Spaces:
Sleeping
Sleeping
File size: 13,554 Bytes
f33adc1 f6433d8 527bfa3 91a0713 527bfa3 91a0713 527bfa3 91a0713 62855fd 91a0713 527bfa3 f6433d8 1817ba4 91a0713 527bfa3 62855fd 91a0713 5fcd144 91a0713 ace9bdd 91a0713 ace9bdd 91a0713 ace9bdd 91a0713 ace9bdd 91a0713 5fcd144 91a0713 ace9bdd 91a0713 ace9bdd 91a0713 527bfa3 91a0713 f6433d8 91a0713 f6433d8 ace9bdd 527bfa3 f6433d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import gradio as gr
import os
hftoken = os.environ["hftoken"]
from langchain_huggingface import HuggingFaceEndpoint
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()
# from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
embeddings = HuggingFaceEndpointEmbeddings(model = model)
vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
retriever = vectorstore.as_retriever()
# from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate an answer based on the context only.
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
CONTEXT: {context}
QUESTION: {question}""")
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Define the chat response function
def chatresponse(message, history):
history_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history])
msg = message
totalmessage = history_text + msg
output = rag_chain.invoke(totalmessage)
response = output.split('ANSWER: ')[-1].strip()
return response
# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# import os
# hftoken = os.environ["hftoken"]
# from langchain_huggingface import HuggingFaceEndpoint
# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# chain = prompt | llm | StrOutputParser()
# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)
# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()
# # from langchain.prompts import PromptTemplate
# from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}""")
# from langchain_core.runnables import RunnablePassthrough
# # rag_chain = (
# # {"context": retriever, "history": RunnablePassthrough(), "question": RunnablePassthrough()}
# # | prompt
# # | llm
# # | StrOutputParser()
# # )
# rag_chain = (
# {"context": retriever, "question": RunnablePassthrough()}
# | prompt
# | llm
# | StrOutputParser()
# )
# # Define the chat response function
# def chatresponse(message, history):
# # history_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history])
# # inputs = {
# # # "context": retriever, # context will be retrieved by the retriever
# # # "history": history_text,
# # "question": message
# # }
# output = rag_chain.invoke(message)
# response = output.split('ANSWER: ')[-1].strip()
# return response
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage
# import os
# hftoken = os.environ["hftoken"]
# from langchain_huggingface import HuggingFaceEndpoint
# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate
# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()
# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)
# # Define the chat response function
# def chatresponse(message, history):
# # history_langchain_format = []
# # for human, ai in history:
# # history_langchain_format.append(HumanMessage(content=human))
# # history_langchain_format.append(AIMessage(content=ai))
# # history_langchain_format.append(HumanMessage(content=message))
# data_vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# # history_vectorstore = Chroma.from_documents(documents = history, embedding = embeddings)
# # vectorstore = data_vectorstore + history_vectorstore
# vectorstore = data_vectorstore
# retriever = vectorstore.as_retriever()
# history_str = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])
# # from langchain.prompts import PromptTemplate
# from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# HISTORY: {history}
# CONTEXT: {context}
# QUESTION: {question}""")
# from langchain_core.runnables import RunnablePassthrough
# rag_chain = (
# {"history": history_str, "context": retriever, "question": RunnablePassthrough()}
# | prompt
# | llm
# | StrOutputParser()
# )
# output = rag_chain.invoke(message)
# response = output.split('ANSWER: ')[-1].strip()
# return response
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage
# import os
# hftoken = os.environ["hftoken"]
# from langchain_huggingface import HuggingFaceEndpoint
# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate
# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()
# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)
# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()
# # from langchain.prompts import PromptTemplate
# from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# HISTORY: {history}
# QUESTION: {question}""")
# from langchain_core.runnables import RunnablePassthrough
# # Define the chat response function
# def chatresponse(message, history):
# # history_langchain_format = []
# # for human, ai in history:
# # history_langchain_format.append(HumanMessage(content=human))
# # history_langchain_format.append(AIMessage(content=ai))
# # history_langchain_format.append(HumanMessage(content=message))
# rag_chain = (
# {"context": retriever, "history": history, "question": RunnablePassthrough()}
# | prompt
# | llm
# | StrOutputParser()
# )
# output = rag_chain.invoke(message)
# response = output.split('ANSWER: ')[-1].strip()
# return response
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# def chatresponse(message, history):
# return history
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch() |