.ZOOM ) {
684
+
685
+ if ( scope.enableZoom === false ) return;
686
+
687
+ handleMouseDownDolly( event );
688
+
689
+ state = STATE.DOLLY;
690
+
691
+ } else if ( event.button === scope.mouseButtons.PAN ) {
692
+
693
+ if ( scope.enablePan === false ) return;
694
+
695
+ handleMouseDownPan( event );
696
+
697
+ state = STATE.PAN;
698
+
699
+ }
700
+
701
+ if ( state !== STATE.NONE ) {
702
+
703
+ document.addEventListener( 'mousemove', onMouseMove, false );
704
+ document.addEventListener( 'mouseup', onMouseUp, false );
705
+ document.addEventListener( 'mouseout', onMouseUp, false );
706
+
707
+ scope.dispatchEvent( startEvent );
708
+
709
+ }
710
+
711
+ }
712
+
713
+ function onMouseMove( event ) {
714
+
715
+ if ( scope.enabled === false ) return;
716
+
717
+ event.preventDefault();
718
+
719
+ if ( state === STATE.ROTATE ) {
720
+
721
+ if ( scope.enableRotate === false ) return;
722
+
723
+ handleMouseMoveRotate( event );
724
+
725
+ } else if ( state === STATE.DOLLY ) {
726
+
727
+ if ( scope.enableZoom === false ) return;
728
+
729
+ handleMouseMoveDolly( event );
730
+
731
+ } else if ( state === STATE.PAN ) {
732
+
733
+ if ( scope.enablePan === false ) return;
734
+
735
+ handleMouseMovePan( event );
736
+
737
+ }
738
+
739
+ }
740
+
741
+ function onMouseUp( event ) {
742
+
743
+ if ( scope.enabled === false ) return;
744
+
745
+ handleMouseUp( event );
746
+
747
+ document.removeEventListener( 'mousemove', onMouseMove, false );
748
+ document.removeEventListener( 'mouseup', onMouseUp, false );
749
+ document.removeEventListener( 'mouseout', onMouseUp, false );
750
+
751
+ scope.dispatchEvent( endEvent );
752
+
753
+ state = STATE.NONE;
754
+
755
+ }
756
+
757
+ function onMouseWheel( event ) {
758
+
759
+ if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return;
760
+
761
+ event.preventDefault();
762
+ event.stopPropagation();
763
+
764
+ handleMouseWheel( event );
765
+
766
+ scope.dispatchEvent( startEvent ); // not sure why these are here...
767
+ scope.dispatchEvent( endEvent );
768
+
769
+ }
770
+
771
+ function onKeyDown( event ) {
772
+
773
+ if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return;
774
+
775
+ handleKeyDown( event );
776
+
777
+ }
778
+
779
+ function onTouchStart( event ) {
780
+
781
+ if ( scope.enabled === false ) return;
782
+
783
+ switch ( event.touches.length ) {
784
+
785
+ case 1: // one-fingered touch: rotate
786
+
787
+ if ( scope.enableRotate === false ) return;
788
+
789
+ handleTouchStartRotate( event );
790
+
791
+ state = STATE.TOUCH_ROTATE;
792
+
793
+ break;
794
+
795
+ case 2: // two-fingered touch: dolly
796
+
797
+ if ( scope.enableZoom === false ) return;
798
+
799
+ handleTouchStartDolly( event );
800
+
801
+ state = STATE.TOUCH_DOLLY;
802
+
803
+ break;
804
+
805
+ case 3: // three-fingered touch: pan
806
+
807
+ if ( scope.enablePan === false ) return;
808
+
809
+ handleTouchStartPan( event );
810
+
811
+ state = STATE.TOUCH_PAN;
812
+
813
+ break;
814
+
815
+ default:
816
+
817
+ state = STATE.NONE;
818
+
819
+ }
820
+
821
+ if ( state !== STATE.NONE ) {
822
+
823
+ scope.dispatchEvent( startEvent );
824
+
825
+ }
826
+
827
+ }
828
+
829
+ function onTouchMove( event ) {
830
+
831
+ if ( scope.enabled === false ) return;
832
+
833
+ event.preventDefault();
834
+ event.stopPropagation();
835
+
836
+ switch ( event.touches.length ) {
837
+
838
+ case 1: // one-fingered touch: rotate
839
+
840
+ if ( scope.enableRotate === false ) return;
841
+ if ( state !== STATE.TOUCH_ROTATE ) return; // is this needed?...
842
+
843
+ handleTouchMoveRotate( event );
844
+
845
+ break;
846
+
847
+ case 2: // two-fingered touch: dolly
848
+
849
+ if ( scope.enableZoom === false ) return;
850
+ if ( state !== STATE.TOUCH_DOLLY ) return; // is this needed?...
851
+
852
+ handleTouchMoveDolly( event );
853
+
854
+ break;
855
+
856
+ case 3: // three-fingered touch: pan
857
+
858
+ if ( scope.enablePan === false ) return;
859
+ if ( state !== STATE.TOUCH_PAN ) return; // is this needed?...
860
+
861
+ handleTouchMovePan( event );
862
+
863
+ break;
864
+
865
+ default:
866
+
867
+ state = STATE.NONE;
868
+
869
+ }
870
+
871
+ }
872
+
873
+ function onTouchEnd( event ) {
874
+
875
+ if ( scope.enabled === false ) return;
876
+
877
+ handleTouchEnd( event );
878
+
879
+ scope.dispatchEvent( endEvent );
880
+
881
+ state = STATE.NONE;
882
+
883
+ }
884
+
885
+ function onContextMenu( event ) {
886
+
887
+ event.preventDefault();
888
+
889
+ }
890
+
891
+ //
892
+
893
+ scope.domElement.addEventListener( 'contextmenu', onContextMenu, false );
894
+
895
+ scope.domElement.addEventListener( 'mousedown', onMouseDown, false );
896
+ scope.domElement.addEventListener( 'mousewheel', onMouseWheel, false );
897
+ scope.domElement.addEventListener( 'MozMousePixelScroll', onMouseWheel, false ); // firefox
898
+
899
+ scope.domElement.addEventListener( 'touchstart', onTouchStart, false );
900
+ scope.domElement.addEventListener( 'touchend', onTouchEnd, false );
901
+ scope.domElement.addEventListener( 'touchmove', onTouchMove, false );
902
+
903
+ window.addEventListener( 'keydown', onKeyDown, false );
904
+
905
+ // force an update at start
906
+
907
+ this.update();
908
+
909
+ };
910
+
911
+ THREE.OrbitControls.prototype = Object.create( THREE.EventDispatcher.prototype );
912
+ THREE.OrbitControls.prototype.constructor = THREE.OrbitControls;
913
+
914
+ Object.defineProperties( THREE.OrbitControls.prototype, {
915
+
916
+ center: {
917
+
918
+ get: function () {
919
+
920
+ console.warn( 'THREE.OrbitControls: .center has been renamed to .target' );
921
+ return this.target;
922
+
923
+ }
924
+
925
+ },
926
+
927
+ // backward compatibility
928
+
929
+ noZoom: {
930
+
931
+ get: function () {
932
+
933
+ console.warn( 'THREE.OrbitControls: .noZoom has been deprecated. Use .enableZoom instead.' );
934
+ return ! this.enableZoom;
935
+
936
+ },
937
+
938
+ set: function ( value ) {
939
+
940
+ console.warn( 'THREE.OrbitControls: .noZoom has been deprecated. Use .enableZoom instead.' );
941
+ this.enableZoom = ! value;
942
+
943
+ }
944
+
945
+ },
946
+
947
+ noRotate: {
948
+
949
+ get: function () {
950
+
951
+ console.warn( 'THREE.OrbitControls: .noRotate has been deprecated. Use .enableRotate instead.' );
952
+ return ! this.enableRotate;
953
+
954
+ },
955
+
956
+ set: function ( value ) {
957
+
958
+ console.warn( 'THREE.OrbitControls: .noRotate has been deprecated. Use .enableRotate instead.' );
959
+ this.enableRotate = ! value;
960
+
961
+ }
962
+
963
+ },
964
+
965
+ noPan: {
966
+
967
+ get: function () {
968
+
969
+ console.warn( 'THREE.OrbitControls: .noPan has been deprecated. Use .enablePan instead.' );
970
+ return ! this.enablePan;
971
+
972
+ },
973
+
974
+ set: function ( value ) {
975
+
976
+ console.warn( 'THREE.OrbitControls: .noPan has been deprecated. Use .enablePan instead.' );
977
+ this.enablePan = ! value;
978
+
979
+ }
980
+
981
+ },
982
+
983
+ noKeys: {
984
+
985
+ get: function () {
986
+
987
+ console.warn( 'THREE.OrbitControls: .noKeys has been deprecated. Use .enableKeys instead.' );
988
+ return ! this.enableKeys;
989
+
990
+ },
991
+
992
+ set: function ( value ) {
993
+
994
+ console.warn( 'THREE.OrbitControls: .noKeys has been deprecated. Use .enableKeys instead.' );
995
+ this.enableKeys = ! value;
996
+
997
+ }
998
+
999
+ },
1000
+
1001
+ staticMoving : {
1002
+
1003
+ get: function () {
1004
+
1005
+ console.warn( 'THREE.OrbitControls: .staticMoving has been deprecated. Use .enableDamping instead.' );
1006
+ return ! this.enableDamping;
1007
+
1008
+ },
1009
+
1010
+ set: function ( value ) {
1011
+
1012
+ console.warn( 'THREE.OrbitControls: .staticMoving has been deprecated. Use .enableDamping instead.' );
1013
+ this.enableDamping = ! value;
1014
+
1015
+ }
1016
+
1017
+ },
1018
+
1019
+ dynamicDampingFactor : {
1020
+
1021
+ get: function () {
1022
+
1023
+ console.warn( 'THREE.OrbitControls: .dynamicDampingFactor has been renamed. Use .dampingFactor instead.' );
1024
+ return this.dampingFactor;
1025
+
1026
+ },
1027
+
1028
+ set: function ( value ) {
1029
+
1030
+ console.warn( 'THREE.OrbitControls: .dynamicDampingFactor has been renamed. Use .dampingFactor instead.' );
1031
+ this.dampingFactor = value;
1032
+
1033
+ }
1034
+
1035
+ }
1036
+
1037
+ } );
dataloaders/pymo/mocapplayer/libs/threejs/dat.gui.min.js ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * dat-gui JavaScript Controller Library
3
+ * http://code.google.com/p/dat-gui
4
+ *
5
+ * Copyright 2011 Data Arts Team, Google Creative Lab
6
+ *
7
+ * Licensed under the Apache License, Version 2.0 (the "License");
8
+ * you may not use this file except in compliance with the License.
9
+ * You may obtain a copy of the License at
10
+ *
11
+ * http://www.apache.org/licenses/LICENSE-2.0
12
+ */
13
+ !function(e,t){"object"==typeof exports&&"object"==typeof module?module.exports=t():"function"==typeof define&&define.amd?define([],t):"object"==typeof exports?exports.dat=t():e.dat=t()}(this,function(){return function(e){function t(o){if(n[o])return n[o].exports;var i=n[o]={exports:{},id:o,loaded:!1};return e[o].call(i.exports,i,i.exports,t),i.loaded=!0,i.exports}var n={};return t.m=e,t.c=n,t.p="",t(0)}([function(e,t,n){"use strict";t.__esModule=!0,t["default"]=n(1),e.exports=t["default"]},function(e,t,n){"use strict";t.__esModule=!0,t["default"]={color:{Color:n(2),math:n(6),interpret:n(3)},controllers:{Controller:n(7),BooleanController:n(8),OptionController:n(10),StringController:n(11),NumberController:n(12),NumberControllerBox:n(13),NumberControllerSlider:n(14),FunctionController:n(15),ColorController:n(16)},dom:{dom:n(9)},gui:{GUI:n(17)},GUI:n(17)},e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t,n){Object.defineProperty(e,t,{get:function(){return"RGB"===this.__state.space?this.__state[t]:(p.recalculateRGB(this,t,n),this.__state[t])},set:function(e){"RGB"!==this.__state.space&&(p.recalculateRGB(this,t,n),this.__state.space="RGB"),this.__state[t]=e}})}function r(e,t){Object.defineProperty(e,t,{get:function(){return"HSV"===this.__state.space?this.__state[t]:(p.recalculateHSV(this),this.__state[t])},set:function(e){"HSV"!==this.__state.space&&(p.recalculateHSV(this),this.__state.space="HSV"),this.__state[t]=e}})}t.__esModule=!0;var s=n(3),l=o(s),d=n(6),u=o(d),c=n(4),f=o(c),h=n(5),_=o(h),p=function(){function e(){if(i(this,e),this.__state=l["default"].apply(this,arguments),this.__state===!1)throw new Error("Failed to interpret color arguments");this.__state.a=this.__state.a||1}return e.prototype.toString=function(){return f["default"](this)},e.prototype.toOriginal=function(){return this.__state.conversion.write(this)},e}();p.recalculateRGB=function(e,t,n){if("HEX"===e.__state.space)e.__state[t]=u["default"].component_from_hex(e.__state.hex,n);else{if("HSV"!==e.__state.space)throw new Error("Corrupted color state");_["default"].extend(e.__state,u["default"].hsv_to_rgb(e.__state.h,e.__state.s,e.__state.v))}},p.recalculateHSV=function(e){var t=u["default"].rgb_to_hsv(e.r,e.g,e.b);_["default"].extend(e.__state,{s:t.s,v:t.v}),_["default"].isNaN(t.h)?_["default"].isUndefined(e.__state.h)&&(e.__state.h=0):e.__state.h=t.h},p.COMPONENTS=["r","g","b","h","s","v","hex","a"],a(p.prototype,"r",2),a(p.prototype,"g",1),a(p.prototype,"b",0),r(p.prototype,"h"),r(p.prototype,"s"),r(p.prototype,"v"),Object.defineProperty(p.prototype,"a",{get:function(){return this.__state.a},set:function(e){this.__state.a=e}}),Object.defineProperty(p.prototype,"hex",{get:function(){return"HEX"!==!this.__state.space&&(this.__state.hex=u["default"].rgb_to_hex(this.r,this.g,this.b)),this.__state.hex},set:function(e){this.__state.space="HEX",this.__state.hex=e}}),t["default"]=p,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}t.__esModule=!0;var i=n(4),a=o(i),r=n(5),s=o(r),l=[{litmus:s["default"].isString,conversions:{THREE_CHAR_HEX:{read:function(e){var t=e.match(/^#([A-F0-9])([A-F0-9])([A-F0-9])$/i);return null!==t&&{space:"HEX",hex:parseInt("0x"+t[1].toString()+t[1].toString()+t[2].toString()+t[2].toString()+t[3].toString()+t[3].toString(),0)}},write:a["default"]},SIX_CHAR_HEX:{read:function(e){var t=e.match(/^#([A-F0-9]{6})$/i);return null!==t&&{space:"HEX",hex:parseInt("0x"+t[1].toString(),0)}},write:a["default"]},CSS_RGB:{read:function(e){var t=e.match(/^rgb\(\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*\)/);return null!==t&&{space:"RGB",r:parseFloat(t[1]),g:parseFloat(t[2]),b:parseFloat(t[3])}},write:a["default"]},CSS_RGBA:{read:function(e){var t=e.match(/^rgba\(\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*\)/);return null!==t&&{space:"RGB",r:parseFloat(t[1]),g:parseFloat(t[2]),b:parseFloat(t[3]),a:parseFloat(t[4])}},write:a["default"]}}},{litmus:s["default"].isNumber,conversions:{HEX:{read:function(e){return{space:"HEX",hex:e,conversionName:"HEX"}},write:function(e){return e.hex}}}},{litmus:s["default"].isArray,conversions:{RGB_ARRAY:{read:function(e){return 3===e.length&&{space:"RGB",r:e[0],g:e[1],b:e[2]}},write:function(e){return[e.r,e.g,e.b]}},RGBA_ARRAY:{read:function(e){return 4===e.length&&{space:"RGB",r:e[0],g:e[1],b:e[2],a:e[3]}},write:function(e){return[e.r,e.g,e.b,e.a]}}}},{litmus:s["default"].isObject,conversions:{RGBA_OBJ:{read:function(e){return!!(s["default"].isNumber(e.r)&&s["default"].isNumber(e.g)&&s["default"].isNumber(e.b)&&s["default"].isNumber(e.a))&&{space:"RGB",r:e.r,g:e.g,b:e.b,a:e.a}},write:function(e){return{r:e.r,g:e.g,b:e.b,a:e.a}}},RGB_OBJ:{read:function(e){return!!(s["default"].isNumber(e.r)&&s["default"].isNumber(e.g)&&s["default"].isNumber(e.b))&&{space:"RGB",r:e.r,g:e.g,b:e.b}},write:function(e){return{r:e.r,g:e.g,b:e.b}}},HSVA_OBJ:{read:function(e){return!!(s["default"].isNumber(e.h)&&s["default"].isNumber(e.s)&&s["default"].isNumber(e.v)&&s["default"].isNumber(e.a))&&{space:"HSV",h:e.h,s:e.s,v:e.v,a:e.a}},write:function(e){return{h:e.h,s:e.s,v:e.v,a:e.a}}},HSV_OBJ:{read:function(e){return!!(s["default"].isNumber(e.h)&&s["default"].isNumber(e.s)&&s["default"].isNumber(e.v))&&{space:"HSV",h:e.h,s:e.s,v:e.v}},write:function(e){return{h:e.h,s:e.s,v:e.v}}}}}],d=void 0,u=void 0,c=function(){u=!1;var e=arguments.length>1?s["default"].toArray(arguments):arguments[0];return s["default"].each(l,function(t){if(t.litmus(e))return s["default"].each(t.conversions,function(t,n){if(d=t.read(e),u===!1&&d!==!1)return u=d,d.conversionName=n,d.conversion=t,s["default"].BREAK}),s["default"].BREAK}),u};t["default"]=c,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}t.__esModule=!0;var i=n(5),a=o(i);t["default"]=function(e){if(1===e.a||a["default"].isUndefined(e.a)){for(var t=e.hex.toString(16);t.length<6;)t="0"+t;return"#"+t}return"rgba("+Math.round(e.r)+","+Math.round(e.g)+","+Math.round(e.b)+","+e.a+")"},e.exports=t["default"]},function(e,t){"use strict";t.__esModule=!0;var n=Array.prototype.forEach,o=Array.prototype.slice,i={BREAK:{},extend:function(e){return this.each(o.call(arguments,1),function(t){if(!this.isUndefined(t)){var n=Object.keys(t);n.forEach(function(n){this.isUndefined(t[n])||(e[n]=t[n])}.bind(this))}},this),e},defaults:function(e){return this.each(o.call(arguments,1),function(t){if(!this.isUndefined(t)){var n=Object.keys(t);n.forEach(function(n){this.isUndefined(e[n])&&(e[n]=t[n])}.bind(this))}},this),e},compose:function(){var e=o.call(arguments);return function(){for(var t=o.call(arguments),n=e.length-1;n>=0;n--)t=[e[n].apply(this,t)];return t[0]}},each:function(e,t,o){if(e)if(n&&e.forEach&&e.forEach===n)e.forEach(t,o);else if(e.length===e.length+0){var i=void 0,a=void 0;for(i=0,a=e.length;i<a;i++)if(i in e&&t.call(o,e[i],i)===this.BREAK)return}else{if(this.isUndefined(e))return;var r=Object.keys(e);r.forEach(function(n){t.call(o,e[n],n)===this.BREAK}.bind(this))}},defer:function(e){setTimeout(e,0)},debounce:function(e,t){var n=void 0;return function(){function o(){n=null}var i=this,a=arguments,r=!n;clearTimeout(n),n=setTimeout(o,t),r&&e.apply(i,a)}},toArray:function(e){return e.toArray?e.toArray():o.call(e)},isUndefined:function(e){return void 0===e},isNull:function(e){return null===e},isNaN:function(e){function t(t){return e.apply(this,arguments)}return t.toString=function(){return e.toString()},t}(function(e){return isNaN(e)}),isArray:Array.isArray||function(e){return e.constructor===Array},isObject:function(e){return e===Object(e)},isNumber:function(e){return e===e+0},isString:function(e){return e===e+""},isBoolean:function(e){return e===!1||e===!0},isFunction:function(e){return"[object Function]"===Object.prototype.toString.call(e)}};t["default"]=i,e.exports=t["default"]},function(e,t){"use strict";t.__esModule=!0;var n=void 0,o={hsv_to_rgb:function(e,t,n){var o=Math.floor(e/60)%6,i=e/60-Math.floor(e/60),a=n*(1-t),r=n*(1-i*t),s=n*(1-(1-i)*t),l=[[n,s,a],[r,n,a],[a,n,s],[a,r,n],[s,a,n],[n,a,r]][o];return{r:255*l[0],g:255*l[1],b:255*l[2]}},rgb_to_hsv:function(e,t,n){var o=Math.min(e,t,n),i=Math.max(e,t,n),a=i-o,r=void 0,s=void 0;return 0===i?{h:NaN,s:0,v:0}:(s=a/i,r=e===i?(t-n)/a:t===i?2+(n-e)/a:4+(e-t)/a,r/=6,r<0&&(r+=1),{h:360*r,s:s,v:i/255})},rgb_to_hex:function(e,t,n){var o=this.hex_with_component(0,2,e);return o=this.hex_with_component(o,1,t),o=this.hex_with_component(o,0,n)},component_from_hex:function(e,t){return e>>8*t&255},hex_with_component:function(e,t,o){return o<<(n=8*t)|e&~(255<<n)}};t["default"]=o,e.exports=t["default"]},function(e,t){"use strict";function n(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}t.__esModule=!0;var o=function(){function e(t,o){n(this,e),this.initialValue=t[o],this.domElement=document.createElement("div"),this.object=t,this.property=o,this.__onChange=void 0,this.__onFinishChange=void 0}return e.prototype.onChange=function(e){return this.__onChange=e,this},e.prototype.onFinishChange=function(e){return this.__onFinishChange=e,this},e.prototype.setValue=function(e){return this.object[this.property]=e,this.__onChange&&this.__onChange.call(this,e),this.updateDisplay(),this},e.prototype.getValue=function(){return this.object[this.property]},e.prototype.updateDisplay=function(){return this},e.prototype.isModified=function(){return this.initialValue!==this.getValue()},e}();t["default"]=o,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}t.__esModule=!0;var r=n(7),s=o(r),l=n(9),d=o(l),u=function(e){function t(n,o){function a(){r.setValue(!r.__prev)}i(this,t),e.call(this,n,o);var r=this;this.__prev=this.getValue(),this.__checkbox=document.createElement("input"),this.__checkbox.setAttribute("type","checkbox"),d["default"].bind(this.__checkbox,"change",a,!1),this.domElement.appendChild(this.__checkbox),this.updateDisplay()}return a(t,e),t.prototype.setValue=function(t){var n=e.prototype.setValue.call(this,t);return this.__onFinishChange&&this.__onFinishChange.call(this,this.getValue()),this.__prev=this.getValue(),n},t.prototype.updateDisplay=function(){return this.getValue()===!0?(this.__checkbox.setAttribute("checked","checked"),this.__checkbox.checked=!0):this.__checkbox.checked=!1,e.prototype.updateDisplay.call(this)},t}(s["default"]);t["default"]=u,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e){if("0"===e||r["default"].isUndefined(e))return 0;var t=e.match(d);return r["default"].isNull(t)?0:parseFloat(t[1])}t.__esModule=!0;var a=n(5),r=o(a),s={HTMLEvents:["change"],MouseEvents:["click","mousemove","mousedown","mouseup","mouseover"],KeyboardEvents:["keydown"]},l={};r["default"].each(s,function(e,t){r["default"].each(e,function(e){l[e]=t})});var d=/(\d+(\.\d+)?)px/,u={makeSelectable:function(e,t){void 0!==e&&void 0!==e.style&&(e.onselectstart=t?function(){return!1}:function(){},e.style.MozUserSelect=t?"auto":"none",e.style.KhtmlUserSelect=t?"auto":"none",e.unselectable=t?"on":"off")},makeFullscreen:function(e,t,n){var o=n,i=t;r["default"].isUndefined(i)&&(i=!0),r["default"].isUndefined(o)&&(o=!0),e.style.position="absolute",i&&(e.style.left=0,e.style.right=0),o&&(e.style.top=0,e.style.bottom=0)},fakeEvent:function(e,t,n,o){var i=n||{},a=l[t];if(!a)throw new Error("Event type "+t+" not supported.");var s=document.createEvent(a);switch(a){case"MouseEvents":var d=i.x||i.clientX||0,u=i.y||i.clientY||0;s.initMouseEvent(t,i.bubbles||!1,i.cancelable||!0,window,i.clickCount||1,0,0,d,u,!1,!1,!1,!1,0,null);break;case"KeyboardEvents":var c=s.initKeyboardEvent||s.initKeyEvent;r["default"].defaults(i,{cancelable:!0,ctrlKey:!1,altKey:!1,shiftKey:!1,metaKey:!1,keyCode:void 0,charCode:void 0}),c(t,i.bubbles||!1,i.cancelable,window,i.ctrlKey,i.altKey,i.shiftKey,i.metaKey,i.keyCode,i.charCode);break;default:s.initEvent(t,i.bubbles||!1,i.cancelable||!0)}r["default"].defaults(s,o),e.dispatchEvent(s)},bind:function(e,t,n,o){var i=o||!1;return e.addEventListener?e.addEventListener(t,n,i):e.attachEvent&&e.attachEvent("on"+t,n),u},unbind:function(e,t,n,o){var i=o||!1;return e.removeEventListener?e.removeEventListener(t,n,i):e.detachEvent&&e.detachEvent("on"+t,n),u},addClass:function(e,t){if(void 0===e.className)e.className=t;else if(e.className!==t){var n=e.className.split(/ +/);n.indexOf(t)===-1&&(n.push(t),e.className=n.join(" ").replace(/^\s+/,"").replace(/\s+$/,""))}return u},removeClass:function(e,t){if(t)if(e.className===t)e.removeAttribute("class");else{var n=e.className.split(/ +/),o=n.indexOf(t);o!==-1&&(n.splice(o,1),e.className=n.join(" "))}else e.className=void 0;return u},hasClass:function(e,t){return new RegExp("(?:^|\\s+)"+t+"(?:\\s+|$)").test(e.className)||!1},getWidth:function(e){var t=getComputedStyle(e);return i(t["border-left-width"])+i(t["border-right-width"])+i(t["padding-left"])+i(t["padding-right"])+i(t.width)},getHeight:function(e){var t=getComputedStyle(e);return i(t["border-top-width"])+i(t["border-bottom-width"])+i(t["padding-top"])+i(t["padding-bottom"])+i(t.height)},getOffset:function(e){var t=e,n={left:0,top:0};if(t.offsetParent)do n.left+=t.offsetLeft,n.top+=t.offsetTop,t=t.offsetParent;while(t);return n},isActive:function(e){return e===document.activeElement&&(e.type||e.href)}};t["default"]=u,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}t.__esModule=!0;var r=n(7),s=o(r),l=n(9),d=o(l),u=n(5),c=o(u),f=function(e){function t(n,o,a){i(this,t),e.call(this,n,o);var r=a,s=this;this.__select=document.createElement("select"),c["default"].isArray(r)&&!function(){var e={};c["default"].each(r,function(t){e[t]=t}),r=e}(),c["default"].each(r,function(e,t){var n=document.createElement("option");n.innerHTML=t,n.setAttribute("value",e),s.__select.appendChild(n)}),this.updateDisplay(),d["default"].bind(this.__select,"change",function(){var e=this.options[this.selectedIndex].value;s.setValue(e)}),this.domElement.appendChild(this.__select)}return a(t,e),t.prototype.setValue=function(t){var n=e.prototype.setValue.call(this,t);return this.__onFinishChange&&this.__onFinishChange.call(this,this.getValue()),n},t.prototype.updateDisplay=function(){return d["default"].isActive(this.__select)?this:(this.__select.value=this.getValue(),e.prototype.updateDisplay.call(this))},t}(s["default"]);t["default"]=f,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}t.__esModule=!0;var r=n(7),s=o(r),l=n(9),d=o(l),u=function(e){function t(n,o){function a(){s.setValue(s.__input.value)}function r(){s.__onFinishChange&&s.__onFinishChange.call(s,s.getValue())}i(this,t),e.call(this,n,o);var s=this;this.__input=document.createElement("input"),this.__input.setAttribute("type","text"),d["default"].bind(this.__input,"keyup",a),d["default"].bind(this.__input,"change",a),d["default"].bind(this.__input,"blur",r),d["default"].bind(this.__input,"keydown",function(e){13===e.keyCode&&this.blur()}),this.updateDisplay(),this.domElement.appendChild(this.__input)}return a(t,e),t.prototype.updateDisplay=function(){return d["default"].isActive(this.__input)||(this.__input.value=this.getValue()),e.prototype.updateDisplay.call(this)},t}(s["default"]);t["default"]=u,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}function r(e){var t=e.toString();return t.indexOf(".")>-1?t.length-t.indexOf(".")-1:0}t.__esModule=!0;var s=n(7),l=o(s),d=n(5),u=o(d),c=function(e){function t(n,o,a){i(this,t),e.call(this,n,o);var s=a||{};this.__min=s.min,this.__max=s.max,this.__step=s.step,u["default"].isUndefined(this.__step)?0===this.initialValue?this.__impliedStep=1:this.__impliedStep=Math.pow(10,Math.floor(Math.log(Math.abs(this.initialValue))/Math.LN10))/10:this.__impliedStep=this.__step,this.__precision=r(this.__impliedStep)}return a(t,e),t.prototype.setValue=function(t){var n=t;return void 0!==this.__min&&n<this.__min?n=this.__min:void 0!==this.__max&&n>this.__max&&(n=this.__max),void 0!==this.__step&&n%this.__step!==0&&(n=Math.round(n/this.__step)*this.__step),e.prototype.setValue.call(this,n)},t.prototype.min=function(e){return this.__min=e,this},t.prototype.max=function(e){return this.__max=e,this},t.prototype.step=function(e){return this.__step=e,this.__impliedStep=e,this.__precision=r(e),this},t}(l["default"]);t["default"]=c,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}function r(e,t){var n=Math.pow(10,t);return Math.round(e*n)/n}t.__esModule=!0;var s=n(12),l=o(s),d=n(9),u=o(d),c=n(5),f=o(c),h=function(e){function t(n,o,a){function r(){var e=parseFloat(h.__input.value);f["default"].isNaN(e)||h.setValue(e)}function s(){r(),h.__onFinishChange&&h.__onFinishChange.call(h,h.getValue())}function l(e){document.activeElement.blur();var t=_-e.clientY;h.setValue(h.getValue()+t*h.__impliedStep),_=e.clientY}function d(){u["default"].unbind(window,"mousemove",l),u["default"].unbind(window,"mouseup",d)}function c(e){u["default"].bind(window,"mousemove",l),u["default"].bind(window,"mouseup",d),_=e.clientY}i(this,t),e.call(this,n,o,a),this.__truncationSuspended=!1;var h=this,_=void 0;this.__input=document.createElement("input"),this.__input.setAttribute("type","text"),u["default"].bind(this.__input,"change",r),u["default"].bind(this.__input,"blur",s),u["default"].bind(this.__input,"mousedown",c),u["default"].bind(this.__input,"keydown",function(e){13===e.keyCode&&(h.__truncationSuspended=!0,this.blur(),h.__truncationSuspended=!1)}),this.updateDisplay(),this.domElement.appendChild(this.__input)}return a(t,e),t.prototype.updateDisplay=function(){return u["default"].isActive(this.__input)?this:(this.__input.value=this.__truncationSuspended?this.getValue():r(this.getValue(),this.__precision),e.prototype.updateDisplay.call(this))},t}(l["default"]);t["default"]=h,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}function r(e,t,n,o,i){return o+(i-o)*((e-t)/(n-t))}t.__esModule=!0;var s=n(12),l=o(s),d=n(9),u=o(d),c=function(e){function t(n,o,a,s,l){function d(e){document.activeElement.blur(),u["default"].bind(window,"mousemove",c),u["default"].bind(window,"mouseup",f),c(e)}function c(e){e.preventDefault();var t=u["default"].getOffset(h.__background),n=u["default"].getWidth(h.__background);return h.setValue(r(e.clientX,t.left,t.left+n,h.__min,h.__max)),!1}function f(){u["default"].unbind(window,"mousemove",c),u["default"].unbind(window,"mouseup",f),h.__onFinishChange&&h.__onFinishChange.call(h,h.getValue())}i(this,t),e.call(this,n,o,{min:a,max:s,step:l});var h=this;this.__background=document.createElement("div"),this.__foreground=document.createElement("div"),u["default"].bind(this.__background,"mousedown",d),u["default"].addClass(this.__background,"slider"),u["default"].addClass(this.__foreground,"slider-fg"),this.updateDisplay(),this.__background.appendChild(this.__foreground),this.domElement.appendChild(this.__background)}return a(t,e),t.prototype.updateDisplay=function(){var t=(this.getValue()-this.__min)/(this.__max-this.__min);return this.__foreground.style.width=100*t+"%",e.prototype.updateDisplay.call(this)},t}(l["default"]);t["default"]=c,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}t.__esModule=!0;var r=n(7),s=o(r),l=n(9),d=o(l),u=function(e){function t(n,o,a){i(this,t),e.call(this,n,o);var r=this;this.__button=document.createElement("div"),this.__button.innerHTML=void 0===a?"Fire":a,d["default"].bind(this.__button,"click",function(e){return e.preventDefault(),r.fire(),!1}),d["default"].addClass(this.__button,"button"),this.domElement.appendChild(this.__button)}return a(t,e),t.prototype.fire=function(){this.__onChange&&this.__onChange.call(this),this.getValue().call(this.object),this.__onFinishChange&&this.__onFinishChange.call(this,this.getValue())},t}(s["default"]);t["default"]=u,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}function a(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression must either be null or a function, not "+typeof t);e.prototype=Object.create(t&&t.prototype,{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(Object.setPrototypeOf?Object.setPrototypeOf(e,t):e.__proto__=t)}function r(e,t,n,o){e.style.background="",b["default"].each(v,function(i){e.style.cssText+="background: "+i+"linear-gradient("+t+", "+n+" 0%, "+o+" 100%); "})}function s(e){e.style.background="",e.style.cssText+="background: -moz-linear-gradient(top, #ff0000 0%, #ff00ff 17%, #0000ff 34%, #00ffff 50%, #00ff00 67%, #ffff00 84%, #ff0000 100%);",e.style.cssText+="background: -webkit-linear-gradient(top, #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);",e.style.cssText+="background: -o-linear-gradient(top, #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);",e.style.cssText+="background: -ms-linear-gradient(top, #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);",e.style.cssText+="background: linear-gradient(top, #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);"}t.__esModule=!0;var l=n(7),d=o(l),u=n(9),c=o(u),f=n(2),h=o(f),_=n(3),p=o(_),m=n(5),b=o(m),g=function(e){function t(n,o){function a(e){_(e),c["default"].bind(window,"mousemove",_),c["default"].bind(window,"mouseup",l)}function l(){c["default"].unbind(window,"mousemove",_),c["default"].unbind(window,"mouseup",l),f()}function d(){var e=p["default"](this.value);e!==!1?(g.__color.__state=e,g.setValue(g.__color.toOriginal())):this.value=g.__color.toString()}function u(){c["default"].unbind(window,"mousemove",m),c["default"].unbind(window,"mouseup",u),f()}function f(){g.__onFinishChange&&g.__onFinishChange.call(g,g.__color.toString())}function _(e){e.preventDefault();var t=c["default"].getWidth(g.__saturation_field),n=c["default"].getOffset(g.__saturation_field),o=(e.clientX-n.left+document.body.scrollLeft)/t,i=1-(e.clientY-n.top+document.body.scrollTop)/t;return i>1?i=1:i<0&&(i=0),o>1?o=1:o<0&&(o=0),g.__color.v=i,g.__color.s=o,g.setValue(g.__color.toOriginal()),!1}function m(e){e.preventDefault();var t=c["default"].getHeight(g.__hue_field),n=c["default"].getOffset(g.__hue_field),o=1-(e.clientY-n.top+document.body.scrollTop)/t;return o>1?o=1:o<0&&(o=0),g.__color.h=360*o,g.setValue(g.__color.toOriginal()),!1}i(this,t),e.call(this,n,o),this.__color=new h["default"](this.getValue()),this.__temp=new h["default"](0);var g=this;this.domElement=document.createElement("div"),c["default"].makeSelectable(this.domElement,!1),this.__selector=document.createElement("div"),this.__selector.className="selector",this.__saturation_field=document.createElement("div"),this.__saturation_field.className="saturation-field",this.__field_knob=document.createElement("div"),this.__field_knob.className="field-knob",this.__field_knob_border="2px solid ",this.__hue_knob=document.createElement("div"),this.__hue_knob.className="hue-knob",this.__hue_field=document.createElement("div"),this.__hue_field.className="hue-field",this.__input=document.createElement("input"),this.__input.type="text",this.__input_textShadow="0 1px 1px ",c["default"].bind(this.__input,"keydown",function(e){13===e.keyCode&&d.call(this)}),c["default"].bind(this.__input,"blur",d),c["default"].bind(this.__selector,"mousedown",function(){c["default"].addClass(this,"drag").bind(window,"mouseup",function(){c["default"].removeClass(g.__selector,"drag")})});var v=document.createElement("div");b["default"].extend(this.__selector.style,{width:"122px",height:"102px",padding:"3px",backgroundColor:"#222",boxShadow:"0px 1px 3px rgba(0,0,0,0.3)"}),b["default"].extend(this.__field_knob.style,{position:"absolute",width:"12px",height:"12px",border:this.__field_knob_border+(this.__color.v<.5?"#fff":"#000"),boxShadow:"0px 1px 3px rgba(0,0,0,0.5)",borderRadius:"12px",zIndex:1}),b["default"].extend(this.__hue_knob.style,{position:"absolute",width:"15px",height:"2px",borderRight:"4px solid #fff",zIndex:1}),b["default"].extend(this.__saturation_field.style,{width:"100px",height:"100px",border:"1px solid #555",marginRight:"3px",display:"inline-block",cursor:"pointer"}),b["default"].extend(v.style,{width:"100%",height:"100%",background:"none"}),r(v,"top","rgba(0,0,0,0)","#000"),b["default"].extend(this.__hue_field.style,{width:"15px",height:"100px",border:"1px solid #555",cursor:"ns-resize",position:"absolute",top:"3px",right:"3px"}),s(this.__hue_field),b["default"].extend(this.__input.style,{outline:"none",textAlign:"center",color:"#fff",border:0,fontWeight:"bold",textShadow:this.__input_textShadow+"rgba(0,0,0,0.7)"}),c["default"].bind(this.__saturation_field,"mousedown",a),c["default"].bind(this.__field_knob,"mousedown",a),c["default"].bind(this.__hue_field,"mousedown",function(e){m(e),c["default"].bind(window,"mousemove",m),c["default"].bind(window,"mouseup",u)}),this.__saturation_field.appendChild(v),this.__selector.appendChild(this.__field_knob),this.__selector.appendChild(this.__saturation_field),this.__selector.appendChild(this.__hue_field),this.__hue_field.appendChild(this.__hue_knob),this.domElement.appendChild(this.__input),this.domElement.appendChild(this.__selector),this.updateDisplay()}return a(t,e),t.prototype.updateDisplay=function(){var e=p["default"](this.getValue());if(e!==!1){var t=!1;b["default"].each(h["default"].COMPONENTS,function(n){if(!b["default"].isUndefined(e[n])&&!b["default"].isUndefined(this.__color.__state[n])&&e[n]!==this.__color.__state[n])return t=!0,{}},this),t&&b["default"].extend(this.__color.__state,e)}b["default"].extend(this.__temp.__state,this.__color.__state),this.__temp.a=1;var n=this.__color.v<.5||this.__color.s>.5?255:0,o=255-n;b["default"].extend(this.__field_knob.style,{marginLeft:100*this.__color.s-7+"px",marginTop:100*(1-this.__color.v)-7+"px",backgroundColor:this.__temp.toString(),border:this.__field_knob_border+"rgb("+n+","+n+","+n+")"}),this.__hue_knob.style.marginTop=100*(1-this.__color.h/360)+"px",this.__temp.s=1,this.__temp.v=1,r(this.__saturation_field,"left","#fff",this.__temp.toString()),b["default"].extend(this.__input.style,{backgroundColor:this.__input.value=this.__color.toString(),color:"rgb("+n+","+n+","+n+")",textShadow:this.__input_textShadow+"rgba("+o+","+o+","+o+",.7)"})},t}(d["default"]),v=["-moz-","-o-","-webkit-","-ms-",""];t["default"]=g,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t,n){var o=document.createElement("li");return t&&o.appendChild(t),n?e.__ul.insertBefore(o,n):e.__ul.appendChild(o),e.onResize(),o}function a(e,t){var n=e.__preset_select[e.__preset_select.selectedIndex];t?n.innerHTML=n.value+"*":n.innerHTML=n.value}function r(e,t,n){if(n.__li=t,n.__gui=e,U["default"].extend(n,{options:function(t){if(arguments.length>1){var o=n.__li.nextElementSibling;return n.remove(),l(e,n.object,n.property,{before:o,factoryArgs:[U["default"].toArray(arguments)]})}if(U["default"].isArray(t)||U["default"].isObject(t)){var o=n.__li.nextElementSibling;return n.remove(),l(e,n.object,n.property,{before:o,factoryArgs:[t]})}},name:function(e){return n.__li.firstElementChild.firstElementChild.innerHTML=e,n},listen:function(){return n.__gui.listen(n),n},remove:function(){return n.__gui.remove(n),n}}),n instanceof R["default"])!function(){var e=new N["default"](n.object,n.property,{min:n.__min,max:n.__max,step:n.__step});U["default"].each(["updateDisplay","onChange","onFinishChange","step"],function(t){var o=n[t],i=e[t];n[t]=e[t]=function(){var t=Array.prototype.slice.call(arguments);return i.apply(e,t),o.apply(n,t)}}),I["default"].addClass(t,"has-slider"),n.domElement.insertBefore(e.domElement,n.domElement.firstElementChild)}();else if(n instanceof N["default"]){var o=function(t){return U["default"].isNumber(n.__min)&&U["default"].isNumber(n.__max)?(n.remove(),l(e,n.object,n.property,{before:n.__li.nextElementSibling,factoryArgs:[n.__min,n.__max,n.__step]})):t};n.min=U["default"].compose(o,n.min),n.max=U["default"].compose(o,n.max)}else n instanceof S["default"]?(I["default"].bind(t,"click",function(){I["default"].fakeEvent(n.__checkbox,"click")}),I["default"].bind(n.__checkbox,"click",function(e){e.stopPropagation()})):n instanceof T["default"]?(I["default"].bind(t,"click",function(){I["default"].fakeEvent(n.__button,"click")}),I["default"].bind(t,"mouseover",function(){I["default"].addClass(n.__button,"hover")}),I["default"].bind(t,"mouseout",function(){I["default"].removeClass(n.__button,"hover")})):n instanceof j["default"]&&(I["default"].addClass(t,"color"),n.updateDisplay=U["default"].compose(function(e){return t.style.borderLeftColor=n.__color.toString(),
14
+ e},n.updateDisplay),n.updateDisplay());n.setValue=U["default"].compose(function(t){return e.getRoot().__preset_select&&n.isModified()&&a(e.getRoot(),!0),t},n.setValue)}function s(e,t){var n=e.getRoot(),o=n.__rememberedObjects.indexOf(t.object);if(o!==-1){var i=n.__rememberedObjectIndecesToControllers[o];if(void 0===i&&(i={},n.__rememberedObjectIndecesToControllers[o]=i),i[t.property]=t,n.load&&n.load.remembered){var a=n.load.remembered,r=void 0;if(a[e.preset])r=a[e.preset];else{if(!a[Q])return;r=a[Q]}if(r[o]&&void 0!==r[o][t.property]){var s=r[o][t.property];t.initialValue=s,t.setValue(s)}}}}function l(e,t,n,o){if(void 0===t[n])throw new Error('Object "'+t+'" has no property "'+n+'"');var a=void 0;if(o.color)a=new j["default"](t,n);else{var l=[t,n].concat(o.factoryArgs);a=E["default"].apply(e,l)}o.before instanceof A["default"]&&(o.before=o.before.__li),s(e,a),I["default"].addClass(a.domElement,"c");var d=document.createElement("span");I["default"].addClass(d,"property-name"),d.innerHTML=a.property;var u=document.createElement("div");u.appendChild(d),u.appendChild(a.domElement);var c=i(e,u,o.before);return I["default"].addClass(c,ne.CLASS_CONTROLLER_ROW),a instanceof j["default"]?I["default"].addClass(c,"color"):I["default"].addClass(c,typeof a.getValue()),r(e,c,a),e.__controllers.push(a),a}function d(e,t){return document.location.href+"."+t}function u(e,t,n){var o=document.createElement("option");o.innerHTML=t,o.value=t,e.__preset_select.appendChild(o),n&&(e.__preset_select.selectedIndex=e.__preset_select.length-1)}function c(e,t){t.style.display=e.useLocalStorage?"block":"none"}function f(e){var t=e.__save_row=document.createElement("li");I["default"].addClass(e.domElement,"has-save"),e.__ul.insertBefore(t,e.__ul.firstChild),I["default"].addClass(t,"save-row");var n=document.createElement("span");n.innerHTML="&nbsp;",I["default"].addClass(n,"button gears");var o=document.createElement("span");o.innerHTML="Save",I["default"].addClass(o,"button"),I["default"].addClass(o,"save");var i=document.createElement("span");i.innerHTML="New",I["default"].addClass(i,"button"),I["default"].addClass(i,"save-as");var a=document.createElement("span");a.innerHTML="Revert",I["default"].addClass(a,"button"),I["default"].addClass(a,"revert");var r=e.__preset_select=document.createElement("select");e.load&&e.load.remembered?U["default"].each(e.load.remembered,function(t,n){u(e,n,n===e.preset)}):u(e,Q,!1),I["default"].bind(r,"change",function(){for(var t=0;t<e.__preset_select.length;t++)e.__preset_select[t].innerHTML=e.__preset_select[t].value;e.preset=this.value}),t.appendChild(r),t.appendChild(n),t.appendChild(o),t.appendChild(i),t.appendChild(a),J&&!function(){var t=document.getElementById("dg-local-explain"),n=document.getElementById("dg-local-storage"),o=document.getElementById("dg-save-locally");o.style.display="block","true"===localStorage.getItem(d(e,"isLocal"))&&n.setAttribute("checked","checked"),c(e,t),I["default"].bind(n,"change",function(){e.useLocalStorage=!e.useLocalStorage,c(e,t)})}();var s=document.getElementById("dg-new-constructor");I["default"].bind(s,"keydown",function(e){!e.metaKey||67!==e.which&&67!==e.keyCode||q.hide()}),I["default"].bind(n,"click",function(){s.innerHTML=JSON.stringify(e.getSaveObject(),void 0,2),q.show(),s.focus(),s.select()}),I["default"].bind(o,"click",function(){e.save()}),I["default"].bind(i,"click",function(){var t=prompt("Enter a new preset name.");t&&e.saveAs(t)}),I["default"].bind(a,"click",function(){e.revert()})}function h(e){function t(t){return t.preventDefault(),e.width+=i-t.clientX,e.onResize(),i=t.clientX,!1}function n(){I["default"].removeClass(e.__closeButton,ne.CLASS_DRAG),I["default"].unbind(window,"mousemove",t),I["default"].unbind(window,"mouseup",n)}function o(o){return o.preventDefault(),i=o.clientX,I["default"].addClass(e.__closeButton,ne.CLASS_DRAG),I["default"].bind(window,"mousemove",t),I["default"].bind(window,"mouseup",n),!1}var i=void 0;e.__resize_handle=document.createElement("div"),U["default"].extend(e.__resize_handle.style,{width:"6px",marginLeft:"-3px",height:"200px",cursor:"ew-resize",position:"absolute"}),I["default"].bind(e.__resize_handle,"mousedown",o),I["default"].bind(e.__closeButton,"mousedown",o),e.domElement.insertBefore(e.__resize_handle,e.domElement.firstElementChild)}function _(e,t){e.domElement.style.width=t+"px",e.__save_row&&e.autoPlace&&(e.__save_row.style.width=t+"px"),e.__closeButton&&(e.__closeButton.style.width=t+"px")}function p(e,t){var n={};return U["default"].each(e.__rememberedObjects,function(o,i){var a={},r=e.__rememberedObjectIndecesToControllers[i];U["default"].each(r,function(e,n){a[n]=t?e.initialValue:e.getValue()}),n[i]=a}),n}function m(e){for(var t=0;t<e.__preset_select.length;t++)e.__preset_select[t].value===e.preset&&(e.__preset_select.selectedIndex=t)}function b(e){0!==e.length&&P["default"].call(window,function(){b(e)}),U["default"].each(e,function(e){e.updateDisplay()})}var g=n(18),v=o(g),y=n(19),w=o(y),x=n(20),E=o(x),C=n(7),A=o(C),k=n(8),S=o(k),O=n(15),T=o(O),L=n(13),N=o(L),M=n(14),R=o(M),B=n(16),j=o(B),H=n(21),P=o(H),D=n(22),V=o(D),F=n(9),I=o(F),z=n(5),U=o(z),G=n(23),X=o(G);v["default"].inject(X["default"]);var K="dg",W=72,Y=20,Q="Default",J=function(){try{return"localStorage"in window&&null!==window.localStorage}catch(e){return!1}}(),q=void 0,Z=!0,$=void 0,ee=!1,te=[],ne=function oe(e){function t(){var e=n.getRoot();e.width+=1,U["default"].defer(function(){e.width-=1})}var n=this,o=e||{};this.domElement=document.createElement("div"),this.__ul=document.createElement("ul"),this.domElement.appendChild(this.__ul),I["default"].addClass(this.domElement,K),this.__folders={},this.__controllers=[],this.__rememberedObjects=[],this.__rememberedObjectIndecesToControllers=[],this.__listening=[],o=U["default"].defaults(o,{autoPlace:!0,width:oe.DEFAULT_WIDTH}),o=U["default"].defaults(o,{resizable:o.autoPlace,hideable:o.autoPlace}),U["default"].isUndefined(o.load)?o.load={preset:Q}:o.preset&&(o.load.preset=o.preset),U["default"].isUndefined(o.parent)&&o.hideable&&te.push(this),o.resizable=U["default"].isUndefined(o.parent)&&o.resizable,o.autoPlace&&U["default"].isUndefined(o.scrollable)&&(o.scrollable=!0);var a=J&&"true"===localStorage.getItem(d(this,"isLocal")),r=void 0;if(Object.defineProperties(this,{parent:{get:function(){return o.parent}},scrollable:{get:function(){return o.scrollable}},autoPlace:{get:function(){return o.autoPlace}},preset:{get:function(){return n.parent?n.getRoot().preset:o.load.preset},set:function(e){n.parent?n.getRoot().preset=e:o.load.preset=e,m(this),n.revert()}},width:{get:function(){return o.width},set:function(e){o.width=e,_(n,e)}},name:{get:function(){return o.name},set:function(e){o.name=e,titleRowName&&(titleRowName.innerHTML=o.name)}},closed:{get:function(){return o.closed},set:function(e){o.closed=e,o.closed?I["default"].addClass(n.__ul,oe.CLASS_CLOSED):I["default"].removeClass(n.__ul,oe.CLASS_CLOSED),this.onResize(),n.__closeButton&&(n.__closeButton.innerHTML=e?oe.TEXT_OPEN:oe.TEXT_CLOSED)}},load:{get:function(){return o.load}},useLocalStorage:{get:function(){return a},set:function(e){J&&(a=e,e?I["default"].bind(window,"unload",r):I["default"].unbind(window,"unload",r),localStorage.setItem(d(n,"isLocal"),e))}}}),U["default"].isUndefined(o.parent)){if(o.closed=!1,I["default"].addClass(this.domElement,oe.CLASS_MAIN),I["default"].makeSelectable(this.domElement,!1),J&&a){n.useLocalStorage=!0;var s=localStorage.getItem(d(this,"gui"));s&&(o.load=JSON.parse(s))}this.__closeButton=document.createElement("div"),this.__closeButton.innerHTML=oe.TEXT_CLOSED,I["default"].addClass(this.__closeButton,oe.CLASS_CLOSE_BUTTON),this.domElement.appendChild(this.__closeButton),I["default"].bind(this.__closeButton,"click",function(){n.closed=!n.closed})}else{void 0===o.closed&&(o.closed=!0);var l=document.createTextNode(o.name);I["default"].addClass(l,"controller-name");var u=i(n,l),c=function(e){return e.preventDefault(),n.closed=!n.closed,!1};I["default"].addClass(this.__ul,oe.CLASS_CLOSED),I["default"].addClass(u,"title"),I["default"].bind(u,"click",c),o.closed||(this.closed=!1)}o.autoPlace&&(U["default"].isUndefined(o.parent)&&(Z&&($=document.createElement("div"),I["default"].addClass($,K),I["default"].addClass($,oe.CLASS_AUTO_PLACE_CONTAINER),document.body.appendChild($),Z=!1),$.appendChild(this.domElement),I["default"].addClass(this.domElement,oe.CLASS_AUTO_PLACE)),this.parent||_(n,o.width)),this.__resizeHandler=function(){n.onResize()},I["default"].bind(window,"resize",this.__resizeHandler),I["default"].bind(this.__ul,"webkitTransitionEnd",this.__resizeHandler),I["default"].bind(this.__ul,"transitionend",this.__resizeHandler),I["default"].bind(this.__ul,"oTransitionEnd",this.__resizeHandler),this.onResize(),o.resizable&&h(this),r=function(){J&&"true"===localStorage.getItem(d(n,"isLocal"))&&localStorage.setItem(d(n,"gui"),JSON.stringify(n.getSaveObject()))},this.saveToLocalStorageIfPossible=r,o.parent||t()};ne.toggleHide=function(){ee=!ee,U["default"].each(te,function(e){e.domElement.style.display=ee?"none":""})},ne.CLASS_AUTO_PLACE="a",ne.CLASS_AUTO_PLACE_CONTAINER="ac",ne.CLASS_MAIN="main",ne.CLASS_CONTROLLER_ROW="cr",ne.CLASS_TOO_TALL="taller-than-window",ne.CLASS_CLOSED="closed",ne.CLASS_CLOSE_BUTTON="close-button",ne.CLASS_DRAG="drag",ne.DEFAULT_WIDTH=245,ne.TEXT_CLOSED="Close Controls",ne.TEXT_OPEN="Open Controls",ne._keydownHandler=function(e){"text"===document.activeElement.type||e.which!==W&&e.keyCode!==W||ne.toggleHide()},I["default"].bind(window,"keydown",ne._keydownHandler,!1),U["default"].extend(ne.prototype,{add:function(e,t){return l(this,e,t,{factoryArgs:Array.prototype.slice.call(arguments,2)})},addColor:function(e,t){return l(this,e,t,{color:!0})},remove:function(e){this.__ul.removeChild(e.__li),this.__controllers.splice(this.__controllers.indexOf(e),1);var t=this;U["default"].defer(function(){t.onResize()})},destroy:function(){this.autoPlace&&$.removeChild(this.domElement),I["default"].unbind(window,"keydown",ne._keydownHandler,!1),I["default"].unbind(window,"resize",this.__resizeHandler),this.saveToLocalStorageIfPossible&&I["default"].unbind(window,"unload",this.saveToLocalStorageIfPossible)},addFolder:function(e){if(void 0!==this.__folders[e])throw new Error('You already have a folder in this GUI by the name "'+e+'"');var t={name:e,parent:this};t.autoPlace=this.autoPlace,this.load&&this.load.folders&&this.load.folders[e]&&(t.closed=this.load.folders[e].closed,t.load=this.load.folders[e]);var n=new ne(t);this.__folders[e]=n;var o=i(this,n.domElement);return I["default"].addClass(o,"folder"),n},open:function(){this.closed=!1},close:function(){this.closed=!0},onResize:U["default"].debounce(function(){var e=this.getRoot();if(e.scrollable){var t=I["default"].getOffset(e.__ul).top,n=0;U["default"].each(e.__ul.childNodes,function(t){e.autoPlace&&t===e.__save_row||(n+=I["default"].getHeight(t))}),window.innerHeight-t-Y<n?(I["default"].addClass(e.domElement,ne.CLASS_TOO_TALL),e.__ul.style.height=window.innerHeight-t-Y+"px"):(I["default"].removeClass(e.domElement,ne.CLASS_TOO_TALL),e.__ul.style.height="auto")}e.__resize_handle&&U["default"].defer(function(){e.__resize_handle.style.height=e.__ul.offsetHeight+"px"}),e.__closeButton&&(e.__closeButton.style.width=e.width+"px")},200),remember:function(){if(U["default"].isUndefined(q)&&(q=new V["default"],q.domElement.innerHTML=w["default"]),this.parent)throw new Error("You can only call remember on a top level GUI.");var e=this;U["default"].each(Array.prototype.slice.call(arguments),function(t){0===e.__rememberedObjects.length&&f(e),e.__rememberedObjects.indexOf(t)===-1&&e.__rememberedObjects.push(t)}),this.autoPlace&&_(this,this.width)},getRoot:function(){for(var e=this;e.parent;)e=e.parent;return e},getSaveObject:function(){var e=this.load;return e.closed=this.closed,this.__rememberedObjects.length>0&&(e.preset=this.preset,e.remembered||(e.remembered={}),e.remembered[this.preset]=p(this)),e.folders={},U["default"].each(this.__folders,function(t,n){e.folders[n]=t.getSaveObject()}),e},save:function(){this.load.remembered||(this.load.remembered={}),this.load.remembered[this.preset]=p(this),a(this,!1),this.saveToLocalStorageIfPossible()},saveAs:function(e){this.load.remembered||(this.load.remembered={},this.load.remembered[Q]=p(this,!0)),this.load.remembered[e]=p(this),this.preset=e,u(this,e,!0),this.saveToLocalStorageIfPossible()},revert:function(e){U["default"].each(this.__controllers,function(t){this.getRoot().load.remembered?s(e||this.getRoot(),t):t.setValue(t.initialValue),t.__onFinishChange&&t.__onFinishChange.call(t,t.getValue())},this),U["default"].each(this.__folders,function(e){e.revert(e)}),e||a(this.getRoot(),!1)},listen:function(e){var t=0===this.__listening.length;this.__listening.push(e),t&&b(this.__listening)},updateDisplay:function(){U["default"].each(this.__controllers,function(e){e.updateDisplay()}),U["default"].each(this.__folders,function(e){e.updateDisplay()})}}),e.exports=ne},function(e,t){"use strict";e.exports={load:function(e,t){var n=t||document,o=n.createElement("link");o.type="text/css",o.rel="stylesheet",o.href=e,n.getElementsByTagName("head")[0].appendChild(o)},inject:function(e,t){var n=t||document,o=document.createElement("style");o.type="text/css",o.innerHTML=e;var i=n.getElementsByTagName("head")[0];try{i.appendChild(o)}catch(a){}}}},function(e,t){e.exports='<div id=dg-save class="dg dialogue">Here\'s the new load parameter for your <code>GUI</code>\'s constructor:<textarea id=dg-new-constructor></textarea><div id=dg-save-locally><input id=dg-local-storage type="checkbox"> Automatically save values to <code>localStorage</code> on exit.<div id=dg-local-explain>The values saved to <code>localStorage</code> will override those passed to <code>dat.GUI</code>\'s constructor. This makes it easier to work incrementally, but <code>localStorage</code> is fragile, and your friends may not see the same values you do.</div></div></div>'},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}t.__esModule=!0;var i=n(10),a=o(i),r=n(13),s=o(r),l=n(14),d=o(l),u=n(11),c=o(u),f=n(15),h=o(f),_=n(8),p=o(_),m=n(5),b=o(m),g=function(e,t){var n=e[t];return b["default"].isArray(arguments[2])||b["default"].isObject(arguments[2])?new a["default"](e,t,arguments[2]):b["default"].isNumber(n)?b["default"].isNumber(arguments[2])&&b["default"].isNumber(arguments[3])?b["default"].isNumber(arguments[4])?new d["default"](e,t,arguments[2],arguments[3],arguments[4]):new d["default"](e,t,arguments[2],arguments[3]):b["default"].isNumber(arguments[4])?new s["default"](e,t,{min:arguments[2],max:arguments[3],step:arguments[4]}):new s["default"](e,t,{min:arguments[2],max:arguments[3]}):b["default"].isString(n)?new c["default"](e,t):b["default"].isFunction(n)?new h["default"](e,t,""):b["default"].isBoolean(n)?new p["default"](e,t):null};t["default"]=g,e.exports=t["default"]},function(e,t){"use strict";function n(e){setTimeout(e,1e3/60)}t.__esModule=!0,t["default"]=window.requestAnimationFrame||window.webkitRequestAnimationFrame||window.mozRequestAnimationFrame||window.oRequestAnimationFrame||window.msRequestAnimationFrame||n,e.exports=t["default"]},function(e,t,n){"use strict";function o(e){return e&&e.__esModule?e:{"default":e}}function i(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}t.__esModule=!0;var a=n(9),r=o(a),s=n(5),l=o(s),d=function(){function e(){i(this,e),this.backgroundElement=document.createElement("div"),l["default"].extend(this.backgroundElement.style,{backgroundColor:"rgba(0,0,0,0.8)",top:0,left:0,display:"none",zIndex:"1000",opacity:0,WebkitTransition:"opacity 0.2s linear",transition:"opacity 0.2s linear"}),r["default"].makeFullscreen(this.backgroundElement),this.backgroundElement.style.position="fixed",this.domElement=document.createElement("div"),l["default"].extend(this.domElement.style,{position:"fixed",display:"none",zIndex:"1001",opacity:0,WebkitTransition:"-webkit-transform 0.2s ease-out, opacity 0.2s linear",transition:"transform 0.2s ease-out, opacity 0.2s linear"}),document.body.appendChild(this.backgroundElement),document.body.appendChild(this.domElement);var t=this;r["default"].bind(this.backgroundElement,"click",function(){t.hide()})}return e.prototype.show=function(){var e=this;this.backgroundElement.style.display="block",this.domElement.style.display="block",this.domElement.style.opacity=0,this.domElement.style.webkitTransform="scale(1.1)",this.layout(),l["default"].defer(function(){e.backgroundElement.style.opacity=1,e.domElement.style.opacity=1,e.domElement.style.webkitTransform="scale(1)"})},e.prototype.hide=function t(){var e=this,t=function n(){e.domElement.style.display="none",e.backgroundElement.style.display="none",r["default"].unbind(e.domElement,"webkitTransitionEnd",n),r["default"].unbind(e.domElement,"transitionend",n),r["default"].unbind(e.domElement,"oTransitionEnd",n)};r["default"].bind(this.domElement,"webkitTransitionEnd",t),r["default"].bind(this.domElement,"transitionend",t),r["default"].bind(this.domElement,"oTransitionEnd",t),this.backgroundElement.style.opacity=0,this.domElement.style.opacity=0,this.domElement.style.webkitTransform="scale(1.1)"},e.prototype.layout=function(){this.domElement.style.left=window.innerWidth/2-r["default"].getWidth(this.domElement)/2+"px",this.domElement.style.top=window.innerHeight/2-r["default"].getHeight(this.domElement)/2+"px"},e}();t["default"]=d,e.exports=t["default"]},function(e,t,n){t=e.exports=n(24)(),t.push([e.id,".dg ul{list-style:none;margin:0;padding:0;width:100%;clear:both}.dg.ac{position:fixed;top:0;left:0;right:0;height:0;z-index:0}.dg:not(.ac) .main{overflow:hidden}.dg.main{-webkit-transition:opacity .1s linear;transition:opacity .1s linear}.dg.main.taller-than-window{overflow-y:auto}.dg.main.taller-than-window .close-button{opacity:1;margin-top:-1px;border-top:1px solid #2c2c2c}.dg.main ul.closed .close-button{opacity:1!important}.dg.main .close-button.drag,.dg.main:hover .close-button{opacity:1}.dg.main .close-button{-webkit-transition:opacity .1s linear;transition:opacity .1s linear;border:0;position:absolute;line-height:19px;height:20px;cursor:pointer;text-align:center;background-color:#000}.dg.main .close-button:hover{background-color:#111}.dg.a{float:right;margin-right:15px;overflow-x:hidden}.dg.a.has-save>ul{margin-top:27px}.dg.a.has-save>ul.closed{margin-top:0}.dg.a .save-row{position:fixed;top:0;z-index:1002}.dg li{-webkit-transition:height .1s ease-out;transition:height .1s ease-out}.dg li:not(.folder){cursor:auto;height:27px;line-height:27px;overflow:hidden;padding:0 4px 0 5px}.dg li.folder{padding:0;border-left:4px solid transparent}.dg li.title{cursor:pointer;margin-left:-4px}.dg .closed li:not(.title),.dg .closed ul li,.dg .closed ul li>*{height:0;overflow:hidden;border:0}.dg .cr{clear:both;padding-left:3px;height:27px}.dg .property-name{cursor:default;float:left;clear:left;width:40%;overflow:hidden;text-overflow:ellipsis}.dg .c{float:left;width:60%}.dg .c input[type=text]{border:0;margin-top:4px;padding:3px;width:100%;float:right}.dg .has-slider input[type=text]{width:30%;margin-left:0}.dg .slider{float:left;width:66%;margin-left:-5px;margin-right:0;height:19px;margin-top:4px}.dg .slider-fg{height:100%}.dg .c input[type=checkbox]{margin-top:9px}.dg .c select{margin-top:5px}.dg .cr.boolean,.dg .cr.boolean *,.dg .cr.function,.dg .cr.function *,.dg .cr.function .property-name{cursor:pointer}.dg .selector{display:none;position:absolute;margin-left:-9px;margin-top:23px;z-index:10}.dg .c:hover .selector,.dg .selector.drag{display:block}.dg li.save-row{padding:0}.dg li.save-row .button{display:inline-block;padding:0 6px}.dg.dialogue{background-color:#222;width:460px;padding:15px;font-size:13px;line-height:15px}#dg-new-constructor{padding:10px;color:#222;font-family:Monaco,monospace;font-size:10px;border:0;resize:none;box-shadow:inset 1px 1px 1px #888;word-wrap:break-word;margin:9pt 0;display:block;width:440px;overflow-y:scroll;height:75pt;position:relative}#dg-local-explain{display:none;font-size:11px;line-height:17px;border-radius:3px;background-color:#333;padding:8px;margin-top:10px}#dg-local-explain code{font-size:10px}#dat-gui-save-locally{display:none}.dg{color:#eee;font:11px 'Lucida Grande',sans-serif;text-shadow:0 -1px 0 #111}.dg.main::-webkit-scrollbar{width:5px;background:#1a1a1a}.dg.main::-webkit-scrollbar-corner{height:0;display:none}.dg.main::-webkit-scrollbar-thumb{border-radius:5px;background:#676767}.dg li:not(.folder){background:#1a1a1a;border-bottom:1px solid #2c2c2c}.dg li.save-row{line-height:25px;background:#dad5cb;border:0}.dg li.save-row select{margin-left:5px;width:81pt}.dg li.save-row .button{margin-left:5px;margin-top:1px;border-radius:2px;font-size:9px;line-height:7px;padding:4px 4px 5px;background:#c5bdad;color:#fff;text-shadow:0 1px 0 #b0a58f;box-shadow:0 -1px 0 #b0a58f;cursor:pointer}.dg li.save-row .button.gears{background:#c5bdad url() 2px 1px no-repeat;height:7px;width:8px}.dg li.save-row .button:hover{background-color:#bab19e;box-shadow:0 -1px 0 #b0a58f}.dg li.folder{border-bottom:0}.dg li.title{padding-left:1pc;background:#000 url() 6px 10px no-repeat;cursor:pointer;border-bottom:1px solid hsla(0,0%,100%,.2)}.dg .closed li.title{background-image:url()}.dg .cr.boolean{border-left:3px solid #806787}.dg .cr.color{border-left:3px solid}.dg .cr.function{border-left:3px solid #e61d5f}.dg .cr.number{border-left:3px solid #2fa1d6}.dg .cr.number input[type=text]{color:#2fa1d6}.dg .cr.string{border-left:3px solid #1ed36f}.dg .cr.string input[type=text]{color:#1ed36f}.dg .cr.boolean:hover,.dg .cr.function:hover{background:#111}.dg .c input[type=text]{background:#303030;outline:0}.dg .c input[type=text]:hover{background:#3c3c3c}.dg .c input[type=text]:focus{background:#494949;color:#fff}.dg .c .slider{background:#303030;cursor:ew-resize}.dg .c .slider-fg{background:#2fa1d6;max-width:100%}.dg .c .slider:hover{background:#3c3c3c}.dg .c .slider:hover .slider-fg{background:#44abda}",""])},function(e,t){e.exports=function(){var e=[];return e.toString=function(){for(var e=[],t=0;t<this.length;t++){var n=this[t];n[2]?e.push("@media "+n[2]+"{"+n[1]+"}"):e.push(n[1])}return e.join("")},e.i=function(t,n){"string"==typeof t&&(t=[[null,t,""]]);for(var o={},i=0;i<this.length;i++){var a=this[i][0];"number"==typeof a&&(o[a]=!0)}for(i=0;i<t.length;i++){var r=t[i];"number"==typeof r[0]&&o[r[0]]||(n&&!r[2]?r[2]=n:n&&(r[2]="("+r[2]+") and ("+n+")"),e.push(r))}},e}}])});
dataloaders/pymo/mocapplayer/libs/threejs/three.min.js ADDED
The diff for this file is too large to render. See raw diff
 
dataloaders/pymo/mocapplayer/playBuffer.html ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <!-- GrooveNet Player - V 0.3
3
+ By Omid Alemi
4
+ -->
5
+ <html lang="en">
6
+
7
+ <head>
8
+ <title>BVH Player</title>
9
+ <meta charset="utf-8">
10
+ <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
11
+ <style>
12
+ body {
13
+ margin:0;
14
+ overflow: hidden;
15
+ }
16
+
17
+ #metaoverlay {
18
+ width: 600px;
19
+ height: 150px;
20
+ background-color: rgba(10,10,10,0.5);
21
+ position: fixed;
22
+ bottom: 30px;
23
+ margin: 0 auto;
24
+ left: 20px;
25
+ display: none;
26
+ border-radius: 10px;
27
+ }
28
+
29
+ #labels {
30
+ font-family: sans-serif;
31
+ width: 300px;
32
+ height: 50%;
33
+ color: #e1e1e1;
34
+ line-height: 1.5;
35
+ /* border: 1px solid #f1f1f1; */
36
+ display: flex;
37
+ margin: 20px;
38
+ padding: 10px;
39
+ }
40
+ .bar {
41
+ fill: rgba(80, 180, 240, 0.99);
42
+ }
43
+
44
+ svg {
45
+ /* border: 1px solid red; */
46
+ }
47
+ </style>
48
+ <link rel="stylesheet" href="styles/pace.css"></link>
49
+
50
+ <script src="https://d3js.org/d3.v4.min.js"></script>
51
+
52
+ <script src="libs/pace.min.js"></script>
53
+ <script src="libs/math.min.js"></script>
54
+ <script src="libs/jquery.min.js"></script>
55
+ <script src="libs/threejs/three.min.js"></script>
56
+ <script src="libs/threejs/OrbitControls.js"></script>
57
+ <script src="libs/papaparse.min.js"></script>
58
+
59
+ <script src="libs/mocapjs.js"></script>
60
+ <script src="js/skeletonFactory.js"></script>
61
+ </head>
62
+
63
+ <body>
64
+ <div id="metaoverlay">
65
+ <div id="labels"></div>
66
+ <div id="labelsChart"></div>
67
+ </div>
68
+
69
+ <script type="text/javascript">
70
+ var characters = [];
71
+ var playing = false;
72
+ var showMeta = false;
73
+ var metadata = [];
74
+ var chart = {};
75
+
76
+
77
+ $(document).on("keypress", function(e) {
78
+ if (e.charCode == 32)
79
+ playing = !playing;
80
+
81
+ characters.forEach(function(c) {
82
+ c.playing = playing;
83
+
84
+ if (playing)
85
+ c.animStartTimeRef = Date.now();
86
+ else
87
+ c.animOffset = c.animIndex;
88
+ });
89
+
90
+ });
91
+
92
+ $(window).on("resize", function(e) {
93
+ camera.aspect = window.innerWidth / window.innerHeight;
94
+ camera.updateProjectionMatrix();
95
+
96
+ renderer.setSize(window.innerWidth, window.innerHeight);
97
+ });
98
+
99
+ var getUrlParameter = function getUrlParameter(sParam) {
100
+ var sPageURL = decodeURIComponent(window.location.search.substring(1)),
101
+ sURLVariables = sPageURL.split('&'),
102
+ sParameterName,
103
+ i;
104
+
105
+ for (i = 0; i < sURLVariables.length; i++) {
106
+ sParameterName = sURLVariables[i].split('=');
107
+ if (sParameterName[0] === sParam) {
108
+ return sParameterName[1] === undefined ? true : sParameterName[1];
109
+ }
110
+ }
111
+ };
112
+ </script>
113
+
114
+ <script>
115
+ var scene, camera, renderer;
116
+ var geometry, material, mesh;
117
+ var played_count = 0;
118
+
119
+ function set_the_scene3() {
120
+
121
+ // Add the light
122
+ light = new THREE.PointLight(0xffffff, 0.9, 0);
123
+ light.position.set(0, 160, 40);
124
+ scene.add(light);
125
+
126
+ // Create a grid for the floor
127
+ var size = 200,
128
+ step = 20;
129
+
130
+ // Draw the plane
131
+ var planeGeometry = new THREE.PlaneGeometry(size * 2, size * 2);
132
+ var planeMaterial = new THREE.MeshPhongMaterial({
133
+ color: 0x444444,
134
+ emissive: 0x000000,
135
+ specular: 0x111111,
136
+ side: THREE.DoubleSide,
137
+ transparent: true,
138
+ opacity: 0.6
139
+ });
140
+ var plane = new THREE.Mesh(planeGeometry, planeMaterial);
141
+ plane.position.set(0, 0, 0);
142
+ plane.rotation.set(math.pi / 2, 0, 0);
143
+ scene.add(plane);
144
+
145
+ //Draw the lines
146
+ var lineGeometry = new THREE.Geometry();
147
+ var lineMaterial = new THREE.LineBasicMaterial({
148
+ color: 0x555555,
149
+ linewidth: 1.2
150
+ });
151
+ for (var i = -size; i <= size; i += step) {
152
+ lineGeometry.vertices.push(new THREE.Vector3(-size, -0.04, i));
153
+ lineGeometry.vertices.push(new THREE.Vector3(size, -0.04, i));
154
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, -size));
155
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, size));
156
+ }
157
+
158
+ var line = new THREE.LineSegments(lineGeometry, lineMaterial);
159
+ scene.add(line);
160
+ }
161
+
162
+ function add_basic_lights() {
163
+ // Add the light
164
+ var light = new THREE.HemisphereLight(0xffffff, 0x000000, 0.9);
165
+ scene.add(light);
166
+ }
167
+
168
+ function add_floor_theo() {
169
+ var textureLoader = new THREE.TextureLoader();
170
+
171
+ var texture = textureLoader.load('theo_floor1.jpg', function(tt) {
172
+ });
173
+
174
+ texture.wrapS = THREE.RepeatWrapping;
175
+ texture.wrapT = THREE.RepeatWrapping;
176
+ texture.repeat = new THREE.Vector2(1,1.66);
177
+
178
+
179
+ var material = new THREE.MeshPhongMaterial({
180
+ color: 0xffffff,
181
+ specular: 0xffffff,
182
+ shininess: 100,
183
+ map: texture,
184
+
185
+ });
186
+ var geometry = new THREE.CubeGeometry(300, 300, 5);
187
+
188
+ var mesh = new THREE.Mesh(geometry, material);
189
+ mesh.position.y = -2;
190
+ mesh.rotation.x = -Math.PI / 2;
191
+ scene.add(mesh);
192
+ }
193
+
194
+ function add_floor_grid(){
195
+ // Create a grid for the floor
196
+ var size = 400,
197
+ step = 40;
198
+
199
+ // Draw the plane
200
+ var planeGeometry = new THREE.PlaneGeometry(size * 2, size * 2);
201
+ var planeMaterial = new THREE.MeshPhongMaterial({
202
+ color: 0x212121,
203
+ emissive: 0x333333,
204
+ specular: 0x222222,
205
+ side: THREE.DoubleSide,
206
+ transparent: true,
207
+ opacity: 0.3
208
+ });
209
+ var plane = new THREE.Mesh(planeGeometry, planeMaterial);
210
+ plane.position.set(0, 0, 0);
211
+ plane.rotation.set(math.pi / 2, 0, 0);
212
+ scene.add(plane);
213
+
214
+ //Draw the lines
215
+ var lineGeometry = new THREE.Geometry();
216
+ var lineMaterial = new THREE.LineBasicMaterial({
217
+ color: 0x333333,
218
+ linewidth: 1.2
219
+ });
220
+ for (var i = -size; i <= size; i += step) {
221
+ lineGeometry.vertices.push(new THREE.Vector3(-size, -0.04, i));
222
+ lineGeometry.vertices.push(new THREE.Vector3(size, -0.04, i));
223
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, -size));
224
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, size));
225
+ }
226
+
227
+ var line = new THREE.LineSegments(lineGeometry, lineMaterial);
228
+ scene.add(line);
229
+ }
230
+
231
+ function init(cz) {
232
+ scene = new THREE.Scene();
233
+ camera = new THREE.PerspectiveCamera(30, window.innerWidth / window.innerHeight, 1, 4000);
234
+ camera.position.set(0, 250, 0);
235
+ camera.position.z = cz;
236
+ scene.add(camera);
237
+
238
+ // set_the_scene3();
239
+ }
240
+
241
+ function loadBVHFile(bvhURL, cname, jm, bm, scale) {
242
+ var c2 = new BVHCharacter(cname, jm, bm, makeJointGeometry_Dode, makeBoneGeometry_Cylinder2);
243
+ // c2.setOriginPosition(0, 0, 0);
244
+ c2.skelScale = scale;
245
+ c2.loadFromURL(bvhURL, function() {
246
+ scene.add(c2.skeleton);
247
+ });
248
+
249
+ characters.push(c2);
250
+ }
251
+
252
+ function loadPosFile(csvURL, cname, jm, bm, scale, fr) {
253
+ var c2 = new C3DCharacter(cname, markermaterial, makeJointGeometry_Sphere1);
254
+ // c2.setOriginPosition(0, 0, 0);
255
+ c2.scale = scale;
256
+ c2.frameTime = fr;
257
+ c2.loadFromURL(csvURL, function() {});
258
+
259
+ characters.push(c2);
260
+ }
261
+
262
+ function loadPosBuffer(data, cname, jm, bm, scale, fr) {
263
+ var c2 = new C3DCharacter(cname, bonematerial5, makeJointGeometry_SphereX(2.5));
264
+ // c2.setOriginPosition(0, 0, 0);
265
+ c2.scale = scale;
266
+ c2.frameTime = fr;
267
+ c2.loadFromBuffer(data, function() {});
268
+
269
+ characters.push(c2);
270
+ }
271
+
272
+ function initRenderer() {
273
+ renderer = new THREE.WebGLRenderer({
274
+ antialias: true
275
+ });
276
+ renderer.setSize(window.innerWidth, window.innerHeight);
277
+ //renderer.setSize(600, 500);
278
+ renderer.gammaInput = true;
279
+ renderer.gammaOutput = true;
280
+ renderer.setPixelRatio(window.devicePixelRatio);
281
+ renderer.setClearColor(0x222222, 1);
282
+ // renderer.setClearColor(0xffffff, 1);
283
+
284
+
285
+ document.body.appendChild(renderer.domElement);
286
+
287
+ controls = new THREE.OrbitControls(camera, renderer.domElement);
288
+ }
289
+
290
+ function animate() {
291
+ // if (!playing)
292
+ // return;
293
+
294
+ requestAnimationFrame(animate);
295
+
296
+ characters.forEach(function(c) {
297
+ // console.log(c.playing);
298
+ if (1 && c.ready) {
299
+ if (c.playing) {
300
+ c.animIndex = c.animOffset + Math.floor((Date.now() - c.animStartTimeRef) / c.frameTime / 1000);
301
+
302
+ if (c.animIndex >= c.frameCount-1) {
303
+ c.animOffset = 0;
304
+ c.animStartTimeRef = Date.now();
305
+ c.animIndex = 0;
306
+ played_count++;
307
+ // if (played_count> 1)
308
+ // c.playing = false;
309
+
310
+ }
311
+ c.animFrame(c.animIndex);
312
+
313
+ if (showMeta) {
314
+ var labeldata = '';
315
+ for (var i=0; i<metadata[c.animIndex].length;i++) {
316
+ var v = Math.round(metadata[c.animIndex][i]*100)/100;
317
+ labeldata+= 'Label '+i+ ': '+ v+'<br/>';
318
+ }
319
+ document.getElementById('labels').innerHTML = labeldata;
320
+
321
+ updateChart(metadata[c.animIndex]);
322
+ }
323
+ }
324
+ }
325
+ });
326
+
327
+ renderer.render(scene, camera);
328
+ }
329
+
330
+ function makeLabelsChart() {
331
+ var metadataFrame = metadata[0];
332
+
333
+ chart.width = 200;
334
+ chart.height = 150;
335
+
336
+ chart.svg = d3.select("#labelsChart")
337
+ .append("svg")
338
+ .attr("width", 200)
339
+ .attr("height", 150);
340
+
341
+ chart.x = d3.scaleBand().rangeRound([0, chart.width]).padding(0.1),
342
+ chart.y = d3.scaleLinear().rangeRound([chart.height, 0]),
343
+ chart.h = d3.scaleLinear().rangeRound([0, chart.height/2]);;
344
+
345
+ chart.x.domain([0, 1, 2, 3]);
346
+ chart.y.domain([-2, 2]);
347
+ chart.h.domain([0, 2]);
348
+
349
+ var g = chart.svg.append("g");
350
+
351
+ g.append("line")
352
+ .attr('x1', 0)
353
+ .attr('x2', chart.width)
354
+ .attr('y1', chart.height/2)
355
+ .attr('y2', chart.height/2)
356
+ .attr('stroke', '#f1f1f1');
357
+
358
+ g.selectAll(".bar")
359
+ .data(metadataFrame)
360
+ .enter().append("rect")
361
+ .attr("class", "bar")
362
+ .attr("x", function(d, i) { return chart.x(i); })
363
+ .attr("y", function(d, i) { return chart.y(Math.max(0, d)); })
364
+ .attr("width", 20)
365
+ .attr("height", function(d) { return chart.h(Math.abs(d)); });
366
+ }
367
+
368
+ function updateChart(metadataFrame) {
369
+ var g = chart.svg.select("g");
370
+
371
+ g.selectAll(".bar")
372
+ .data(metadataFrame)
373
+ .attr("class", "bar")
374
+ .attr("x", function(d, i) { return chart.x(i); })
375
+ .attr("y", function(d, i) { return chart.y(Math.max(0, d)); })
376
+ .attr("width", 20)
377
+ .attr("height", function(d) { return chart.h(Math.abs(d)); });
378
+ }
379
+
380
+ function start(dataBuffer, metadata, cz, scale, frameTime) {
381
+ if (cz === undefined)
382
+ cz = 550;
383
+
384
+ if (scale === undefined)
385
+ scale = 1.0;
386
+
387
+ if (frameTime === undefined)
388
+ frameTime = 1/120;
389
+
390
+ init(cz);
391
+ add_basic_lights();
392
+ add_floor_grid();
393
+ initRenderer();
394
+
395
+ if (metadata.length > 1 ) {
396
+ showMeta = true;
397
+ document.getElementById("metaoverlay").style.display="flex";
398
+ // console.log(metadata.length);
399
+ makeLabelsChart();
400
+ }
401
+
402
+ if (dataBuffer !== undefined) {
403
+ console.log("Loading from internal bufffer");
404
+ // console.log(dataBuffer.length);
405
+ loadPosBuffer(dataBuffer, 'Fig', jointmaterial4, bm_a, scale, frameTime);
406
+
407
+ }
408
+
409
+
410
+
411
+ animate();
412
+ }
413
+ </script>
414
+
415
+ <script src="data.js"></script>
416
+ </body>
417
+
418
+ </html>
dataloaders/pymo/mocapplayer/playURL.html ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <!-- GrooveNet Player - V 0.3
3
+ By Omid Alemi
4
+ -->
5
+ <html lang="en">
6
+
7
+ <head>
8
+ <title>BVH Player</title>
9
+ <meta charset="utf-8">
10
+ <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
11
+ <style>
12
+
13
+ </style>
14
+ <link rel="stylesheet" href="styles/pace.css"></link>
15
+
16
+ <script src="libs/pace.min.js"></script>
17
+ <script src="libs/math.min.js"></script>
18
+ <script src="libs/jquery.min.js"></script>
19
+ <script src="libs/threejs/three.min.js"></script>
20
+ <script src="libs/threejs/OrbitControls.js"></script>
21
+ <script src="libs/papaparse.min.js"></script>
22
+
23
+ <script src="libs/mocapjs.js"></script>
24
+ <script src="js/skeletonFactory.js"></script>
25
+ </head>
26
+
27
+ <body>
28
+ <script type="text/javascript">
29
+ var characters = [];
30
+ var playing = false;
31
+
32
+
33
+ $(document).on("keypress", function(e) {
34
+ if (e.charCode == 32)
35
+ playing = !playing;
36
+
37
+ characters.forEach(function(c) {
38
+ c.playing = playing;
39
+
40
+ if (playing)
41
+ c.animStartTimeRef = Date.now();
42
+ else
43
+ c.animOffset = c.animIndex;
44
+ });
45
+
46
+ });
47
+
48
+ $(window).on("resize", function(e) {
49
+ camera.aspect = window.innerWidth / window.innerHeight;
50
+ camera.updateProjectionMatrix();
51
+
52
+ renderer.setSize(window.innerWidth, window.innerHeight);
53
+ });
54
+
55
+ var getUrlParameter = function getUrlParameter(sParam) {
56
+ var sPageURL = decodeURIComponent(window.location.search.substring(1)),
57
+ sURLVariables = sPageURL.split('&'),
58
+ sParameterName,
59
+ i;
60
+
61
+ for (i = 0; i < sURLVariables.length; i++) {
62
+ sParameterName = sURLVariables[i].split('=');
63
+ if (sParameterName[0] === sParam) {
64
+ return sParameterName[1] === undefined ? true : sParameterName[1];
65
+ }
66
+ }
67
+ };
68
+ </script>
69
+
70
+ <script>
71
+ var scene, camera, renderer;
72
+ var geometry, material, mesh;
73
+ var played_count = 0;
74
+
75
+ function set_the_scene3() {
76
+
77
+ // Add the light
78
+ light = new THREE.PointLight(0xffffff, 0.9, 0);
79
+ light.position.set(0, 160, 40);
80
+ scene.add(light);
81
+
82
+ // Create a grid for the floor
83
+ var size = 200,
84
+ step = 20;
85
+
86
+ // Draw the plane
87
+ var planeGeometry = new THREE.PlaneGeometry(size * 2, size * 2);
88
+ var planeMaterial = new THREE.MeshPhongMaterial({
89
+ color: 0x444444,
90
+ emissive: 0x000000,
91
+ specular: 0x111111,
92
+ side: THREE.DoubleSide,
93
+ transparent: true,
94
+ opacity: 0.6
95
+ });
96
+ var plane = new THREE.Mesh(planeGeometry, planeMaterial);
97
+ plane.position.set(0, 0, 0);
98
+ plane.rotation.set(math.pi / 2, 0, 0);
99
+ scene.add(plane);
100
+
101
+ //Draw the lines
102
+ var lineGeometry = new THREE.Geometry();
103
+ var lineMaterial = new THREE.LineBasicMaterial({
104
+ color: 0x555555,
105
+ linewidth: 1.2
106
+ });
107
+ for (var i = -size; i <= size; i += step) {
108
+ lineGeometry.vertices.push(new THREE.Vector3(-size, -0.04, i));
109
+ lineGeometry.vertices.push(new THREE.Vector3(size, -0.04, i));
110
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, -size));
111
+ lineGeometry.vertices.push(new THREE.Vector3(i, -0.04, size));
112
+ }
113
+
114
+ var line = new THREE.LineSegments(lineGeometry, lineMaterial);
115
+ scene.add(line);
116
+ }
117
+
118
+ function add_basic_lights() {
119
+ // Add the light
120
+ var light = new THREE.HemisphereLight(0xffffff, 0x000000, 0.8);
121
+ scene.add(light);
122
+ }
123
+
124
+ function add_floor_theo() {
125
+ var textureLoader = new THREE.TextureLoader();
126
+
127
+ var texture = textureLoader.load('theo_floor1.jpg', function(tt) {
128
+ });
129
+
130
+ texture.wrapS = THREE.RepeatWrapping;
131
+ texture.wrapT = THREE.RepeatWrapping;
132
+ texture.repeat = new THREE.Vector2(1,1.66);
133
+
134
+
135
+ var material = new THREE.MeshPhongMaterial({
136
+ color: 0xffffff,
137
+ specular: 0xffffff,
138
+ shininess: 100,
139
+ map: texture,
140
+
141
+ });
142
+ var geometry = new THREE.CubeGeometry(300, 300, 5);
143
+
144
+ var mesh = new THREE.Mesh(geometry, material);
145
+ mesh.position.y = -2;
146
+ mesh.rotation.x = -Math.PI / 2;
147
+ scene.add(mesh);
148
+ }
149
+
150
+ function init(cz) {
151
+ scene = new THREE.Scene();
152
+ camera = new THREE.PerspectiveCamera(30, window.innerWidth / window.innerHeight, 1, 4000);
153
+ camera.position.set(0, 80, 0);
154
+ camera.position.z = cz;
155
+ scene.add(camera);
156
+
157
+ // set_the_scene3();
158
+ }
159
+
160
+ function loadBVHFile(bvhURL, cname, jm, bm, scale) {
161
+ var c2 = new BVHCharacter(cname, jm, bm, makeJointGeometry_Dode, makeBoneGeometry_Cylinder2);
162
+ // c2.setOriginPosition(0, 0, 0);
163
+ c2.skelScale = scale;
164
+ c2.loadFromURL(bvhURL, function() {
165
+ scene.add(c2.skeleton);
166
+ });
167
+
168
+ characters.push(c2);
169
+ }
170
+
171
+ function loadPosFile(csvURL, cname, jm, bm, scale, fr) {
172
+ var c2 = new C3DCharacter(cname, markermaterial, makeJointGeometry_Sphere2);
173
+ // c2.setOriginPosition(0, 0, 0);
174
+ c2.scale = scale;
175
+ c2.frameTime = fr;
176
+ c2.loadFromURL(csvURL, function() {});
177
+
178
+ characters.push(c2);
179
+ }
180
+
181
+ function initRenderer() {
182
+ renderer = new THREE.WebGLRenderer({
183
+ antialias: true
184
+ });
185
+ renderer.setSize(window.innerWidth, window.innerHeight);
186
+ //renderer.setSize(600, 500);
187
+ renderer.gammaInput = true;
188
+ renderer.gammaOutput = true;
189
+ renderer.setPixelRatio(window.devicePixelRatio);
190
+ // renderer.setClearColor(0xdddddd, 1);
191
+ renderer.setClearColor(0xffffff, 1);
192
+
193
+
194
+ document.body.appendChild(renderer.domElement);
195
+
196
+ controls = new THREE.OrbitControls(camera, renderer.domElement);
197
+ }
198
+
199
+ function animate() {
200
+ // if (!playing)
201
+ // return;
202
+
203
+ requestAnimationFrame(animate);
204
+
205
+ characters.forEach(function(c) {
206
+ // console.log(c.playing);
207
+ if (1 && c.ready) {
208
+ if (c.playing) {
209
+ c.animIndex = c.animOffset + Math.floor((Date.now() - c.animStartTimeRef) / c.frameTime / 1000);
210
+
211
+ if (c.animIndex >= c.frameCount) {
212
+ c.animOffset = 0;
213
+ c.animStartTimeRef = Date.now();
214
+ c.animIndex = 0;
215
+ played_count++;
216
+ // if (played_count> 1)
217
+ // c.playing = false;
218
+
219
+ }
220
+ c.animFrame(c.animIndex);
221
+ }
222
+ }
223
+ });
224
+
225
+ renderer.render(scene, camera);
226
+ }
227
+
228
+
229
+ $(document).ready(function () {
230
+ var dataURL = getUrlParameter('data_url');
231
+ var cz = getUrlParameter('cz');
232
+ var scale = getUrlParameter('scale');
233
+ var frameTime = getUrlParameter('frame_time');
234
+
235
+ if (cz === undefined)
236
+ cz = 550;
237
+
238
+ if (scale === undefined)
239
+ scale = 1.0;
240
+
241
+ if (frameTime === undefined)
242
+ frameTime = 1/120;
243
+
244
+ init(cz);
245
+ add_basic_lights();
246
+ add_floor_theo();
247
+ initRenderer();
248
+
249
+ if (dataURL !== undefined) {
250
+ console.log("Loading " + dataURL);
251
+
252
+ if (dataURL.endsWith('.bvh'))
253
+ loadBVHFile(dataURL, 'Fig', jm_a, bm_a, scale);
254
+ else if (dataURL.endsWith('.csv'))
255
+ loadPosFile(dataURL, 'Fig', jm_a, bm_a, scale, frameTime);
256
+ else
257
+ console.error('Unsupport file.');
258
+ }
259
+
260
+
261
+
262
+ animate();
263
+ });
264
+
265
+
266
+ </script>
267
+ </body>
268
+
269
+ </html>
dataloaders/pymo/mocapplayer/styles/pace.css ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .pace {
2
+ -webkit-pointer-events: none;
3
+ pointer-events: none;
4
+ -webkit-user-select: none;
5
+ -moz-user-select: none;
6
+ user-select: none;
7
+ }
8
+
9
+ .pace-inactive {
10
+ display: none;
11
+ }
12
+
13
+ .pace .pace-progress {
14
+ background: #29d;
15
+ position: fixed;
16
+ z-index: 2000;
17
+ top: 0;
18
+ right: 100%;
19
+ width: 100%;
20
+ height: 2px;
21
+ }
22
+
23
+ .pace .pace-progress-inner {
24
+ display: block;
25
+ position: absolute;
26
+ right: 0px;
27
+ width: 100px;
28
+ height: 100%;
29
+ box-shadow: 0 0 10px #29d, 0 0 5px #29d;
30
+ opacity: 1.0;
31
+ -webkit-transform: rotate(3deg) translate(0px, -4px);
32
+ -moz-transform: rotate(3deg) translate(0px, -4px);
33
+ -ms-transform: rotate(3deg) translate(0px, -4px);
34
+ -o-transform: rotate(3deg) translate(0px, -4px);
35
+ transform: rotate(3deg) translate(0px, -4px);
36
+ }
37
+
38
+ .pace .pace-activity {
39
+ display: block;
40
+ position: fixed;
41
+ z-index: 2000;
42
+ top: 15px;
43
+ right: 20px;
44
+ width: 34px;
45
+ height: 34px;
46
+ border: solid 2px transparent;
47
+ border-top-color: #9ea7ac;
48
+ border-left-color: #9ea7ac;
49
+ border-radius: 30px;
50
+ -webkit-animation: pace-spinner 700ms linear infinite;
51
+ -moz-animation: pace-spinner 700ms linear infinite;
52
+ -ms-animation: pace-spinner 700ms linear infinite;
53
+ -o-animation: pace-spinner 700ms linear infinite;
54
+ animation: pace-spinner 700ms linear infinite;
55
+ }
56
+
57
+ @-webkit-keyframes pace-spinner {
58
+ 0% { -webkit-transform: rotate(0deg); transform: rotate(0deg); }
59
+ 100% { -webkit-transform: rotate(360deg); transform: rotate(360deg); }
60
+ }
61
+ @-moz-keyframes pace-spinner {
62
+ 0% { -moz-transform: rotate(0deg); transform: rotate(0deg); }
63
+ 100% { -moz-transform: rotate(360deg); transform: rotate(360deg); }
64
+ }
65
+ @-o-keyframes pace-spinner {
66
+ 0% { -o-transform: rotate(0deg); transform: rotate(0deg); }
67
+ 100% { -o-transform: rotate(360deg); transform: rotate(360deg); }
68
+ }
69
+ @-ms-keyframes pace-spinner {
70
+ 0% { -ms-transform: rotate(0deg); transform: rotate(0deg); }
71
+ 100% { -ms-transform: rotate(360deg); transform: rotate(360deg); }
72
+ }
73
+ @keyframes pace-spinner {
74
+ 0% { transform: rotate(0deg); transform: rotate(0deg); }
75
+ 100% { transform: rotate(360deg); transform: rotate(360deg); }
76
+ }
dataloaders/pymo/parsers.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ BVH Parser Class
3
+
4
+ By Omid Alemi
5
+ Created: June 12, 2017
6
+
7
+ Based on: https://gist.github.com/johnfredcee/2007503
8
+
9
+ '''
10
+ import re
11
+ from unicodedata import name
12
+ import numpy as np
13
+ from .data import Joint, MocapData
14
+
15
+ class BVHScanner():
16
+ '''
17
+ A wrapper class for re.Scanner
18
+ '''
19
+ def __init__(self):
20
+
21
+ def identifier(scanner, token):
22
+ return 'IDENT', token
23
+
24
+ def operator(scanner, token):
25
+ return 'OPERATOR', token
26
+
27
+ def digit(scanner, token):
28
+ return 'DIGIT', token
29
+
30
+ def open_brace(scanner, token):
31
+ return 'OPEN_BRACE', token
32
+
33
+ def close_brace(scanner, token):
34
+ return 'CLOSE_BRACE', token
35
+
36
+ self.scanner = re.Scanner([
37
+ (r'[a-zA-Z_]\w*', identifier),
38
+ #(r'-*[0-9]+(\.[0-9]+)?', digit), # won't work for .34
39
+ #(r'[-+]?[0-9]*\.?[0-9]+', digit), # won't work for 4.56e-2
40
+ #(r'[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?', digit),
41
+ (r'-*[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?', digit),
42
+ (r'}', close_brace),
43
+ (r'}', close_brace),
44
+ (r'{', open_brace),
45
+ (r':', None),
46
+ (r'\s+', None)
47
+ ])
48
+
49
+ def scan(self, stuff):
50
+ return self.scanner.scan(stuff)
51
+
52
+
53
+
54
+ class BVHParser():
55
+ '''
56
+ A class to parse a BVH file.
57
+
58
+ Extracts the skeleton and channel values
59
+ '''
60
+ def __init__(self, filename=None):
61
+ self.reset()
62
+
63
+ def reset(self):
64
+ self._skeleton = {}
65
+ self.bone_context = []
66
+ self._motion_channels = []
67
+ self._motions = []
68
+ self.current_token = 0
69
+ self.framerate = 0.0
70
+ self.root_name = ''
71
+
72
+ self.scanner = BVHScanner()
73
+
74
+ self.data = MocapData()
75
+
76
+
77
+ def parse(self, filename, start=0, stop=-1):
78
+ self.reset()
79
+ self.correct_row_num = 0
80
+ with open(filename, 'r') as f:
81
+ for line in f.readlines():
82
+ self.correct_row_num += 1
83
+
84
+ with open(filename, 'r') as bvh_file:
85
+ raw_contents = bvh_file.read()
86
+ tokens, remainder = self.scanner.scan(raw_contents)
87
+
88
+ self._parse_hierarchy(tokens)
89
+ self.current_token = self.current_token + 1
90
+ self._parse_motion(tokens, start, stop)
91
+
92
+ self.data.skeleton = self._skeleton
93
+ self.data.channel_names = self._motion_channels
94
+ self.data.values = self._to_DataFrame()
95
+ self.data.root_name = self.root_name
96
+ self.data.framerate = self.framerate
97
+
98
+ return self.data
99
+
100
+ def _to_DataFrame(self):
101
+ '''Returns all of the channels parsed from the file as a pandas DataFrame'''
102
+
103
+ import pandas as pd
104
+ time_index = pd.to_timedelta([f[0] for f in self._motions], unit='s')
105
+ frames = [f[1] for f in self._motions]
106
+ channels = np.asarray([[channel[2] for channel in frame] for frame in frames])
107
+ column_names = ['%s_%s'%(c[0], c[1]) for c in self._motion_channels]
108
+
109
+ return pd.DataFrame(data=channels, index=time_index, columns=column_names)
110
+
111
+
112
+ def _new_bone(self, parent, name):
113
+ bone = {'parent': parent, 'channels': [], 'offsets': [], 'order': '','children': []}
114
+ return bone
115
+
116
+ def _push_bone_context(self,name):
117
+ self.bone_context.append(name)
118
+
119
+ def _get_bone_context(self):
120
+ return self.bone_context[len(self.bone_context)-1]
121
+
122
+ def _pop_bone_context(self):
123
+ self.bone_context = self.bone_context[:-1]
124
+ return self.bone_context[len(self.bone_context)-1]
125
+
126
+ def _read_offset(self, bvh, token_index):
127
+ if bvh[token_index] != ('IDENT', 'OFFSET'):
128
+ return None, None
129
+ token_index = token_index + 1
130
+ offsets = [0.0] * 3
131
+ for i in range(3):
132
+ offsets[i] = float(bvh[token_index][1])
133
+ token_index = token_index + 1
134
+ return offsets, token_index
135
+
136
+ def _read_channels(self, bvh, token_index):
137
+ if bvh[token_index] != ('IDENT', 'CHANNELS'):
138
+ return None, None
139
+ token_index = token_index + 1
140
+ channel_count = int(bvh[token_index][1])
141
+ token_index = token_index + 1
142
+ channels = [""] * channel_count
143
+ order = ""
144
+ for i in range(channel_count):
145
+ channels[i] = bvh[token_index][1]
146
+ token_index = token_index + 1
147
+ if(channels[i] == "Xrotation" or channels[i]== "Yrotation" or channels[i]== "Zrotation"):
148
+ order += channels[i][0]
149
+ else :
150
+ order = ""
151
+ return channels, token_index, order
152
+
153
+ def _parse_joint(self, bvh, token_index):
154
+ end_site = False
155
+ joint_id = bvh[token_index][1]
156
+ token_index = token_index + 1
157
+ joint_name = bvh[token_index][1]
158
+ token_index = token_index + 1
159
+
160
+ parent_name = self._get_bone_context()
161
+
162
+ if (joint_id == "End"):
163
+ joint_name = parent_name+ '_Nub'
164
+ end_site = True
165
+ joint = self._new_bone(parent_name, joint_name)
166
+ if bvh[token_index][0] != 'OPEN_BRACE':
167
+ print('Was expecting brance, got ', bvh[token_index])
168
+ return None
169
+ token_index = token_index + 1
170
+ offsets, token_index = self._read_offset(bvh, token_index)
171
+ joint['offsets'] = offsets
172
+ if not end_site:
173
+ channels, token_index, order = self._read_channels(bvh, token_index)
174
+ joint['channels'] = channels
175
+ joint['order'] = order
176
+ for channel in channels:
177
+ self._motion_channels.append((joint_name, channel))
178
+
179
+ self._skeleton[joint_name] = joint
180
+ self._skeleton[parent_name]['children'].append(joint_name)
181
+
182
+ while (bvh[token_index][0] == 'IDENT' and bvh[token_index][1] == 'JOINT') or (bvh[token_index][0] == 'IDENT' and bvh[token_index][1] == 'End'):
183
+ self._push_bone_context(joint_name)
184
+ token_index = self._parse_joint(bvh, token_index)
185
+ self._pop_bone_context()
186
+
187
+ if bvh[token_index][0] == 'CLOSE_BRACE':
188
+ return token_index + 1
189
+
190
+ print('Unexpected token ', bvh[token_index])
191
+
192
+ def _parse_hierarchy(self, bvh):
193
+ self.current_token = 0
194
+ if bvh[self.current_token] != ('IDENT', 'HIERARCHY'):
195
+ return None
196
+ self.current_token = self.current_token + 1
197
+ if bvh[self.current_token] != ('IDENT', 'ROOT'):
198
+ return None
199
+ self.current_token = self.current_token + 1
200
+ if bvh[self.current_token][0] != 'IDENT':
201
+ return None
202
+
203
+ root_name = bvh[self.current_token][1]
204
+ root_bone = self._new_bone(None, root_name)
205
+ self.current_token = self.current_token + 2 #skipping open brace
206
+ offsets, self.current_token = self._read_offset(bvh, self.current_token)
207
+ channels, self.current_token, order = self._read_channels(bvh, self.current_token)
208
+ root_bone['offsets'] = offsets
209
+ root_bone['channels'] = channels
210
+ root_bone['order'] = order
211
+ self._skeleton[root_name] = root_bone
212
+ self._push_bone_context(root_name)
213
+
214
+ for channel in channels:
215
+ self._motion_channels.append((root_name, channel))
216
+
217
+ while bvh[self.current_token][1] == 'JOINT':
218
+ self.current_token = self._parse_joint(bvh, self.current_token)
219
+
220
+ self.root_name = root_name
221
+
222
+ def _parse_motion(self, bvh, start, stop):
223
+ if bvh[self.current_token][0] != 'IDENT':
224
+ print('Unexpected text')
225
+ return None
226
+ if bvh[self.current_token][1] != 'MOTION':
227
+ print('No motion section')
228
+ return None
229
+ self.current_token = self.current_token + 1
230
+ if bvh[self.current_token][1] != 'Frames':
231
+ return None
232
+ self.current_token = self.current_token + 1
233
+ frame_count = int(bvh[self.current_token][1])
234
+
235
+ if stop<0 or stop>frame_count:
236
+ stop = min(frame_count, self.correct_row_num-431)
237
+
238
+ assert(start>=0)
239
+ assert(start<stop)
240
+
241
+ self.current_token = self.current_token + 1
242
+ if bvh[self.current_token][1] != 'Frame':
243
+ return None
244
+ self.current_token = self.current_token + 1
245
+ if bvh[self.current_token][1] != 'Time':
246
+ return None
247
+ self.current_token = self.current_token + 1
248
+ frame_rate = float(bvh[self.current_token][1])
249
+
250
+ self.framerate = frame_rate
251
+
252
+ self.current_token = self.current_token + 1
253
+
254
+ frame_time = 0.0
255
+ self._motions = [()] * (stop-start)
256
+ idx=0
257
+ for i in range(stop):
258
+ #print(i)
259
+ channel_values = []
260
+
261
+ for channel in self._motion_channels:
262
+ #print(channel)
263
+ channel_values.append((channel[0], channel[1], float(bvh[self.current_token][1])))
264
+ self.current_token = self.current_token + 1
265
+
266
+ if i>=start:
267
+ self._motions[idx] = (frame_time, channel_values)
268
+ frame_time = frame_time + frame_rate
269
+ idx+=1
270
+
271
+
272
+ if __name__ == "__main__":
273
+ p = BVHParser()
274
+ data = [p.parse("../../../datasets/beat_full/2/2_scott_0_1_1.bvh")]
dataloaders/pymo/preprocessing.py ADDED
@@ -0,0 +1,726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Preprocessing Tranformers Based on sci-kit's API
3
+
4
+ By Omid Alemi
5
+ Created on June 12, 2017
6
+ '''
7
+ import copy
8
+ import pandas as pd
9
+ import numpy as np
10
+ from sklearn.base import BaseEstimator, TransformerMixin
11
+ from .Quaternions import Quaternions
12
+ from .rotation_tools import Rotation
13
+
14
+ class MocapParameterizer(BaseEstimator, TransformerMixin):
15
+ def __init__(self, param_type = 'euler'):
16
+ '''
17
+
18
+ param_type = {'euler', 'quat', 'expmap', 'position'}
19
+ '''
20
+ self.param_type = param_type
21
+
22
+ def fit(self, X, y=None):
23
+ return self
24
+
25
+ def transform(self, X, y=None):
26
+ if self.param_type == 'euler':
27
+ return X
28
+ elif self.param_type == 'expmap':
29
+ return self._to_expmap(X)
30
+ elif self.param_type == 'quat':
31
+ return X
32
+ elif self.param_type == 'position':
33
+ return self._to_pos(X)
34
+ else:
35
+ raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type)
36
+ # return X
37
+
38
+ def inverse_transform(self, X, copy=None):
39
+ if self.param_type == 'euler':
40
+ return X
41
+ elif self.param_type == 'expmap':
42
+ return self._expmap_to_euler(X)
43
+ elif self.param_type == 'quat':
44
+ raise UnsupportedParamError('quat2euler is not supported')
45
+ elif self.param_type == 'position':
46
+ print('positions 2 eulers is not supported')
47
+ return X
48
+ else:
49
+ raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type)
50
+
51
+ def _to_pos(self, X):
52
+ '''Converts joints rotations in Euler angles to joint positions'''
53
+
54
+ Q = []
55
+ for track in X:
56
+ channels = []
57
+ titles = []
58
+ euler_df = track.values
59
+
60
+ # Create a new DataFrame to store the exponential map rep
61
+ pos_df = pd.DataFrame(index=euler_df.index)
62
+
63
+ # Copy the root rotations into the new DataFrame
64
+ # rxp = '%s_Xrotation'%track.root_name
65
+ # ryp = '%s_Yrotation'%track.root_name
66
+ # rzp = '%s_Zrotation'%track.root_name
67
+ # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index)
68
+ # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index)
69
+ # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index)
70
+
71
+ # List the columns that contain rotation channels
72
+ rot_cols = [c for c in euler_df.columns if ('rotation' in c)]
73
+
74
+ # List the columns that contain position channels
75
+ pos_cols = [c for c in euler_df.columns if ('position' in c)]
76
+
77
+ # List the joints that are not end sites, i.e., have channels
78
+ joints = (joint for joint in track.skeleton)
79
+
80
+ tree_data = {}
81
+
82
+ for joint in track.traverse():
83
+ parent = track.skeleton[joint]['parent']
84
+ rot_order = track.skeleton[joint]['order']
85
+ #print("rot_order:" + joint + " :" + rot_order)
86
+
87
+ # Get the rotation columns that belong to this joint
88
+ rc = euler_df[[c for c in rot_cols if joint in c]]
89
+
90
+ # Get the position columns that belong to this joint
91
+ pc = euler_df[[c for c in pos_cols if joint in c]]
92
+
93
+ # Make sure the columns are organized in xyz order
94
+ if rc.shape[1] < 3:
95
+ euler_values = np.zeros((euler_df.shape[0], 3))
96
+ rot_order = "XYZ"
97
+ else:
98
+ euler_values = np.pi/180.0*np.transpose(np.array([track.values['%s_%srotation'%(joint, rot_order[0])], track.values['%s_%srotation'%(joint, rot_order[1])], track.values['%s_%srotation'%(joint, rot_order[2])]]))
99
+
100
+ if pc.shape[1] < 3:
101
+ pos_values = np.asarray([[0,0,0] for f in pc.iterrows()])
102
+ else:
103
+ pos_values =np.asarray([[f[1]['%s_Xposition'%joint],
104
+ f[1]['%s_Yposition'%joint],
105
+ f[1]['%s_Zposition'%joint]] for f in pc.iterrows()])
106
+
107
+ quats = Quaternions.from_euler(np.asarray(euler_values), order=rot_order.lower(), world=False)
108
+
109
+ tree_data[joint]=[
110
+ [], # to store the rotation matrix
111
+ [] # to store the calculated position
112
+ ]
113
+ if track.root_name == joint:
114
+ tree_data[joint][0] = quats#rotmats
115
+ # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets'])
116
+ tree_data[joint][1] = pos_values
117
+ else:
118
+ # for every frame i, multiply this joint's rotmat to the rotmat of its parent
119
+ tree_data[joint][0] = tree_data[parent][0]*quats# np.matmul(rotmats, tree_data[parent][0])
120
+
121
+ # add the position channel to the offset and store it in k, for every frame i
122
+ k = pos_values + np.asarray(track.skeleton[joint]['offsets'])
123
+
124
+ # multiply k to the rotmat of the parent for every frame i
125
+ q = tree_data[parent][0]*k #np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0])
126
+
127
+ # add q to the position of the parent, for every frame i
128
+ tree_data[joint][1] = tree_data[parent][1] + q #q.reshape(k.shape[0],3) + tree_data[parent][1]
129
+
130
+ # Create the corresponding columns in the new DataFrame
131
+ pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index)
132
+ pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index)
133
+ pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index)
134
+
135
+
136
+ new_track = track.clone()
137
+ new_track.values = pos_df
138
+ Q.append(new_track)
139
+ return Q
140
+
141
+
142
+ def _to_expmap(self, X):
143
+ '''Converts Euler angles to Exponential Maps'''
144
+
145
+ Q = []
146
+ for track in X:
147
+ channels = []
148
+ titles = []
149
+ euler_df = track.values
150
+
151
+ # Create a new DataFrame to store the exponential map rep
152
+ exp_df = pd.DataFrame(index=euler_df.index)
153
+
154
+ # Copy the root positions into the new DataFrame
155
+ rxp = '%s_Xposition'%track.root_name
156
+ ryp = '%s_Yposition'%track.root_name
157
+ rzp = '%s_Zposition'%track.root_name
158
+ exp_df[rxp] = pd.Series(data=euler_df[rxp], index=exp_df.index)
159
+ exp_df[ryp] = pd.Series(data=euler_df[ryp], index=exp_df.index)
160
+ exp_df[rzp] = pd.Series(data=euler_df[rzp], index=exp_df.index)
161
+
162
+ # List the columns that contain rotation channels
163
+ rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)]
164
+
165
+ # List the joints that are not end sites, i.e., have channels
166
+ joints = (joint for joint in track.skeleton if 'Nub' not in joint)
167
+
168
+ for joint in joints:
169
+ r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint
170
+ euler = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order
171
+ exps = [Rotation(f, 'euler', from_deg=True).to_expmap() for f in euler] # Convert the eulers to exp maps
172
+
173
+ # Create the corresponding columns in the new DataFrame
174
+
175
+ exp_df['%s_alpha'%joint] = pd.Series(data=[e[0] for e in exps], index=exp_df.index)
176
+ exp_df['%s_beta'%joint] = pd.Series(data=[e[1] for e in exps], index=exp_df.index)
177
+ exp_df['%s_gamma'%joint] = pd.Series(data=[e[2] for e in exps], index=exp_df.index)
178
+
179
+ new_track = track.clone()
180
+ new_track.values = exp_df
181
+ Q.append(new_track)
182
+
183
+ return Q
184
+
185
+ def _expmap_to_euler(self, X):
186
+ Q = []
187
+ for track in X:
188
+ channels = []
189
+ titles = []
190
+ exp_df = track.values
191
+
192
+ # Create a new DataFrame to store the exponential map rep
193
+ euler_df = pd.DataFrame(index=exp_df.index)
194
+
195
+ # Copy the root positions into the new DataFrame
196
+ rxp = '%s_Xposition'%track.root_name
197
+ ryp = '%s_Yposition'%track.root_name
198
+ rzp = '%s_Zposition'%track.root_name
199
+ euler_df[rxp] = pd.Series(data=exp_df[rxp], index=euler_df.index)
200
+ euler_df[ryp] = pd.Series(data=exp_df[ryp], index=euler_df.index)
201
+ euler_df[rzp] = pd.Series(data=exp_df[rzp], index=euler_df.index)
202
+
203
+ # List the columns that contain rotation channels
204
+ exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)]
205
+
206
+ # List the joints that are not end sites, i.e., have channels
207
+ joints = (joint for joint in track.skeleton if 'Nub' not in joint)
208
+
209
+ for joint in joints:
210
+ r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint
211
+ expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order
212
+ euler_rots = [Rotation(f, 'expmap').to_euler(True)[0] for f in expmap] # Convert the eulers to exp maps
213
+
214
+ # Create the corresponding columns in the new DataFrame
215
+
216
+ euler_df['%s_Xrotation'%joint] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index)
217
+ euler_df['%s_Yrotation'%joint] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index)
218
+ euler_df['%s_Zrotation'%joint] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index)
219
+
220
+ new_track = track.clone()
221
+ new_track.values = euler_df
222
+ Q.append(new_track)
223
+
224
+ return Q
225
+
226
+
227
+ class JointSelector(BaseEstimator, TransformerMixin):
228
+ '''
229
+ Allows for filtering the mocap data to include only the selected joints
230
+ '''
231
+ def __init__(self, joints, include_root=False):
232
+ self.joints = joints
233
+ self.include_root = include_root
234
+
235
+ def fit(self, X, y=None):
236
+ return self
237
+
238
+ def transform(self, X, y=None):
239
+ selected_joints = []
240
+ selected_channels = []
241
+
242
+ if self.include_root:
243
+ selected_joints.append(X[0].root_name)
244
+
245
+ selected_joints.extend(self.joints)
246
+
247
+ for joint_name in selected_joints:
248
+ selected_channels.extend([o for o in X[0].values.columns if joint_name in o])
249
+
250
+ Q = []
251
+
252
+
253
+ for track in X:
254
+ t2 = track.clone()
255
+
256
+ for key in track.skeleton.keys():
257
+ if key not in selected_joints:
258
+ t2.skeleton.pop(key)
259
+ t2.values = track.values[selected_channels]
260
+
261
+ Q.append(t2)
262
+
263
+
264
+ return Q
265
+
266
+
267
+ class Numpyfier(BaseEstimator, TransformerMixin):
268
+ '''
269
+ Just converts the values in a MocapData object into a numpy array
270
+ Useful for the final stage of a pipeline before training
271
+ '''
272
+ def __init__(self):
273
+ pass
274
+
275
+ def fit(self, X, y=None):
276
+ self.org_mocap_ = X[0].clone()
277
+ self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True)
278
+
279
+ return self
280
+
281
+ def transform(self, X, y=None):
282
+ Q = []
283
+
284
+ for track in X:
285
+ Q.append(track.values.values)
286
+
287
+ return np.array(Q)
288
+
289
+ def inverse_transform(self, X, copy=None):
290
+ Q = []
291
+
292
+ for track in X:
293
+
294
+ new_mocap = self.org_mocap_.clone()
295
+ time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s')
296
+
297
+ new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns)
298
+
299
+ new_mocap.values = new_df
300
+
301
+
302
+ Q.append(new_mocap)
303
+
304
+ return Q
305
+
306
+ class RootTransformer(BaseEstimator, TransformerMixin):
307
+ def __init__(self, method):
308
+ """
309
+ Accepted methods:
310
+ abdolute_translation_deltas
311
+ pos_rot_deltas
312
+ """
313
+ self.method = method
314
+
315
+ def fit(self, X, y=None):
316
+ return self
317
+
318
+ def transform(self, X, y=None):
319
+ Q = []
320
+
321
+ for track in X:
322
+ if self.method == 'abdolute_translation_deltas':
323
+ new_df = track.values.copy()
324
+ xpcol = '%s_Xposition'%track.root_name
325
+ ypcol = '%s_Yposition'%track.root_name
326
+ zpcol = '%s_Zposition'%track.root_name
327
+
328
+
329
+ dxpcol = '%s_dXposition'%track.root_name
330
+ dzpcol = '%s_dZposition'%track.root_name
331
+
332
+ dx = track.values[xpcol].diff()
333
+ dz = track.values[zpcol].diff()
334
+
335
+ dx[0] = 0
336
+ dz[0] = 0
337
+
338
+ new_df.drop([xpcol, zpcol], axis=1, inplace=True)
339
+
340
+ new_df[dxpcol] = dx
341
+ new_df[dzpcol] = dz
342
+
343
+ new_track = track.clone()
344
+ new_track.values = new_df
345
+ # end of abdolute_translation_deltas
346
+
347
+ elif self.method == 'pos_rot_deltas':
348
+ new_track = track.clone()
349
+
350
+ # Absolute columns
351
+ xp_col = '%s_Xposition'%track.root_name
352
+ yp_col = '%s_Yposition'%track.root_name
353
+ zp_col = '%s_Zposition'%track.root_name
354
+
355
+ xr_col = '%s_Xrotation'%track.root_name
356
+ yr_col = '%s_Yrotation'%track.root_name
357
+ zr_col = '%s_Zrotation'%track.root_name
358
+
359
+ # Delta columns
360
+ dxp_col = '%s_dXposition'%track.root_name
361
+ dzp_col = '%s_dZposition'%track.root_name
362
+
363
+ dxr_col = '%s_dXrotation'%track.root_name
364
+ dyr_col = '%s_dYrotation'%track.root_name
365
+ dzr_col = '%s_dZrotation'%track.root_name
366
+
367
+
368
+ new_df = track.values.copy()
369
+
370
+ root_pos_x_diff = pd.Series(data=track.values[xp_col].diff(), index=new_df.index)
371
+ root_pos_z_diff = pd.Series(data=track.values[zp_col].diff(), index=new_df.index)
372
+
373
+ root_rot_y_diff = pd.Series(data=track.values[yr_col].diff(), index=new_df.index)
374
+ root_rot_x_diff = pd.Series(data=track.values[xr_col].diff(), index=new_df.index)
375
+ root_rot_z_diff = pd.Series(data=track.values[zr_col].diff(), index=new_df.index)
376
+
377
+
378
+ root_pos_x_diff[0] = 0
379
+ root_pos_z_diff[0] = 0
380
+
381
+ root_rot_y_diff[0] = 0
382
+ root_rot_x_diff[0] = 0
383
+ root_rot_z_diff[0] = 0
384
+
385
+ new_df.drop([xr_col, yr_col, zr_col, xp_col, zp_col], axis=1, inplace=True)
386
+
387
+ new_df[dxp_col] = root_pos_x_diff
388
+ new_df[dzp_col] = root_pos_z_diff
389
+
390
+ new_df[dxr_col] = root_rot_x_diff
391
+ new_df[dyr_col] = root_rot_y_diff
392
+ new_df[dzr_col] = root_rot_z_diff
393
+
394
+ new_track.values = new_df
395
+
396
+ Q.append(new_track)
397
+
398
+ return Q
399
+
400
+ def inverse_transform(self, X, copy=None, start_pos=None):
401
+ Q = []
402
+
403
+ #TODO: simplify this implementation
404
+
405
+ startx = 0
406
+ startz = 0
407
+
408
+ if start_pos is not None:
409
+ startx, startz = start_pos
410
+
411
+ for track in X:
412
+ new_track = track.clone()
413
+ if self.method == 'abdolute_translation_deltas':
414
+ new_df = new_track.values
415
+ xpcol = '%s_Xposition'%track.root_name
416
+ ypcol = '%s_Yposition'%track.root_name
417
+ zpcol = '%s_Zposition'%track.root_name
418
+
419
+
420
+ dxpcol = '%s_dXposition'%track.root_name
421
+ dzpcol = '%s_dZposition'%track.root_name
422
+
423
+ dx = track.values[dxpcol].values
424
+ dz = track.values[dzpcol].values
425
+
426
+ recx = [startx]
427
+ recz = [startz]
428
+
429
+ for i in range(dx.shape[0]-1):
430
+ recx.append(recx[i]+dx[i+1])
431
+ recz.append(recz[i]+dz[i+1])
432
+
433
+ # recx = [recx[i]+dx[i+1] for i in range(dx.shape[0]-1)]
434
+ # recz = [recz[i]+dz[i+1] for i in range(dz.shape[0]-1)]
435
+ # recx = dx[:-1] + dx[1:]
436
+ # recz = dz[:-1] + dz[1:]
437
+
438
+ new_df[xpcol] = pd.Series(data=recx, index=new_df.index)
439
+ new_df[zpcol] = pd.Series(data=recz, index=new_df.index)
440
+
441
+ new_df.drop([dxpcol, dzpcol], axis=1, inplace=True)
442
+
443
+ new_track.values = new_df
444
+ # end of abdolute_translation_deltas
445
+
446
+ elif self.method == 'pos_rot_deltas':
447
+ new_track = track.clone()
448
+
449
+ # Absolute columns
450
+ xp_col = '%s_Xposition'%track.root_name
451
+ yp_col = '%s_Yposition'%track.root_name
452
+ zp_col = '%s_Zposition'%track.root_name
453
+
454
+ xr_col = '%s_Xrotation'%track.root_name
455
+ yr_col = '%s_Yrotation'%track.root_name
456
+ zr_col = '%s_Zrotation'%track.root_name
457
+
458
+ # Delta columns
459
+ dxp_col = '%s_dXposition'%track.root_name
460
+ dzp_col = '%s_dZposition'%track.root_name
461
+
462
+ dxr_col = '%s_dXrotation'%track.root_name
463
+ dyr_col = '%s_dYrotation'%track.root_name
464
+ dzr_col = '%s_dZrotation'%track.root_name
465
+
466
+
467
+ new_df = track.values.copy()
468
+
469
+ dx = track.values[dxp_col].values
470
+ dz = track.values[dzp_col].values
471
+
472
+ drx = track.values[dxr_col].values
473
+ dry = track.values[dyr_col].values
474
+ drz = track.values[dzr_col].values
475
+
476
+ rec_xp = [startx]
477
+ rec_zp = [startz]
478
+
479
+ rec_xr = [0]
480
+ rec_yr = [0]
481
+ rec_zr = [0]
482
+
483
+
484
+ for i in range(dx.shape[0]-1):
485
+ rec_xp.append(rec_xp[i]+dx[i+1])
486
+ rec_zp.append(rec_zp[i]+dz[i+1])
487
+
488
+ rec_xr.append(rec_xr[i]+drx[i+1])
489
+ rec_yr.append(rec_yr[i]+dry[i+1])
490
+ rec_zr.append(rec_zr[i]+drz[i+1])
491
+
492
+
493
+ new_df[xp_col] = pd.Series(data=rec_xp, index=new_df.index)
494
+ new_df[zp_col] = pd.Series(data=rec_zp, index=new_df.index)
495
+
496
+ new_df[xr_col] = pd.Series(data=rec_xr, index=new_df.index)
497
+ new_df[yr_col] = pd.Series(data=rec_yr, index=new_df.index)
498
+ new_df[zr_col] = pd.Series(data=rec_zr, index=new_df.index)
499
+
500
+ new_df.drop([dxr_col, dyr_col, dzr_col, dxp_col, dzp_col], axis=1, inplace=True)
501
+
502
+
503
+ new_track.values = new_df
504
+
505
+ Q.append(new_track)
506
+
507
+ return Q
508
+
509
+
510
+ class RootCentricPositionNormalizer(BaseEstimator, TransformerMixin):
511
+ def __init__(self):
512
+ pass
513
+
514
+ def fit(self, X, y=None):
515
+ return self
516
+
517
+ def transform(self, X, y=None):
518
+ Q = []
519
+
520
+ for track in X:
521
+ new_track = track.clone()
522
+
523
+ rxp = '%s_Xposition'%track.root_name
524
+ ryp = '%s_Yposition'%track.root_name
525
+ rzp = '%s_Zposition'%track.root_name
526
+
527
+ projected_root_pos = track.values[[rxp, ryp, rzp]]
528
+
529
+ projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref
530
+
531
+ new_df = pd.DataFrame(index=track.values.index)
532
+
533
+ all_but_root = [joint for joint in track.skeleton if track.root_name not in joint]
534
+ # all_but_root = [joint for joint in track.skeleton]
535
+ for joint in all_but_root:
536
+ new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]-projected_root_pos[rxp], index=new_df.index)
537
+ new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]-projected_root_pos[ryp], index=new_df.index)
538
+ new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]-projected_root_pos[rzp], index=new_df.index)
539
+
540
+
541
+ # keep the root as it is now
542
+ new_df[rxp] = track.values[rxp]
543
+ new_df[ryp] = track.values[ryp]
544
+ new_df[rzp] = track.values[rzp]
545
+
546
+ new_track.values = new_df
547
+
548
+ Q.append(new_track)
549
+
550
+ return Q
551
+
552
+ def inverse_transform(self, X, copy=None):
553
+ Q = []
554
+
555
+ for track in X:
556
+ new_track = track.clone()
557
+
558
+ rxp = '%s_Xposition'%track.root_name
559
+ ryp = '%s_Yposition'%track.root_name
560
+ rzp = '%s_Zposition'%track.root_name
561
+
562
+ projected_root_pos = track.values[[rxp, ryp, rzp]]
563
+
564
+ projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref
565
+
566
+ new_df = pd.DataFrame(index=track.values.index)
567
+
568
+ for joint in track.skeleton:
569
+ new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]+projected_root_pos[rxp], index=new_df.index)
570
+ new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]+projected_root_pos[ryp], index=new_df.index)
571
+ new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]+projected_root_pos[rzp], index=new_df.index)
572
+
573
+
574
+ new_track.values = new_df
575
+
576
+ Q.append(new_track)
577
+
578
+ return Q
579
+
580
+
581
+ class Flattener(BaseEstimator, TransformerMixin):
582
+ def __init__(self):
583
+ pass
584
+
585
+ def fit(self, X, y=None):
586
+ return self
587
+
588
+ def transform(self, X, y=None):
589
+ return np.concatenate(X, axis=0)
590
+
591
+ class ConstantsRemover(BaseEstimator, TransformerMixin):
592
+ '''
593
+ For now it just looks at the first track
594
+ '''
595
+
596
+ def __init__(self, eps = 10e-10):
597
+ self.eps = eps
598
+
599
+
600
+ def fit(self, X, y=None):
601
+ stds = X[0].values.std()
602
+ cols = X[0].values.columns.values
603
+ self.const_dims_ = [c for c in cols if (stds[c] < self.eps).any()]
604
+ self.const_values_ = {c:X[0].values[c].values[0] for c in cols if (stds[c] < self.eps).any()}
605
+ return self
606
+
607
+ def transform(self, X, y=None):
608
+ Q = []
609
+
610
+
611
+ for track in X:
612
+ t2 = track.clone()
613
+ #for key in t2.skeleton.keys():
614
+ # if key in self.ConstDims_:
615
+ # t2.skeleton.pop(key)
616
+ t2.values = track.values[track.values.columns.difference(self.const_dims_)]
617
+ Q.append(t2)
618
+
619
+ return Q
620
+
621
+ def inverse_transform(self, X, copy=None):
622
+ Q = []
623
+
624
+ for track in X:
625
+ t2 = track.clone()
626
+ for d in self.const_dims_:
627
+ t2.values[d] = self.const_values_[d]
628
+ Q.append(t2)
629
+
630
+ return Q
631
+
632
+ class ListStandardScaler(BaseEstimator, TransformerMixin):
633
+ def __init__(self, is_DataFrame=False):
634
+ self.is_DataFrame = is_DataFrame
635
+
636
+ def fit(self, X, y=None):
637
+ if self.is_DataFrame:
638
+ X_train_flat = np.concatenate([m.values for m in X], axis=0)
639
+ else:
640
+ X_train_flat = np.concatenate([m for m in X], axis=0)
641
+
642
+ self.data_mean_ = np.mean(X_train_flat, axis=0)
643
+ self.data_std_ = np.std(X_train_flat, axis=0)
644
+
645
+ return self
646
+
647
+ def transform(self, X, y=None):
648
+ Q = []
649
+
650
+ for track in X:
651
+ if self.is_DataFrame:
652
+ normalized_track = track.copy()
653
+ normalized_track.values = (track.values - self.data_mean_) / self.data_std_
654
+ else:
655
+ normalized_track = (track - self.data_mean_) / self.data_std_
656
+
657
+ Q.append(normalized_track)
658
+
659
+ if self.is_DataFrame:
660
+ return Q
661
+ else:
662
+ return np.array(Q)
663
+
664
+ def inverse_transform(self, X, copy=None):
665
+ Q = []
666
+
667
+ for track in X:
668
+
669
+ if self.is_DataFrame:
670
+ unnormalized_track = track.copy()
671
+ unnormalized_track.values = (track.values * self.data_std_) + self.data_mean_
672
+ else:
673
+ unnormalized_track = (track * self.data_std_) + self.data_mean_
674
+
675
+ Q.append(unnormalized_track)
676
+
677
+ if self.is_DataFrame:
678
+ return Q
679
+ else:
680
+ return np.array(Q)
681
+
682
+ class DownSampler(BaseEstimator, TransformerMixin):
683
+ def __init__(self, rate):
684
+ self.rate = rate
685
+
686
+
687
+ def fit(self, X, y=None):
688
+
689
+ return self
690
+
691
+ def transform(self, X, y=None):
692
+ Q = []
693
+
694
+ for track in X:
695
+ #print(track.values.size)
696
+ #new_track = track.clone()
697
+ #new_track.values = track.values[0:-1:self.rate]
698
+ #print(new_track.values.size)
699
+ new_track = track[0:-1:self.rate]
700
+ Q.append(new_track)
701
+
702
+ return Q
703
+
704
+ def inverse_transform(self, X, copy=None):
705
+ return X
706
+
707
+
708
+ #TODO: JointsSelector (x)
709
+ #TODO: SegmentMaker
710
+ #TODO: DynamicFeaturesAdder
711
+ #TODO: ShapeFeaturesAdder
712
+ #TODO: DataFrameNumpier (x)
713
+
714
+ class TemplateTransform(BaseEstimator, TransformerMixin):
715
+ def __init__(self):
716
+ pass
717
+
718
+ def fit(self, X, y=None):
719
+ return self
720
+
721
+ def transform(self, X, y=None):
722
+ return X
723
+
724
+ class UnsupportedParamError(Exception):
725
+ def __init__(self, message):
726
+ self.message = message
dataloaders/pymo/rotation_tools.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Tools for Manipulating and Converting 3D Rotations
3
+
4
+ By Omid Alemi
5
+ Created: June 12, 2017
6
+
7
+ Adapted from that matlab file...
8
+ '''
9
+
10
+ import math
11
+ import numpy as np
12
+
13
+ def deg2rad(x):
14
+ return x/180*math.pi
15
+
16
+
17
+ def rad2deg(x):
18
+ return x/math.pi*180
19
+
20
+ class Rotation():
21
+ def __init__(self,rot, param_type, rotation_order, **params):
22
+ self.rotmat = []
23
+ self.rotation_order = rotation_order
24
+ if param_type == 'euler':
25
+ self._from_euler(rot[0],rot[1],rot[2], params)
26
+ elif param_type == 'expmap':
27
+ self._from_expmap(rot[0], rot[1], rot[2], params)
28
+
29
+ def _from_euler(self, alpha, beta, gamma, params):
30
+ '''Expecting degress'''
31
+
32
+ if params['from_deg']==True:
33
+ alpha = deg2rad(alpha)
34
+ beta = deg2rad(beta)
35
+ gamma = deg2rad(gamma)
36
+
37
+ ca = math.cos(alpha)
38
+ cb = math.cos(beta)
39
+ cg = math.cos(gamma)
40
+ sa = math.sin(alpha)
41
+ sb = math.sin(beta)
42
+ sg = math.sin(gamma)
43
+
44
+ Rx = np.asarray([[1, 0, 0],
45
+ [0, ca, sa],
46
+ [0, -sa, ca]
47
+ ])
48
+
49
+ Ry = np.asarray([[cb, 0, -sb],
50
+ [0, 1, 0],
51
+ [sb, 0, cb]])
52
+
53
+ Rz = np.asarray([[cg, sg, 0],
54
+ [-sg, cg, 0],
55
+ [0, 0, 1]])
56
+
57
+ self.rotmat = np.eye(3)
58
+
59
+ ############################ inner product rotation matrix in order defined at BVH file #########################
60
+ for axis in self.rotation_order :
61
+ if axis == 'X' :
62
+ self.rotmat = np.matmul(Rx, self.rotmat)
63
+ elif axis == 'Y':
64
+ self.rotmat = np.matmul(Ry, self.rotmat)
65
+ else :
66
+ self.rotmat = np.matmul(Rz, self.rotmat)
67
+ ################################################################################################################
68
+
69
+ def _from_expmap(self, alpha, beta, gamma, params):
70
+ if (alpha == 0 and beta == 0 and gamma == 0):
71
+ self.rotmat = np.eye(3)
72
+ return
73
+
74
+ #TODO: Check exp map params
75
+
76
+ theta = np.linalg.norm([alpha, beta, gamma])
77
+
78
+ expmap = [alpha, beta, gamma] / theta
79
+
80
+ x = expmap[0]
81
+ y = expmap[1]
82
+ z = expmap[2]
83
+
84
+ s = math.sin(theta/2)
85
+ c = math.cos(theta/2)
86
+
87
+ self.rotmat = np.asarray([
88
+ [2*(x**2-1)*s**2+1, 2*x*y*s**2-2*z*c*s, 2*x*z*s**2+2*y*c*s],
89
+ [2*x*y*s**2+2*z*c*s, 2*(y**2-1)*s**2+1, 2*y*z*s**2-2*x*c*s],
90
+ [2*x*z*s**2-2*y*c*s, 2*y*z*s**2+2*x*c*s , 2*(z**2-1)*s**2+1]
91
+ ])
92
+
93
+
94
+
95
+ def get_euler_axis(self):
96
+ R = self.rotmat
97
+ theta = math.acos((self.rotmat.trace() - 1) / 2)
98
+ axis = np.asarray([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
99
+ axis = axis/(2*math.sin(theta))
100
+ return theta, axis
101
+
102
+ def to_expmap(self):
103
+ theta, axis = self.get_euler_axis()
104
+ rot_arr = theta * axis
105
+ if np.isnan(rot_arr).any():
106
+ rot_arr = [0, 0, 0]
107
+ return rot_arr
108
+
109
+ def to_euler(self, use_deg=False):
110
+ eulers = np.zeros((2, 3))
111
+
112
+ if np.absolute(np.absolute(self.rotmat[2, 0]) - 1) < 1e-12:
113
+ #GIMBAL LOCK!
114
+ print('Gimbal')
115
+ if np.absolute(self.rotmat[2, 0]) - 1 < 1e-12:
116
+ eulers[:,0] = math.atan2(-self.rotmat[0,1], -self.rotmat[0,2])
117
+ eulers[:,1] = -math.pi/2
118
+ else:
119
+ eulers[:,0] = math.atan2(self.rotmat[0,1], -elf.rotmat[0,2])
120
+ eulers[:,1] = math.pi/2
121
+
122
+ return eulers
123
+
124
+ theta = - math.asin(self.rotmat[2,0])
125
+ theta2 = math.pi - theta
126
+
127
+ # psi1, psi2
128
+ eulers[0,0] = math.atan2(self.rotmat[2,1]/math.cos(theta), self.rotmat[2,2]/math.cos(theta))
129
+ eulers[1,0] = math.atan2(self.rotmat[2,1]/math.cos(theta2), self.rotmat[2,2]/math.cos(theta2))
130
+
131
+ # theta1, theta2
132
+ eulers[0,1] = theta
133
+ eulers[1,1] = theta2
134
+
135
+ # phi1, phi2
136
+ eulers[0,2] = math.atan2(self.rotmat[1,0]/math.cos(theta), self.rotmat[0,0]/math.cos(theta))
137
+ eulers[1,2] = math.atan2(self.rotmat[1,0]/math.cos(theta2), self.rotmat[0,0]/math.cos(theta2))
138
+
139
+ if use_deg:
140
+ eulers = rad2deg(eulers)
141
+
142
+ return eulers
143
+
144
+ def to_quat(self):
145
+ #TODO
146
+ pass
147
+
148
+ def __str__(self):
149
+ return "Rotation Matrix: \n " + self.rotmat.__str__()
150
+
151
+
152
+
153
+
dataloaders/pymo/rotation_tools.py! ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Tools for Manipulating and Converting 3D Rotations
3
+
4
+ By Omid Alemi
5
+ Created: June 12, 2017
6
+
7
+ Adapted from that matlab file...
8
+ '''
9
+
10
+ import math
11
+ import numpy as np
12
+
13
+ def deg2rad(x):
14
+ return x/180*math.pi
15
+
16
+ class Rotation():
17
+ def __init__(self,rot, param_type, **params):
18
+ self.rotmat = []
19
+ if param_type == 'euler':
20
+ self._from_euler(rot[0],rot[1],rot[2], params)
21
+
22
+ def _from_euler(self, alpha, beta, gamma, params):
23
+ '''Expecting degress'''
24
+
25
+ if params['from_deg']==True:
26
+ alpha = deg2rad(alpha)
27
+ beta = deg2rad(beta)
28
+ gamma = deg2rad(gamma)
29
+
30
+ Rx = np.asarray([[1, 0, 0],
31
+ [0, math.cos(alpha), -math.sin(alpha)],
32
+ [0, math.sin(alpha), math.cos(alpha)]
33
+ ])
34
+
35
+ Ry = np.asarray([[math.cos(beta), 0, math.sin(beta)],
36
+ [0, 1, 0],
37
+ [-math.sin(beta), 0, math.cos(beta)]])
38
+
39
+ Rz = np.asarray([[math.cos(gamma), -math.sin(gamma), 0],
40
+ [math.sin(gamma), math.cos(gamma), 0],
41
+ [0, 0, 1]])
42
+
43
+ self.rotmat = np.matmul(np.matmul(Rz, Ry), Rx).T
44
+
45
+ def get_euler_axis(self):
46
+ R = self.rotmat
47
+ theta = math.acos((self.rotmat.trace() - 1) / 2)
48
+ axis = np.asarray([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
49
+ axis = axis/(2*math.sin(theta))
50
+ return theta, axis
51
+
52
+ def to_expmap(self):
53
+ theta, axis = self.get_euler_axis()
54
+ rot_arr = theta * axis
55
+ if np.isnan(rot_arr).any():
56
+ rot_arr = [0, 0, 0]
57
+ return rot_arr
58
+
59
+ def to_euler(self):
60
+ #TODO
61
+ pass
62
+
63
+ def to_quat(self):
64
+ #TODO
65
+ pass
66
+
67
+
68
+
69
+
dataloaders/pymo/viz_tools.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import IPython
5
+ import os
6
+
7
+ def save_fig(fig_id, tight_layout=True):
8
+ if tight_layout:
9
+ plt.tight_layout()
10
+ plt.savefig(fig_id + '.png', format='png', dpi=300)
11
+
12
+
13
+ def draw_stickfigure(mocap_track, frame, data=None, joints=None, draw_names=False, ax=None, figsize=(8,8)):
14
+ if ax is None:
15
+ fig = plt.figure(figsize=figsize)
16
+ ax = fig.add_subplot(111)
17
+
18
+ if joints is None:
19
+ joints_to_draw = mocap_track.skeleton.keys()
20
+ else:
21
+ joints_to_draw = joints
22
+
23
+ if data is None:
24
+ df = mocap_track.values
25
+ else:
26
+ df = data
27
+
28
+ for joint in joints_to_draw:
29
+ ax.scatter(x=df['%s_Xposition'%joint][frame],
30
+ y=df['%s_Yposition'%joint][frame],
31
+ alpha=0.6, c='b', marker='o')
32
+
33
+ parent_x = df['%s_Xposition'%joint][frame]
34
+ parent_y = df['%s_Yposition'%joint][frame]
35
+
36
+ children_to_draw = [c for c in mocap_track.skeleton[joint]['children'] if c in joints_to_draw]
37
+
38
+ for c in children_to_draw:
39
+ child_x = df['%s_Xposition'%c][frame]
40
+ child_y = df['%s_Yposition'%c][frame]
41
+ ax.plot([parent_x, child_x], [parent_y, child_y], 'k-', lw=2)
42
+
43
+ if draw_names:
44
+ ax.annotate(joint,
45
+ (df['%s_Xposition'%joint][frame] + 0.1,
46
+ df['%s_Yposition'%joint][frame] + 0.1))
47
+
48
+ return ax
49
+
50
+ def draw_stickfigure3d(mocap_track, frame, data=None, joints=None, draw_names=False, ax=None, figsize=(8,8)):
51
+ from mpl_toolkits.mplot3d import Axes3D
52
+
53
+ if ax is None:
54
+ fig = plt.figure(figsize=figsize)
55
+ ax = fig.add_subplot(111, projection='3d')
56
+
57
+ if joints is None:
58
+ joints_to_draw = mocap_track.skeleton.keys()
59
+ else:
60
+ joints_to_draw = joints
61
+
62
+ if data is None:
63
+ df = mocap_track.values
64
+ else:
65
+ df = data
66
+
67
+ for joint in joints_to_draw:
68
+ parent_x = df['%s_Xposition'%joint][frame]
69
+ parent_y = df['%s_Zposition'%joint][frame]
70
+ parent_z = df['%s_Yposition'%joint][frame]
71
+ # ^ In mocaps, Y is the up-right axis
72
+
73
+ ax.scatter(xs=parent_x,
74
+ ys=parent_y,
75
+ zs=parent_z,
76
+ alpha=0.6, c='b', marker='o')
77
+
78
+
79
+ children_to_draw = [c for c in mocap_track.skeleton[joint]['children'] if c in joints_to_draw]
80
+
81
+ for c in children_to_draw:
82
+ child_x = df['%s_Xposition'%c][frame]
83
+ child_y = df['%s_Zposition'%c][frame]
84
+ child_z = df['%s_Yposition'%c][frame]
85
+ # ^ In mocaps, Y is the up-right axis
86
+
87
+ ax.plot([parent_x, child_x], [parent_y, child_y], [parent_z, child_z], 'k-', lw=2, c='black')
88
+
89
+ if draw_names:
90
+ ax.text(x=parent_x + 0.1,
91
+ y=parent_y + 0.1,
92
+ z=parent_z + 0.1,
93
+ s=joint,
94
+ color='rgba(0,0,0,0.9)')
95
+
96
+ return ax
97
+
98
+
99
+ def sketch_move(mocap_track, data=None, ax=None, figsize=(16,8)):
100
+ if ax is None:
101
+ fig = plt.figure(figsize=figsize)
102
+ ax = fig.add_subplot(111)
103
+
104
+ if data is None:
105
+ data = mocap_track.values
106
+
107
+ for frame in range(0, data.shape[0], 4):
108
+ # draw_stickfigure(mocap_track, f, data=data, ax=ax)
109
+
110
+ for joint in mocap_track.skeleton.keys():
111
+ children_to_draw = [c for c in mocap_track.skeleton[joint]['children']]
112
+
113
+ parent_x = data['%s_Xposition'%joint][frame]
114
+ parent_y = data['%s_Yposition'%joint][frame]
115
+
116
+ frame_alpha = frame/data.shape[0]
117
+
118
+ for c in children_to_draw:
119
+ child_x = data['%s_Xposition'%c][frame]
120
+ child_y = data['%s_Yposition'%c][frame]
121
+
122
+ ax.plot([parent_x, child_x], [parent_y, child_y], '-', lw=1, color='gray', alpha=frame_alpha)
123
+
124
+
125
+
126
+ def viz_cnn_filter(feature_to_viz, mocap_track, data, gap=25):
127
+ fig = plt.figure(figsize=(16,4))
128
+ ax = plt.subplot2grid((1,8),(0,0))
129
+ ax.imshow(feature_to_viz.T, aspect='auto', interpolation='nearest')
130
+
131
+ ax = plt.subplot2grid((1,8),(0,1), colspan=7)
132
+ for frame in range(feature_to_viz.shape[0]):
133
+ frame_alpha = 0.2#frame/data.shape[0] * 2 + 0.2
134
+
135
+ for joint_i, joint in enumerate(mocap_track.skeleton.keys()):
136
+ children_to_draw = [c for c in mocap_track.skeleton[joint]['children']]
137
+
138
+ parent_x = data['%s_Xposition'%joint][frame] + frame * gap
139
+ parent_y = data['%s_Yposition'%joint][frame]
140
+
141
+ ax.scatter(x=parent_x,
142
+ y=parent_y,
143
+ alpha=0.6,
144
+ cmap='RdBu',
145
+ c=feature_to_viz[frame][joint_i] * 10000,
146
+ marker='o',
147
+ s = abs(feature_to_viz[frame][joint_i] * 10000))
148
+ plt.axis('off')
149
+ for c in children_to_draw:
150
+ child_x = data['%s_Xposition'%c][frame] + frame * gap
151
+ child_y = data['%s_Yposition'%c][frame]
152
+
153
+ ax.plot([parent_x, child_x], [parent_y, child_y], '-', lw=1, color='gray', alpha=frame_alpha)
154
+
155
+
156
+ def print_skel(X):
157
+ stack = [X.root_name]
158
+ tab=0
159
+ while stack:
160
+ joint = stack.pop()
161
+ tab = len(stack)
162
+ print('%s- %s (%s)'%('| '*tab, joint, X.skeleton[joint]['parent']))
163
+ for c in X.skeleton[joint]['children']:
164
+ stack.append(c)
165
+
166
+
167
+ def nb_play_mocap_fromurl(mocap, mf, frame_time=1/30, scale=1, base_url='http://titan:8385'):
168
+ if mf == 'bvh':
169
+ bw = BVHWriter()
170
+ with open('test.bvh', 'w') as ofile:
171
+ bw.write(mocap, ofile)
172
+
173
+ filepath = '../notebooks/test.bvh'
174
+ elif mf == 'pos':
175
+ c = list(mocap.values.columns)
176
+
177
+ for cc in c:
178
+ if 'rotation' in cc:
179
+ c.remove(cc)
180
+ mocap.values.to_csv('test.csv', index=False, columns=c)
181
+
182
+ filepath = '../notebooks/test.csv'
183
+ else:
184
+ return
185
+
186
+ url = '%s/mocapplayer/player.html?data_url=%s&scale=%f&cz=200&order=xzyi&frame_time=%f'%(base_url, filepath, scale, frame_time)
187
+ iframe = '<iframe src=' + url + ' width="100%" height=500></iframe>'
188
+ link = '<a href=%s target="_blank">New Window</a>'%url
189
+ return IPython.display.HTML(iframe+link)
190
+
191
+ def nb_play_mocap(mocap, mf, meta=None, frame_time=1/30, scale=1, camera_z=500, base_url=None):
192
+ data_template = 'var dataBuffer = `$$DATA$$`;'
193
+ data_template += 'var metadata = $$META$$;'
194
+ data_template += 'start(dataBuffer, metadata, $$CZ$$, $$SCALE$$, $$FRAMETIME$$);'
195
+ dir_path = os.path.dirname(os.path.realpath(__file__))
196
+
197
+
198
+ if base_url is None:
199
+ base_url = os.path.join(dir_path, 'mocapplayer/playBuffer.html')
200
+
201
+ # print(dir_path)
202
+
203
+ if mf == 'bvh':
204
+ pass
205
+ elif mf == 'pos':
206
+ cols = list(mocap.values.columns)
207
+ for c in cols:
208
+ if 'rotation' in c:
209
+ cols.remove(c)
210
+
211
+ data_csv = mocap.values.to_csv(index=False, columns=cols)
212
+
213
+ if meta is not None:
214
+ lines = [','.join(item) for item in meta.astype('str')]
215
+ meta_csv = '[' + ','.join('[%s]'%l for l in lines) +']'
216
+ else:
217
+ meta_csv = '[]'
218
+
219
+ data_assigned = data_template.replace('$$DATA$$', data_csv)
220
+ data_assigned = data_assigned.replace('$$META$$', meta_csv)
221
+ data_assigned = data_assigned.replace('$$CZ$$', str(camera_z))
222
+ data_assigned = data_assigned.replace('$$SCALE$$', str(scale))
223
+ data_assigned = data_assigned.replace('$$FRAMETIME$$', str(frame_time))
224
+
225
+ else:
226
+ return
227
+
228
+
229
+
230
+ with open(os.path.join(dir_path, 'mocapplayer/data.js'), 'w') as oFile:
231
+ oFile.write(data_assigned)
232
+
233
+ url = '%s?&cz=200&order=xzyi&frame_time=%f&scale=%f'%(base_url, frame_time, scale)
234
+ iframe = '<iframe frameborder="0" src=' + url + ' width="100%" height=500></iframe>'
235
+ link = '<a href=%s target="_blank">New Window</a>'%url
236
+ return IPython.display.HTML(iframe+link)
dataloaders/pymo/writers.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+
4
+ class BVHWriter():
5
+ def __init__(self):
6
+ pass
7
+
8
+ def write(self, X, ofile):
9
+
10
+ # Writing the skeleton info
11
+ ofile.write('HIERARCHY\n')
12
+
13
+ self.motions_ = []
14
+ self._printJoint(X, X.root_name, 0, ofile)
15
+
16
+ # Writing the motion header
17
+ ofile.write('MOTION\n')
18
+ ofile.write('Frames: %d\n'%X.values.shape[0])
19
+ ofile.write('Frame Time: %f\n'%X.framerate)
20
+
21
+ # Writing the data
22
+ self.motions_ = np.asarray(self.motions_).T
23
+ lines = [" ".join(item) for item in self.motions_.astype(str)]
24
+ ofile.write("".join("%s\n"%l for l in lines))
25
+
26
+ def _printJoint(self, X, joint, tab, ofile):
27
+
28
+ if X.skeleton[joint]['parent'] == None:
29
+ ofile.write('ROOT %s\n'%joint)
30
+ elif len(X.skeleton[joint]['children']) > 0:
31
+ ofile.write('%sJOINT %s\n'%('\t'*(tab), joint))
32
+ else:
33
+ ofile.write('%sEnd site\n'%('\t'*(tab)))
34
+
35
+ ofile.write('%s{\n'%('\t'*(tab)))
36
+
37
+ ofile.write('%sOFFSET %3.5f %3.5f %3.5f\n'%('\t'*(tab+1),
38
+ X.skeleton[joint]['offsets'][0],
39
+ X.skeleton[joint]['offsets'][1],
40
+ X.skeleton[joint]['offsets'][2]))
41
+ channels = X.skeleton[joint]['channels']
42
+ n_channels = len(channels)
43
+
44
+ if n_channels > 0:
45
+ for ch in channels:
46
+ self.motions_.append(np.asarray(X.values['%s_%s'%(joint, ch)].values))
47
+
48
+ if len(X.skeleton[joint]['children']) > 0:
49
+ ch_str = ''.join(' %s'*n_channels%tuple(channels))
50
+ ofile.write('%sCHANNELS %d%s\n' %('\t'*(tab+1), n_channels, ch_str))
51
+
52
+ for c in X.skeleton[joint]['children']:
53
+ self._printJoint(X, c, tab+1, ofile)
54
+
55
+ ofile.write('%s}\n'%('\t'*(tab)))