File size: 9,062 Bytes
375a093
 
 
 
 
 
d13c5f2
 
375a093
 
 
 
d13c5f2
375a093
50c9e76
 
375a093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13c5f2
 
375a093
 
 
 
 
 
 
 
d13c5f2
 
375a093
 
 
d13c5f2
 
375a093
d13c5f2
 
375a093
 
 
 
 
 
 
 
 
 
 
d13c5f2
 
 
 
 
 
 
 
 
 
 
 
50c9e76
 
 
d13c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375a093
 
 
 
 
 
 
d13c5f2
375a093
 
 
 
 
 
 
 
 
d13c5f2
 
375a093
d13c5f2
375a093
d13c5f2
375a093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13c5f2
375a093
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from datasets import load_dataset
import pandas as pd
import numpy as np
import os
import json
import torch
import sys

from torch.utils.data import Dataset, DataLoader
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments, AdamW

torch.backends.cuda.matmul.allow_tf32 = True
model_name = "distilbert-base-uncased"
upsto_abstracts_model_path = './models/uspto_abstracts'
upsto_claims_model_path = './models/uspto_claims'

class USPTODataset(Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels
    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item
    def __len__(self):
        return len(self.labels)

def LoadDataset():
    print("=== LOADING THE DATASET ===")
    # Extracting the dataset, filtering only for Jan. 2016
    dataset_dict = load_dataset('HUPD/hupd',
        name='sample',
        data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", 
        icpr_label=None,
        train_filing_start_date='2016-01-01',
        train_filing_end_date='2016-01-21',
        val_filing_start_date='2016-01-22',
        val_filing_end_date='2016-01-31',
    )

    print("Separating between training and validation data")
    df_train = pd.DataFrame(dataset_dict['train'] )
    df_val = pd.DataFrame(dataset_dict['validation'] )

    
    print("=== PRE-PROCESSING THE DATASET ===")
    #We are interested in the following columns:
    # - Abstract
    # - Claims
    # - Decision <- our `y`
    # Let's preprocess them both out of our training and validation data
    # Also, consider that the "Decision" column has three types of values: "Accepted", "Rejected", and "Pending". To remove unecessary baggage, we will be only looking for "Accepted" and "Rejected".

    necessary_columns = ["abstract","claims","decision"]
    output_values = ['ACCEPTED','REJECTED']

    print("Dropping unused columns")
    trainFeaturesToDrop = [col for col in list(df_train.columns) if col not in necessary_columns]
    trainDF = df_train.dropna()
    trainDF.drop(columns=trainFeaturesToDrop, inplace=True)
    trainDF = trainDF[trainDF['decision'].isin(output_values)]
    valFeaturesToDrop = [col for col in list(df_val.columns) if col not in necessary_columns]
    valDF = df_val.dropna()
    valDF.drop(columns=valFeaturesToDrop, inplace=True)
    valDF = valDF[valDF['decision'].isin(output_values)]

    # We need to replace the values in the `decision` column to numerical representations. ]
    # We will set "ACCEPTED" as `1` and "REJECTED" as `0`.
    print("Replacing values in `decision` column")
    yKey = {"ACCEPTED":1,"REJECTED":0}
    trainDF2 = trainDF.replace({"decision": yKey})
    valDF2 = valDF.replace({"decision": yKey})

    # We re-label the `decision` column to `label`.
    print("Renaming `decision` to `label`")
    trainDF3 = trainDF2.rename(columns={'decision': 'label'})
    valDF3 = valDF2.rename(columns={'decision': 'label'})

    # We can grab the data for each column so that we have a list of values for training labels, 
    #   training texts, validation labels, and validation texts.
    print("Extracting label and text data from dataframes")
    trainData = {
        "labels":trainDF3["label"].tolist(),
        "abstracts":trainDF3["abstract"].tolist(),
        "claims":trainDF3["claims"].tolist(),
    }
    valData = {
        "labels":valDF3["label"].tolist(),
        "abstracts":valDF3["abstract"].tolist(),
        "claims":valDF3["claims"].tolist(),
    }
    #print(f'TRAINING:\t# labels: {len(trainData["labels"])}\t# texts: {len(trainData["text"])}')
    #print(f'VALID:\t# labels: {len(valData["labels"])}\t# texts: {len(valData["text"])}')

    if not os.path.exists("./data"):
        os.makedirs('./data')

    with open("./data/train.json", "w") as outfile:
        json.dump(trainData, outfile, indent=2)
    with open("./data/val.json", "w") as outfile:
        json.dump(valData, outfile, indent=2)

    return trainData, valData

def TrainModel(trainData, valData):
    print("=== ENCODING DATA ===")
    #print(len(trainData["labels"]), len(trainData["text"]), len(valData["labels"]), len(valData["text"]))
    print("\t- initializing tokenizer")
    tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
    print("\t- encoding training data")
    train_abstracts_encodings = tokenizer(trainData["abstracts"], truncation=True, padding=True)
    train_claims_encodings = tokenizer(trainData["claims"], truncation=True, padding=True)
    #print("\t- encoding validation data")
    #val_abstracts_encodings = tokenizer(valData["abstracts"], truncation=True, padding=True)
    #val_claims_encodings = tokenizer(valData["claims"], truncation=True, padding=True)

    print(trainData["abstracts"][:10])
    print(trainData["labels"][:10])

    print("=== CREATING DATASETS ===")
    print("\t- initializing dataset for training data")
    train_abstracts_dataset = USPTODataset(train_abstracts_encodings, trainData["labels"])
    train_claims_dataset = USPTODataset(train_claims_encodings, trainData["labels"])
    #print("\t- initializing dataset for validation data")
    #val_abstracts_dataset = USPTODataset(val_abstracts_encodings, valData["labels"])
    #val_claims_dataset = USPTODataset(val_claims_encodings, valData["labels"])

    print("=== PREPARING MODEL ===")
    print("\t- setting up device")
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    print("\t- initializing model")
    model = DistilBertForSequenceClassification.from_pretrained(model_name)
    model.to(device)
    model.train()

    print("== PREPARING TRAINING ===")
    print("\t- initializing trainers")
    train_abstracts_loader = DataLoader(train_abstracts_dataset, batch_size=4, shuffle=True)
    train_claims_loader = DataLoader(train_claims_dataset, batch_size=4, shuffle=True)
    #train_claims_loader = DataLoader(train_claims_dataset, batch_size=4, shuffle=True)
    print("\t- initializing optim")
    optim = AdamW(model.parameters(), lr=5e-5)

    def Train(loader, save_path, num_train_epochs=2):
        batch_num = len(loader)
        for epoch in range(num_train_epochs):
            print(f'\t- Training epoch {epoch+1}/{num_train_epochs}')
            batch_count = 0
            for batch in loader:
                print(f'{batch_count}|{batch_num} - {round((batch_count/batch_num)*100)}%', end="")
                #print('\t\t- optim zero grad')
                optim.zero_grad()
                #print('\t\t- input_ids')
                input_ids = batch['input_ids'].to(device)
                #print('\t\t- attention_mask')
                attention_mask = batch['attention_mask'].to(device)
                #print('\t\t- labels0')
                labels = batch['labels'].to(device)
                #print('\t\t- outputs')
                outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
            
                #print('\t\t- loss')
                loss = outputs[0]
                #print('\t\t- backwards')
                loss.backward()
                #print('\t\t- step')
                optim.step()

                batch_count += 1
                print("\r", end="")
    
        model.eval()
        model.save_pretrained(save_path, from_pt=True) 
        print(f'Saved model in {save_path}!')
    
    print("=== TRAINING ABSTRACTS ===")
    Train(train_abstracts_loader,upsto_abstracts_model_path)
    print("=== TRAINING CLAIMS ===")
    Train(train_claims_loader,upsto_claims_model_path)

def main():
    trainDataPath = "./data/train.json"
    valDataPath = "./data/val.json"
    trainData = None
    valData = None

    if os.path.exists(trainDataPath) and os.path.exists(valDataPath):
        print("Loading from existing data files")
        ftrain = open(trainDataPath)
        trainData = json.load(ftrain)
        ftrain.close()
        fval = open(valDataPath)
        valData = json.load(fval)
        fval.close()
    else:
        trainData, valData = LoadDataset()
    
    #print(len(trainData["labels"]), len(trainData["text"]), len(valData["labels"]), len(valData["text"]))
    print("Data loaded successfully!")

    TrainModel(trainData, valData)

    """
    train_args = TrainingArguments(
        output_dir="./results",
        num_train_epochs=2,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=64,
        warmup_steps=500,
        learning_rate=5e-5,
        weight_decay=0.01,
        logging_dir="./logs",
        logging_steps=10
    )

    model = DistilBertForSequenceClassification.from_pretrained(model_name)
    trainer = Trainer(
        model=model,
        args=train_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset
    )
    trainer.train()
    """

if __name__ == "__main__":
    main()