File size: 1,964 Bytes
93762d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from llama_index.core import (
    VectorStoreIndex,
    SimpleDirectoryReader,
    get_response_synthesizer,
    ServiceContext,
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.postprocessor import SentenceTransformerRerank
from typing import Optional, List
from llama_index.llms.groq import Groq


class RAG:
    def __init__(
        self, filepaths: List[str], rerank: Optional[SentenceTransformerRerank] = None
    ) -> None:
        documents = SimpleDirectoryReader(input_files=filepaths).load_data()
        response_synthesizer = get_response_synthesizer(
            response_mode="tree_summarize",
            use_async=True,
        )
        self.index = VectorStoreIndex.from_documents(
            documents=documents,
            response_synthesizer=response_synthesizer,
        )
        if not rerank:
            self.query_engine = self.index.as_query_engine(
                response_mode="tree_summarize",
                use_async=True,
                streaming=True,
                similarity_top_k=10,
            )
        else:
            self.query_engine = self.index.as_query_engine(
                response_mode="tree_summarize",
                use_async=True,
                streaming=True,
                similarity_top_k=10,
                node_postprocessors=[rerank],
            )

    def run_query_engine(self, prompt):
        response = self.query_engine.query(prompt)
        response.print_response_stream()
        return str(response)


class ServiceContextModule:
    def __init__(self, api_key, model_name) -> None:
        self._llm = Groq(model=model_name, api_key=api_key)
        self._embedding_model = HuggingFaceEmbedding(
            "Snowflake/snowflake-arctic-embed-m-long", trust_remote_code=True
        )
        self.service_context = ServiceContext.from_defaults(
            llm=self._llm,
            embed_model=self._embedding_model,
        )