Spaces:
Sleeping
Sleeping
File size: 9,459 Bytes
36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 36b50a6 429cb96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
from typing import List, Tuple, Dict
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
import gradio as gr
import torch
class EnhancedRAGSystem:
def __init__(self):
try:
print("Initializing RAG System...")
self.chunk_size = 500
self.chunk_overlap = 50
self.k_documents = 4
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len
)
print("Loading embedding model...")
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
print("Loading language model...")
self.llm_model_name = "google/flan-t5-small"
self.tokenizer = AutoTokenizer.from_pretrained(self.llm_model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.llm_model_name)
self.prompt_template = PromptTemplate(
template="""Use the context below to answer the question.
If the answer is not in the context, say "I don't have enough information in the context to answer this question."
Context: {context}
Question: {question}
Detailed answer:""",
input_variables=["context", "question"]
)
print("Setting up pipeline...")
self.pipe = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=512,
device=-1,
model_kwargs={"temperature": 0.7}
)
self.llm = HuggingFacePipeline(pipeline=self.pipe)
print("RAG System initialized successfully!")
except Exception as e:
print(f"Error during initialization: {str(e)}")
raise
def process_documents(self, text: str) -> bool:
try:
print("Processing documents...")
if not text or len(text.strip()) < 10:
print("Text is too short or empty")
return False
print("Splitting text...")
texts = self.text_splitter.split_text(text)
print("Creating vectorstore...")
self.vectorstore = Chroma.from_texts(
texts,
self.embeddings,
metadatas=[{"source": f"chunk_{i}", "text": t} for i, t in enumerate(texts)]
)
print("Setting up retriever...")
self.retriever = self.vectorstore.as_retriever(
search_kwargs={"k": self.k_documents}
)
print("Creating QA chain...")
self.qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": self.prompt_template}
)
print("Documents processed successfully!")
return True
except Exception as e:
print(f"Error processing documents: {str(e)}")
return False
def answer_question(self, question: str) -> Tuple[str, str]:
try:
print(f"Answering question: {question}")
if not hasattr(self, 'qa_chain'):
return "Please process some documents first.", ""
response = self.qa_chain({"query": question})
answer = response["result"]
sources = []
for i, doc in enumerate(response["source_documents"], 1):
text_preview = doc.page_content[:100] + "..."
sources.append(f"Excerpt {i}: {text_preview}")
sources_text = "\n".join(sources)
print("Answer generated successfully!")
return answer, sources_text
except Exception as e:
print(f"Error generating answer: {str(e)}")
return f"Error generating answer: {str(e)}", ""
def create_enhanced_interface():
try:
print("Creating interface...")
rag_system = EnhancedRAGSystem()
def process_and_answer(text: str, question: str) -> str:
print("Processing new request...")
if not text.strip() or not question.strip():
return "Please provide both text and question."
success = rag_system.process_documents(text)
if not success:
return "Error processing the text. Please check if the text is valid and try again."
answer, sources = rag_system.answer_question(question)
if sources:
return f"""Answer: {answer}
Relevant excerpts consulted:
{sources}"""
return answer
custom_css = """
.custom-description {
margin-bottom: 20px;
text-align: center;
}
.custom-description a {
text-decoration: none;
color: #007bff;
margin: 0 5px;
}
.custom-description a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=custom_css) as interface:
gr.HTML("""
<div class="custom-description">
<h1>Advanced RAG with Multilingual Support</h1>
<p>Ramon Mayor Martins:
<a href="https://rmayormartins.github.io/" target="_blank">Website</a> |
<a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a> |
<a href="https://github.com/rmayormartins" target="_blank">GitHub</a>
</p>
<p>This system uses Retrieval-Augmented Generation (RAG) to answer questions about your texts in multiple languages.
Simply paste your text and ask questions in any language!</p>
</div>
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Base Text",
placeholder="Paste here the text that will serve as knowledge base...",
lines=10
)
question_input = gr.Textbox(
label="Your Question",
placeholder="What would you like to know about the text?"
)
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.Textbox(label="Answer")
examples = [
# English example
["The solar system consists of the Sun and the celestial bodies that orbit it. These include eight planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune), their moons, asteroids, comets, and other objects.",
"How many planets are in the solar system?"],
# Spanish example
["El sistema solar está formado por el Sol y los cuerpos celestes que orbitan a su alrededor. Estos incluyen ocho planetas (Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno), sus lunas, asteroides, cometas y otros objetos.",
"¿Cuántos planetas hay en el sistema solar?"],
# Portuguese example
["O sistema solar é composto pelo Sol e pelos corpos celestes que orbitam ao seu redor. Isso inclui oito planetas (Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno), suas luas, asteroides, cometas e outros objetos.",
"Quantos planetas existem no sistema solar?"]
]
gr.Examples(
examples=examples,
inputs=[text_input, question_input],
outputs=output,
fn=process_and_answer,
cache_examples=True
)
submit_btn.click(
fn=process_and_answer,
inputs=[text_input, question_input],
outputs=output
)
print("Interface created successfully!")
return interface
except Exception as e:
print(f"Error creating interface: {str(e)}")
raise
if __name__ == "__main__":
print("Starting application...")
try:
demo = create_enhanced_interface()
demo.launch()
except Exception as e:
print(f"Application failed to start: {str(e)}") |