File size: 13,554 Bytes
f33adc1
f6433d8
527bfa3
 
 
 
 
 
 
 
 
 
 
 
91a0713
 
527bfa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a0713
 
527bfa3
91a0713
 
 
 
 
 
 
 
 
 
 
 
 
 
62855fd
91a0713
 
 
 
527bfa3
 
f6433d8
1817ba4
 
 
 
91a0713
 
 
 
 
527bfa3
62855fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91a0713
 
5fcd144
 
91a0713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace9bdd
91a0713
ace9bdd
91a0713
ace9bdd
91a0713
 
 
ace9bdd
91a0713
5fcd144
91a0713
ace9bdd
91a0713
ace9bdd
91a0713
 
 
 
 
 
 
527bfa3
 
91a0713
 
 
f6433d8
91a0713
 
f6433d8
ace9bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527bfa3
 
 
 
 
 
 
 
f6433d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import gradio as gr


import os
hftoken = os.environ["hftoken"]

from langchain_huggingface import HuggingFaceEndpoint

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()

# from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders.csv_loader import CSVLoader


loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()

from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
embeddings = HuggingFaceEndpointEmbeddings(model = model)

vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
retriever = vectorstore.as_retriever()

# from langchain.prompts import PromptTemplate

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate an answer based on the context only.
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
CONTEXT: {context}
QUESTION: {question}""")

from langchain_core.runnables import RunnablePassthrough

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

# Define the chat response function
def chatresponse(message, history):
    history_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history])
    msg = message
    totalmessage = history_text + msg
    output = rag_chain.invoke(totalmessage)
    response = output.split('ANSWER: ')[-1].strip()
    return response

# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()

# import gradio as gr


# import os
# hftoken = os.environ["hftoken"]

# from langchain_huggingface import HuggingFaceEndpoint

# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate

# prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# chain = prompt | llm | StrOutputParser()

# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)

# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()

# # from langchain.prompts import PromptTemplate

# from langchain_core.prompts import ChatPromptTemplate

# prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}""")

# from langchain_core.runnables import RunnablePassthrough

# # rag_chain = (
# #     {"context": retriever, "history": RunnablePassthrough(), "question": RunnablePassthrough()}
# #     | prompt
# #     | llm
# #     | StrOutputParser()
# # )

# rag_chain = (
#     {"context": retriever, "question": RunnablePassthrough()}
#     | prompt
#     | llm
#     | StrOutputParser()
# )

# # Define the chat response function
# def chatresponse(message, history):
#     # history_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history])
    
#     # inputs = {
#     #     # "context": retriever,  # context will be retrieved by the retriever
#     #     # "history": history_text,
#     #     "question": message
#     # }
    
#     output = rag_chain.invoke(message)
#     response = output.split('ANSWER: ')[-1].strip()
#     return response

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage


# import os
# hftoken = os.environ["hftoken"]

# from langchain_huggingface import HuggingFaceEndpoint

# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate

# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()

# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)



# # Define the chat response function
# def chatresponse(message, history):
#     # history_langchain_format = []
#     # for human, ai in history:
#     #     history_langchain_format.append(HumanMessage(content=human))
#     #     history_langchain_format.append(AIMessage(content=ai))
#     # history_langchain_format.append(HumanMessage(content=message))

#     data_vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
#     # history_vectorstore = Chroma.from_documents(documents = history, embedding = embeddings)
#     # vectorstore = data_vectorstore + history_vectorstore
#     vectorstore = data_vectorstore
#     retriever = vectorstore.as_retriever()

#     history_str = "\n".join([f"Human: {h[0]}\nAI: {h[1]}" for h in history])

#     # from langchain.prompts import PromptTemplate
    
#     from langchain_core.prompts import ChatPromptTemplate
    
#     prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
    
#     In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
#     If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
#     If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
    
#     HISTORY: {history}
    
#     CONTEXT: {context}
    
#     QUESTION: {question}""")
    
#     from langchain_core.runnables import RunnablePassthrough
#     rag_chain = (
#     {"history": history_str, "context": retriever, "question": RunnablePassthrough()}
#     | prompt
#     | llm
#     | StrOutputParser()
#     )

    
#     output = rag_chain.invoke(message)
#     response = output.split('ANSWER: ')[-1].strip()
#     return response

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage


# import os
# hftoken = os.environ["hftoken"]

# from langchain_huggingface import HuggingFaceEndpoint

# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate

# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()

# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)

# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()

# # from langchain.prompts import PromptTemplate

# from langchain_core.prompts import ChatPromptTemplate

# prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.

# CONTEXT: {context}

# HISTORY: {history}

# QUESTION: {question}""")

# from langchain_core.runnables import RunnablePassthrough

# # Define the chat response function
# def chatresponse(message, history):
#     # history_langchain_format = []
#     # for human, ai in history:
#     #     history_langchain_format.append(HumanMessage(content=human))
#     #     history_langchain_format.append(AIMessage(content=ai))
#     # history_langchain_format.append(HumanMessage(content=message))

#     rag_chain = (
#     {"context": retriever, "history": history, "question": RunnablePassthrough()}
#     | prompt
#     | llm
#     | StrOutputParser()
#     )

    
#     output = rag_chain.invoke(message)
#     response = output.split('ANSWER: ')[-1].strip()
#     return response

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr

# def chatresponse(message, history):
#     return history

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()