Spaces:
Running
Running
kexinhuang12345
commited on
Commit
·
df330ee
1
Parent(s):
4d5ee1c
bug fix
Browse files- app.py +0 -9
- src/display/utils.py +3 -3
- src/populate.py +18 -6
- src/submission/submit.py +10 -2
app.py
CHANGED
@@ -429,15 +429,6 @@ with demo:
|
|
429 |
submission_result,
|
430 |
)
|
431 |
|
432 |
-
with gr.Row():
|
433 |
-
with gr.Accordion("📙 Citation", open=False):
|
434 |
-
citation_button = gr.Textbox(
|
435 |
-
value=CITATION_BUTTON_TEXT,
|
436 |
-
label=CITATION_BUTTON_LABEL,
|
437 |
-
lines=20,
|
438 |
-
elem_id="citation-button",
|
439 |
-
show_copy_button=True,
|
440 |
-
)
|
441 |
|
442 |
scheduler = BackgroundScheduler()
|
443 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
429 |
submission_result,
|
430 |
)
|
431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
scheduler = BackgroundScheduler()
|
434 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
src/display/utils.py
CHANGED
@@ -48,7 +48,7 @@ auto_eval_column_dict_nc = []
|
|
48 |
auto_eval_column_dict_nc.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
49 |
auto_eval_column_dict_nc.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
50 |
for task in nc_tasks:
|
51 |
-
auto_eval_column_dict_nc.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.
|
52 |
auto_eval_column_dict_nc.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
53 |
auto_eval_column_dict_nc.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
54 |
auto_eval_column_dict_nc.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
@@ -63,7 +63,7 @@ auto_eval_column_dict_nr = []
|
|
63 |
auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
64 |
auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
65 |
for task in nr_tasks:
|
66 |
-
auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.
|
67 |
auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
68 |
auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
69 |
auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
@@ -78,7 +78,7 @@ auto_eval_column_dict_lp = []
|
|
78 |
auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
79 |
auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
80 |
for task in lp_tasks:
|
81 |
-
auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.
|
82 |
auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
83 |
auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
84 |
auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
|
|
48 |
auto_eval_column_dict_nc.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
49 |
auto_eval_column_dict_nc.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
50 |
for task in nc_tasks:
|
51 |
+
auto_eval_column_dict_nc.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
|
52 |
auto_eval_column_dict_nc.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
53 |
auto_eval_column_dict_nc.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
54 |
auto_eval_column_dict_nc.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
|
|
63 |
auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
64 |
auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
65 |
for task in nr_tasks:
|
66 |
+
auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
|
67 |
auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
68 |
auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
69 |
auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
|
|
78 |
auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
79 |
auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)])
|
80 |
for task in lp_tasks:
|
81 |
+
auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)])
|
82 |
auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)])
|
83 |
auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)])
|
84 |
auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)])
|
src/populate.py
CHANGED
@@ -2,6 +2,7 @@ import json
|
|
2 |
import os
|
3 |
from ast import literal_eval
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
@@ -12,6 +13,14 @@ from src.about import (
|
|
12 |
lp_tasks,
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
'''
|
16 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
17 |
"""Creates a dataframe from all the individual experiment results"""
|
@@ -26,7 +35,8 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
26 |
#df = df[has_no_nan_values(df, benchmark_cols)]
|
27 |
return raw_data, df
|
28 |
'''
|
29 |
-
|
|
|
30 |
def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
|
31 |
if task_type == 'Node Classification':
|
32 |
ascending = False
|
@@ -54,17 +64,19 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
|
|
54 |
model_res.append(out)
|
55 |
|
56 |
for model in model_res:
|
57 |
-
model["test"] = literal_eval(model["test"])
|
58 |
-
model["valid"] = literal_eval(model["valid"])
|
59 |
#model["params"] = int(model["params"])
|
60 |
model['submitted_time'] = model['submitted_time'].split('T')[0]
|
61 |
#model['paper_url'] = '[Link](' + model['paper_url'] + ')'
|
62 |
#model['github_url'] = '[Link](' + model['github_url'] + ')'
|
63 |
|
64 |
-
name2short_name = {task.value.benchmark: task.value.
|
65 |
for model in model_res:
|
66 |
-
model.update({
|
67 |
-
|
|
|
|
|
68 |
columns_to_show = ['model', 'author', 'email', 'paper_url', 'github_url', 'submitted_time'] + list(name2short_name.values())
|
69 |
|
70 |
# Check if model_res is empty
|
|
|
2 |
import os
|
3 |
from ast import literal_eval
|
4 |
import pandas as pd
|
5 |
+
import re
|
6 |
|
7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
8 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
|
13 |
lp_tasks,
|
14 |
)
|
15 |
|
16 |
+
def sanitize_string(input_string):
|
17 |
+
# Remove leading and trailing whitespace
|
18 |
+
input_string = input_string.strip()
|
19 |
+
|
20 |
+
# Remove leading whitespace on each line
|
21 |
+
sanitized_string = re.sub(r'(?m)^\s+', '', input_string)
|
22 |
+
|
23 |
+
return sanitized_string
|
24 |
'''
|
25 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
26 |
"""Creates a dataframe from all the individual experiment results"""
|
|
|
35 |
#df = df[has_no_nan_values(df, benchmark_cols)]
|
36 |
return raw_data, df
|
37 |
'''
|
38 |
+
def format_number(num):
|
39 |
+
return f"{num:.3f}"
|
40 |
def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
|
41 |
if task_type == 'Node Classification':
|
42 |
ascending = False
|
|
|
64 |
model_res.append(out)
|
65 |
|
66 |
for model in model_res:
|
67 |
+
model["test"] = literal_eval(model["test"].split('}')[0]+'}')
|
68 |
+
model["valid"] = literal_eval(model["valid"].split('}')[0]+'}')
|
69 |
#model["params"] = int(model["params"])
|
70 |
model['submitted_time'] = model['submitted_time'].split('T')[0]
|
71 |
#model['paper_url'] = '[Link](' + model['paper_url'] + ')'
|
72 |
#model['github_url'] = '[Link](' + model['github_url'] + ')'
|
73 |
|
74 |
+
name2short_name = {task.value.benchmark: task.value.benchmark for task in tasks}
|
75 |
for model in model_res:
|
76 |
+
model.update({
|
77 |
+
name2short_name[i]: (f"{format_number(model['test'][i][0])} ± {format_number(model['test'][i][1])}" if i in model['test'] else '-')
|
78 |
+
for i in name2short_name
|
79 |
+
})
|
80 |
columns_to_show = ['model', 'author', 'email', 'paper_url', 'github_url', 'submitted_time'] + list(name2short_name.values())
|
81 |
|
82 |
# Check if model_res is empty
|
src/submission/submit.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
@@ -78,10 +79,17 @@ def add_new_eval(
|
|
78 |
"task": task_track,
|
79 |
"private": False,
|
80 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# TODO: Check for duplicate submission
|
83 |
-
#if f"{model}
|
84 |
-
# return
|
85 |
|
86 |
print("Creating eval file")
|
87 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{model}"
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
4 |
+
from ast import literal_eval
|
5 |
|
6 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
7 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
|
|
79 |
"task": task_track,
|
80 |
"private": False,
|
81 |
}
|
82 |
+
|
83 |
+
## add a checking to verify if the submission has no bug
|
84 |
+
try:
|
85 |
+
xx = literal_eval(eval_entry["test"])
|
86 |
+
xx = literal_eval(eval_entry["valid"])
|
87 |
+
except:
|
88 |
+
return styled_error("The testing/validation performance submitted do not follow the correct format. Please check the format and resubmit.")
|
89 |
|
90 |
# TODO: Check for duplicate submission
|
91 |
+
#if f"{model}" in REQUESTED_MODELS:
|
92 |
+
# return styled_error("This model has been already submitted.")
|
93 |
|
94 |
print("Creating eval file")
|
95 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{model}"
|