Spaces:
Running
Running
rmayormartins
commited on
Commit
·
36b50a6
1
Parent(s):
2239ff4
go
Browse files- README.md +95 -7
- app.py +208 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,14 +1,102 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: ecl-2.0
|
11 |
-
short_description: Retrieval-Augmented Generation (RAG) system for questions
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Multilingual RAG Question-Answering System
|
3 |
+
emoji: 🈁↔️🤖
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.7.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: ecl-2.0
|
|
|
11 |
---
|
12 |
|
13 |
+
# Multilingual RAG Question-Answering System
|
14 |
+
|
15 |
+
This project implements a Retrieval-Augmented Generation (RAG) system for question answering in multiple languages. It uses advanced language models and embeddings to provide accurate answers based on provided texts.
|
16 |
+
|
17 |
+
## Developer
|
18 |
+
Developed by Ramon Mayor Martins (2024)
|
19 |
+
* Email: rmayormartins@gmail.com
|
20 |
+
* Homepage: https://rmayormartins.github.io/
|
21 |
+
* Twitter: @rmayormartins
|
22 |
+
* GitHub: https://github.com/rmayormartins
|
23 |
+
* Space: https://huggingface.co/rmayormartins
|
24 |
+
|
25 |
+
## Technologies Used
|
26 |
+
|
27 |
+
* **LangChain:** Framework for developing applications powered by language models, providing tools for document loading, text splitting, and creating chains of operations.
|
28 |
+
|
29 |
+
* **Sentence Transformers:** Library for state-of-the-art text embeddings, using the multilingual-e5-large model for superior multilingual understanding.
|
30 |
+
|
31 |
+
* **Flan-T5:** Advanced language model from Google that excels at various NLP tasks, particularly strong in multilingual text generation and understanding.
|
32 |
+
|
33 |
+
* **Chroma DB:** Lightweight vector database for storing and retrieving text embeddings efficiently, enabling semantic search capabilities.
|
34 |
+
|
35 |
+
* **Gradio:** Framework for creating user-friendly web interfaces for machine learning models, providing an intuitive way to interact with the RAG system.
|
36 |
+
|
37 |
+
* **HuggingFace Transformers:** Library providing access to state-of-the-art transformer models, tokenizers, and pipelines.
|
38 |
+
|
39 |
+
* **PyTorch:** Deep learning framework that powers the underlying models and computations.
|
40 |
+
|
41 |
+
## Key Features
|
42 |
+
|
43 |
+
* **Multilingual Support:** Process and answer questions in multiple languages (English, Spanish, Portuguese, and more)
|
44 |
+
* **Document Chunking:** Smart text splitting for handling long documents
|
45 |
+
* **Semantic Search:** Uses advanced embeddings for accurate information retrieval
|
46 |
+
* **Source Attribution:** Provides references to the relevant text passages used for answers
|
47 |
+
* **User-Friendly Interface:** Simple web interface for text input and question answering
|
48 |
+
|
49 |
+
## How it Works
|
50 |
+
|
51 |
+
1. **Text Processing:**
|
52 |
+
- User inputs a text document
|
53 |
+
- System splits text into manageable chunks
|
54 |
+
- Chunks are converted into embeddings using multilingual-e5-large
|
55 |
+
|
56 |
+
2. **Knowledge Base Creation:**
|
57 |
+
- Embeddings are stored in Chroma vector database
|
58 |
+
- Document metadata is preserved for source attribution
|
59 |
+
|
60 |
+
3. **Question Answering:**
|
61 |
+
- User asks a question in any supported language
|
62 |
+
- System retrieves relevant document chunks
|
63 |
+
- Flan-T5 generates a coherent answer based on retrieved context
|
64 |
+
- Sources are displayed for transparency
|
65 |
+
|
66 |
+
## How to Use
|
67 |
+
|
68 |
+
1. Open the application interface
|
69 |
+
2. Paste your reference text in the "Base Text" field
|
70 |
+
3. Enter your question in any supported language
|
71 |
+
4. Receive an answer along with relevant source excerpts
|
72 |
+
|
73 |
+
## Example Use Cases
|
74 |
+
|
75 |
+
* Document analysis and comprehension
|
76 |
+
* Educational Q&A systems
|
77 |
+
* Multilingual information retrieval
|
78 |
+
* Research assistance
|
79 |
+
* Content summarization
|
80 |
+
|
81 |
+
## Technical Architecture
|
82 |
+
|
83 |
+
* **Embedding Model:** intfloat/multilingual-e5-large
|
84 |
+
* **Language Model:** google/flan-t5-large
|
85 |
+
* **Vector Store:** Chroma
|
86 |
+
* **Chunk Size:** 500 characters
|
87 |
+
* **Context Window:** 4 documents
|
88 |
+
|
89 |
+
## Local Development
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install -r requirements.txt
|
93 |
+
python app.py
|
94 |
+
```
|
95 |
+
|
96 |
+
## Deployment
|
97 |
+
|
98 |
+
This application is deployed on Hugging Face Spaces. You can access it at [https://huggingface.co/spaces/rmayormartins/nlp-rag-langchain].
|
99 |
+
|
100 |
+
## Note
|
101 |
+
|
102 |
+
The system's responses are generated solely based on the provided text. The quality of answers depends on the content and clarity of the input text.
|
app.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Tuple, Dict
|
3 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms import HuggingFacePipeline
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
import gradio as gr
|
12 |
+
import torch
|
13 |
+
|
14 |
+
class EnhancedRAGSystem:
|
15 |
+
def __init__(self):
|
16 |
+
self.chunk_size = 500
|
17 |
+
self.chunk_overlap = 50
|
18 |
+
self.k_documents = 4
|
19 |
+
|
20 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
21 |
+
chunk_size=self.chunk_size,
|
22 |
+
chunk_overlap=self.chunk_overlap,
|
23 |
+
length_function=len
|
24 |
+
)
|
25 |
+
|
26 |
+
self.embedding_model_name = "intfloat/multilingual-e5-large"
|
27 |
+
self.llm_model_name = "google/flan-t5-large"
|
28 |
+
|
29 |
+
self.prompt_template = PromptTemplate(
|
30 |
+
template="""Use the context below to answer the question.
|
31 |
+
If the answer is not in the context, say "I don't have enough information in the context to answer this question."
|
32 |
+
|
33 |
+
Context: {context}
|
34 |
+
Question: {question}
|
35 |
+
|
36 |
+
Detailed answer:""",
|
37 |
+
input_variables=["context", "question"]
|
38 |
+
)
|
39 |
+
|
40 |
+
self.embeddings = HuggingFaceEmbeddings(
|
41 |
+
model_name=self.embedding_model_name,
|
42 |
+
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
43 |
+
)
|
44 |
+
|
45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.llm_model_name)
|
46 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.llm_model_name)
|
47 |
+
|
48 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
49 |
+
self.model.to(self.device)
|
50 |
+
|
51 |
+
self.pipe = pipeline(
|
52 |
+
"text2text-generation",
|
53 |
+
model=self.model,
|
54 |
+
tokenizer=self.tokenizer,
|
55 |
+
max_length=512,
|
56 |
+
device=0 if torch.cuda.is_available() else -1,
|
57 |
+
model_kwargs={"temperature": 0.7}
|
58 |
+
)
|
59 |
+
|
60 |
+
self.llm = HuggingFacePipeline(pipeline=self.pipe)
|
61 |
+
|
62 |
+
def process_documents(self, text: str) -> bool:
|
63 |
+
try:
|
64 |
+
texts = self.text_splitter.split_text(text)
|
65 |
+
|
66 |
+
self.vectorstore = Chroma.from_texts(
|
67 |
+
texts,
|
68 |
+
self.embeddings,
|
69 |
+
metadatas=[{"source": f"chunk_{i}", "text": t} for i, t in enumerate(texts)],
|
70 |
+
collection_name="enhanced_rag_docs"
|
71 |
+
)
|
72 |
+
|
73 |
+
self.retriever = self.vectorstore.as_retriever(
|
74 |
+
search_kwargs={"k": self.k_documents}
|
75 |
+
)
|
76 |
+
|
77 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
78 |
+
llm=self.llm,
|
79 |
+
chain_type="stuff",
|
80 |
+
retriever=self.retriever,
|
81 |
+
return_source_documents=True,
|
82 |
+
chain_type_kwargs={"prompt": self.prompt_template}
|
83 |
+
)
|
84 |
+
return True
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Processing error: {str(e)}")
|
87 |
+
return False
|
88 |
+
|
89 |
+
def answer_question(self, question: str) -> Tuple[str, str]:
|
90 |
+
try:
|
91 |
+
response = self.qa_chain({"query": question})
|
92 |
+
answer = response["result"]
|
93 |
+
|
94 |
+
sources = []
|
95 |
+
for i, doc in enumerate(response["source_documents"], 1):
|
96 |
+
text_preview = doc.page_content[:100] + "..."
|
97 |
+
sources.append(f"Excerpt {i}: {text_preview}")
|
98 |
+
|
99 |
+
sources_text = "\n".join(sources)
|
100 |
+
return answer, sources_text
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error answering: {str(e)}", ""
|
103 |
+
|
104 |
+
def create_enhanced_interface():
|
105 |
+
rag_system = EnhancedRAGSystem()
|
106 |
+
|
107 |
+
def process_and_answer(text: str, question: str) -> str:
|
108 |
+
if not text.strip() or not question.strip():
|
109 |
+
return "Please provide both text and question."
|
110 |
+
|
111 |
+
if not rag_system.process_documents(text):
|
112 |
+
return "Error processing the text."
|
113 |
+
|
114 |
+
answer, sources = rag_system.answer_question(question)
|
115 |
+
|
116 |
+
if sources:
|
117 |
+
return f"""Answer: {answer}
|
118 |
+
|
119 |
+
Relevant excerpts consulted:
|
120 |
+
{sources}"""
|
121 |
+
return answer
|
122 |
+
|
123 |
+
# HTML para o cabeçalho
|
124 |
+
custom_css = """
|
125 |
+
.custom-description {
|
126 |
+
margin-bottom: 20px;
|
127 |
+
text-align: center;
|
128 |
+
}
|
129 |
+
.custom-description a {
|
130 |
+
text-decoration: none;
|
131 |
+
color: #007bff;
|
132 |
+
margin: 0 5px;
|
133 |
+
}
|
134 |
+
.custom-description a:hover {
|
135 |
+
text-decoration: underline;
|
136 |
+
}
|
137 |
+
"""
|
138 |
+
|
139 |
+
with gr.Blocks(css=custom_css) as interface:
|
140 |
+
gr.HTML("""
|
141 |
+
<div class="custom-description">
|
142 |
+
<h1>Advanced RAG with Multilingual Support</h1>
|
143 |
+
<p>Ramon Mayor Martins:
|
144 |
+
<a href="https://rmayormartins.github.io/" target="_blank">Website</a> |
|
145 |
+
<a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a> |
|
146 |
+
<a href="https://github.com/rmayormartins" target="_blank">GitHub</a>
|
147 |
+
</p>
|
148 |
+
<p>This system uses Retrieval-Augmented Generation (RAG) to answer questions about your texts in multiple languages.
|
149 |
+
Simply paste your text and ask questions in any language!</p>
|
150 |
+
|
151 |
+
</div>
|
152 |
+
""")
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
text_input = gr.Textbox(
|
157 |
+
label="Base Text",
|
158 |
+
placeholder="Paste here the text that will serve as knowledge base...",
|
159 |
+
lines=10
|
160 |
+
)
|
161 |
+
question_input = gr.Textbox(
|
162 |
+
label="Your Question",
|
163 |
+
placeholder="What would you like to know about the text?"
|
164 |
+
)
|
165 |
+
submit_btn = gr.Button("Submit")
|
166 |
+
|
167 |
+
with gr.Column():
|
168 |
+
output = gr.Textbox(label="Answer")
|
169 |
+
|
170 |
+
examples = [
|
171 |
+
["The Earth is the third planet from the Sun. It has one natural satellite called the Moon. It is the only known planet to harbor life.",
|
172 |
+
"What is Earth's natural satellite?"],
|
173 |
+
|
174 |
+
["La Tierra es el tercer planeta del Sistema Solar. Tiene un satélite natural llamado Luna. Es el único planeta conocido que alberga vida.",
|
175 |
+
"¿Cuál es el satélite natural de la Tierra?"],
|
176 |
+
|
177 |
+
["A Terra é o terceiro planeta do Sistema Solar. Tem um satélite natural chamado Lua. É o único planeta conhecido que abriga vida.",
|
178 |
+
"Qual é o satélite natural da Terra?"],
|
179 |
+
|
180 |
+
["The Sun is a medium-sized star at the center of our Solar System. It provides light and heat to all planets.",
|
181 |
+
"What is the Sun?"],
|
182 |
+
|
183 |
+
["El Sol es una estrella de tamaño medio en el centro de nuestro Sistema Solar. Proporciona luz y calor a todos los planetas.",
|
184 |
+
"¿Qué es el Sol?"],
|
185 |
+
|
186 |
+
["O Sol é uma estrela de tamanho médio no centro do nosso Sistema Solar. Ele fornece luz e calor para todos os planetas.",
|
187 |
+
"O que é o Sol?"]
|
188 |
+
]
|
189 |
+
|
190 |
+
gr.Examples(
|
191 |
+
examples=examples,
|
192 |
+
inputs=[text_input, question_input],
|
193 |
+
outputs=output,
|
194 |
+
fn=process_and_answer,
|
195 |
+
cache_examples=True
|
196 |
+
)
|
197 |
+
|
198 |
+
submit_btn.click(
|
199 |
+
fn=process_and_answer,
|
200 |
+
inputs=[text_input, question_input],
|
201 |
+
outputs=output
|
202 |
+
)
|
203 |
+
|
204 |
+
return interface
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
demo = create_enhanced_interface()
|
208 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.1.0
|
2 |
+
langchain-community==0.0.10
|
3 |
+
chromadb==0.4.22
|
4 |
+
sentence-transformers==2.2.2
|
5 |
+
gradio==4.8.0
|
6 |
+
torch==2.1.2
|
7 |
+
transformers==4.36.2
|
8 |
+
|
9 |
+
|