Spaces:
Running
Running
File size: 11,929 Bytes
84f40ff 3caf072 84f40ff 6d97820 df330ee 6d97820 215c2d8 6d97820 3caf072 df330ee 3caf072 215c2d8 3caf072 df330ee 3caf072 215c2d8 3caf072 84f40ff 6d97820 84f40ff 6d97820 3caf072 84f40ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, nc_tasks, nr_tasks, lp_tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
auto_eval_column_dict_nc = []
auto_eval_column_dict_nc.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_nc.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
for task in nc_tasks:
auto_eval_column_dict_nc.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
auto_eval_column_dict_nc.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nc.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nc.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nc.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nc.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)])
#auto_eval_column_dict_nc.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)])
AutoEvalColumn_NodeClassification = make_dataclass("AutoEvalColumn_NodeClassification", auto_eval_column_dict_nc, frozen=True)
auto_eval_column_dict_nr = []
auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
for task in nr_tasks:
auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nr.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_nr.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)])
#auto_eval_column_dict_nr.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)])
AutoEvalColumn_NodeRegression = make_dataclass("AutoEvalColumn_NodeRegression", auto_eval_column_dict_nr, frozen=True)
auto_eval_column_dict_lp = []
auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
for task in lp_tasks:
auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_lp.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)])
auto_eval_column_dict_lp.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)])
#auto_eval_column_dict_lp.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)])
AutoEvalColumn_LinkPrediction = make_dataclass("AutoEvalColumn_LinkPrediction", auto_eval_column_dict_lp, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class OFFICIAL(Enum):
official = ModelDetails("Official")
unofficial = ModelDetails("Unofficial")
class HONOR(Enum):
yes = ModelDetails("Yes")
no = ModelDetails("No")
class TASK_LIST(Enum):
amazon_user_churn = ModelDetails("rel-amazon-user-churn")
amazon_item_churn = ModelDetails("rel-amazon-item-churn")
amazon_user_ltv = ModelDetails("rel-amazon-user-ltv")
amazon_item_ltv = ModelDetails("rel-amazon-item-ltv")
amazon_user_item_purchase = ModelDetails("rel-amazon-user-item-purchase")
amazon_user_item_rate = ModelDetails("rel-amazon-user-item-rate")
amazon_user_item_review = ModelDetails("rel-amazon-user-item-review")
# rel-stack
stack_user_engagement = ModelDetails("rel-stack-user-engagement")
stack_user_badge = ModelDetails("rel-stack-user-badge")
stack_post_votes = ModelDetails("rel-stack-post-votes")
stack_user_post_comment = ModelDetails("rel-stack-user-post-comment")
stack_user_post_related = ModelDetails("rel-stack-user-post-related")
# rel-trial
trial_study_outcome = ModelDetails("rel-trial-study-outcome")
trial_study_adverse = ModelDetails("rel-trial-study-adverse")
trial_site_success = ModelDetails("rel-trial-site-success")
trial_condition_sponsor_run = ModelDetails("rel-trial-condition-sponsor-run")
trial_site_sponsor_run = ModelDetails("rel-trial-site-sponsor-run")
# rel-f1
f1_driver_position = ModelDetails("rel-f1-driver-position")
f1_driver_dnf = ModelDetails("rel-f1-driver-dnf")
f1_driver_top3 = ModelDetails("rel-f1-driver-top3")
# rel-hm
hm_user_churn = ModelDetails("rel-hm-user-churn")
hm_item_sales = ModelDetails("rel-hm-item-sales")
hm_user_item_purchase = ModelDetails("rel-hm-user-item-purchase")
# rel-event
event_user_repeat = ModelDetails("rel-event-user-repeat")
event_user_ignore = ModelDetails("rel-event-user-ignore")
event_user_attendance = ModelDetails("rel-event-user-attendance")
# rel-avito
avito_user_visits = ModelDetails("rel-avito-user-visits")
avito_user_clicks = ModelDetails("rel-avito-user-clicks")
avito_ads_clicks = ModelDetails("rel-avito-ads-clicks")
avito_user_ad_visit = ModelDetails("rel-avito-user-ad-visit")
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
#qt_8bit = ModelDetails("8bit")
#qt_4bit = ModelDetails("4bit")
#qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["float32"]:
return Precision.float32
#if precision in ["8bit"]:
# return Precision.qt_8bit
#if precision in ["4bit"]:
# return Precision.qt_4bit
#if precision in ["GPTQ", "None"]:
# return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_NC = [c.name for c in fields(AutoEvalColumn_NodeClassification) if not c.hidden]
COLS_NR = [c.name for c in fields(AutoEvalColumn_NodeRegression) if not c.hidden]
COLS_LP = [c.name for c in fields(AutoEvalColumn_LinkPrediction) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|