Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,88 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def chatresponse(message, history):
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Launch the Gradio chat interface
|
7 |
gr.ChatInterface(chatresponse).launch()
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# import gradio as gr
|
10 |
# from huggingface_hub import InferenceClient
|
11 |
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
|
4 |
+
import os
|
5 |
+
hftoken = os.environ["hftoken"]
|
6 |
+
|
7 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
|
9 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
10 |
+
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
|
11 |
+
|
12 |
+
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
from langchain_core.prompts import ChatPromptTemplate
|
14 |
+
|
15 |
+
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
|
16 |
+
chain = prompt | llm | StrOutputParser()
|
17 |
+
|
18 |
+
# from langchain.document_loaders.csv_loader import CSVLoader
|
19 |
+
from langchain_community.document_loaders.csv_loader import CSVLoader
|
20 |
+
|
21 |
+
|
22 |
+
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
23 |
+
data = loader.load()
|
24 |
+
|
25 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
26 |
+
from langchain_chroma import Chroma
|
27 |
+
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
|
28 |
+
|
29 |
+
# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
|
30 |
+
model = "BAAI/bge-m3"
|
31 |
+
embeddings = HuggingFaceEndpointEmbeddings(model = model)
|
32 |
+
|
33 |
+
vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
|
34 |
+
retriever = vectorstore.as_retriever()
|
35 |
+
|
36 |
+
# from langchain.prompts import PromptTemplate
|
37 |
+
|
38 |
+
from langchain_core.prompts import ChatPromptTemplate
|
39 |
+
|
40 |
+
prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
|
41 |
+
|
42 |
+
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
43 |
+
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
44 |
+
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
|
45 |
+
|
46 |
+
CONTEXT: {context}
|
47 |
+
|
48 |
+
HISTORY: {history}
|
49 |
+
|
50 |
+
QUESTION: {question}""")
|
51 |
+
|
52 |
+
from langchain_core.runnables import RunnablePassthrough
|
53 |
+
|
54 |
+
# Define the chat response function
|
55 |
def chatresponse(message, history):
|
56 |
+
history_langchain_format = []
|
57 |
+
for human, ai in history:
|
58 |
+
history_langchain_format.append(HumanMessage(content=human))
|
59 |
+
history_langchain_format.append(AIMessage(content=ai))
|
60 |
+
history_langchain_format.append(HumanMessage(content=message))
|
61 |
+
gpt_response = llm(history_langchain_format)
|
62 |
+
|
63 |
+
rag_chain = (
|
64 |
+
{"context": retriever, "history": history_langchain_format, "question": RunnablePassthrough()}
|
65 |
+
| prompt
|
66 |
+
| llm
|
67 |
+
| StrOutputParser()
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
output = rag_chain.invoke(message)
|
72 |
+
response = output.split('ANSWER: ')[-1].strip()
|
73 |
+
return response
|
74 |
|
75 |
# Launch the Gradio chat interface
|
76 |
gr.ChatInterface(chatresponse).launch()
|
77 |
|
78 |
+
# import gradio as gr
|
79 |
+
|
80 |
+
# def chatresponse(message, history):
|
81 |
+
# return history
|
82 |
+
|
83 |
+
# # Launch the Gradio chat interface
|
84 |
+
# gr.ChatInterface(chatresponse).launch()
|
85 |
+
|
86 |
# import gradio as gr
|
87 |
# from huggingface_hub import InferenceClient
|
88 |
|